Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 662
Filter
1.
Heliyon ; 10(11): e32451, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961991

ABSTRACT

Path planning is an crucial research area in robotics. Compared to other path planning algorithms, the Rapidly-exploring Random Tree (RRT) algorithm possesses both search and random sampling properties, and thus has more potential to generate high-quality paths that can balance the global optimum and local optimum. This paper reviews the research on RRT-based improved algorithms from 2021 to 2023, including theoretical improvements and application implementations. At the theoretical level, branching strategy improvement, sampling strategy improvement, post-processing improvement, and model-driven RRT are highlighted, at the application level, application scenarios of RRT under welding robots, assembly robots, search and rescue robots, surgical robots, free-floating space robots, and inspection robots are detailed, and finally, many challenges faced by RRT at both the theoretical and application levels are summarized. This review suggests that although RRT-based improved algorithms has advantages in large-scale scenarios, real-time performance, and uncertain environments, and some strategies that are difficult to be quantitatively described can be designed based on model-driven RRT, RRT-based improved algorithms still suffer from the problems of difficult to design the hyper-parameters and weak generalization, and in the practical application level, the reliability and accuracy of the hardware such as controllers, actuators, sensors, communication, power supply and data acquisition efficiency all pose challenges to the long-term stability of RRT in large-scale unstructured scenarios. As a part of autonomous robots, the upper limit of RRT path planning performance also depends on the robot localization and scene modeling performance, and there are still architectural and strategic choices in multi-robot collaboration, in addition to the ethics and morality that has to be faced. To address the above issues, I believe that multi-type robot collaboration, human-robot collaboration, real-time path planning, self-tuning of hyper-parameters, task- or application-scene oriented algorithms and hardware design, and path planning in highly dynamic environments are future trends.

2.
J Trace Elem Med Biol ; 85: 127484, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38924924

ABSTRACT

OBJECTIVES: Metal exposure and depression have each been associated with adverse metabolic diseases, but no study has examined the potential interaction between them. We examined the interaction of depression on the association between metals and metabolic diseases among adults. STUDY DESIGN: The interaction of depression in the relationship between metal and metabolic disease in adults was investigated using NHANES, a cross-sectional survey design. METHODS: By employing data from the NHANES database spanning the years 2007-2018, regression models were employed to investigate the independent impacts of heavy metals (cadmium, lead, and mercury) and depression on metabolic diseases (type 2 diabetes, hypertension, hyperlipidemia, metabolic syndrome). Subsequently, the association between metals and metabolic diseases was explored stratified by depression, and the interaction between heavy metals and depression was explored. Because of the complex NHANES design, statistical evaluations were adjusted through weighting to represent the populace of the United States. RESULTS: We found log transformed-urinary lead was significantly associated with type 2 diabetes (OR: 2.33; 95 % CI: 1.23, 4.41) in adults with depression. Log transformed-urinary lead was not associated with type 2 diabetes (OR: 0.84; 95 % CI: 0.56, 1.27) in adults without depression. The interaction between Pb and depression in type 2 diabetes was significant (P for interaction = 0.033). Log transformed-urinary lead * depression was significantly associated with type 2 diabetes (OR: 1.82; 95 % CI: 1.01, 3.34) in adults. There was no significant interaction between cadmium and mercury exposure and depression in patients with type 2 diabetes, hypertension, hyperlipidemia, and metabolic syndrome (P for interaction > 0.05). CONCLUSIONS: The presence of depression positively modified the adverse associations between urinary lead and type 2 diabetes.

3.
Ultrason Sonochem ; 108: 106944, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38878712

ABSTRACT

With the proposal of the 2030 Agenda for Sustainable Development, the Chinese medicine extraction technology has been innovatively improved to prioritize low energy consumption, sustainability, and minimized organic solvent utilization. Forsythia suspensa (FS) possesses favorable pharmacological properties and is extensively utilized in traditional Chinese medicine. However, due to the limitations of the composition and extraction methods, its potential has not been fully developed. Thus, a combination of ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and ß-cyclodextrin extraction (ß-CDE) was employed to isolate and purify rutin, phillyrin, and forsythoside A from FS. The results demonstrated that the efficiency of extracting enzymatic and ultrasound assisted ß-cyclodextrin extraction (EUA-ß-CDE) was highly influenced by the temperature and duration of hydrolysis, as well as the duration of the extraction process. According to the results of the single-factor experiment, Box-Behnken design (BBD) in Response surface method (RSM) was used to optimize the experimental parameters to achieve the maximum comprehensive evaluation value (CEV) value. The EUA-ß-CDE compared with other extraction methods, has good extraction effect and low energy consumption by high performance liquid chromatography (HPLC), scanning electron microscopy (SEM), calculation of power consumption and CO2 emission The EUA-ß-CDE compared with other extraction methods, has good extraction effect and low energy consumption by HPLC, SEM, calculation of power consumption and CO2 emission. Then, the structural characteristics of EUA-ß-CDE of FS extract had significant interaction with ß-CD by Fourier infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). In addition, EUA-ß-CDE extract has good antioxidant and anti-inflammatory activities. The establishment of EUA-ß-CDE of FS provides a new idea for the development and application of other sustainable extraction methods of traditional Chinese medicine.

5.
RSC Adv ; 14(28): 19735-19743, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38903667

ABSTRACT

In this study, a novel Ag-loaded 4 Å zeolite was synthesized through the combined action of strong ultrasound and a high-voltage electrostatic field (the Z-Ag-UE) and its catalytic activity was evaluated in the epoxidation of styrene. The prepared catalysts were characterized using XRD, SEM, XPS, BET, TG, ICP-OES. The results showed that the silver evenly dispersed inside the octahedral 4 Å zeolite structure rather than being attached to the surface of the material like in the impregnation method, and this Ag-loaded 4 Å zeolite had a high surface area, uniform particle size distribution, and excellent high temperature thermal stability. The catalytic performance of the Ag-loaded 4 Å zeolite was investigated by varying the reaction conditions such as the amount of catalyst, temperature, and reaction time. Under optimized conditions, the Ag-loaded 4 Å zeolite showed high selectivity and conversion for the epoxidation of styrene, achieving a conversion rate of up to 98% and a selectivity of 94%. In particular, the catalyst had excellent recyclability and was reused more than fifteen times with the catalytic performance remaining unchanged. This method of loading metal prepared under external field conditions provides a new method and idea for future research in related fields.

6.
Front Aging Neurosci ; 16: 1380145, 2024.
Article in English | MEDLINE | ID: mdl-38912521

ABSTRACT

Background: Hearing loss and tinnitus have been linked to mild cognitive impairment (MCI); however, the evidence is constrained by ethical and temporal constraints, and few prospective studies have definitively established causation. This study aims to utilize Mendelian randomization (MR) and cross-sectional studies to validate and analyze this association. Methods: This study employs a two-step approach. Initially, the genetic data of the European population from the Genome-wide association studies (GWAS) database is utilized to establish the causal relationship between hearing loss and cognitive impairment through Mendelian randomization using the inverse variance weighted (IVW) method. This is achieved by identifying strongly correlated single nucleotide polymorphisms (SNPs), eliminating linkage disequilibrium, and excluding weak instrumental variables. In the second step, 363 elderly individuals from 10 communities in Qingdao, China are assessed and examined using methods questionnaire survey and pure tone audiology (PTA). Logistic regression and multiple linear regression were used to analyze the risk factors of MCI in the elderly and to calculate the cutoff values. Results: Mendelian randomization studies have shown that hearing loss is a risk factor for MCI in European populations, with a risk ratio of hearing loss to MCI loss of 1. 23. The findings of this cross-sectional study indicate that age, tinnitus, and hearing loss emerged as significant risk factors for MCI in univariate logistic regression analysis. Furthermore, multivariate logistic regression analysis identified hearing loss and tinnitus as potential risk factors for MCI. Consistent results were observed in multiple linear regression analysis, revealing that hearing loss and age significantly influenced the development of MCI. Additionally, a notable finding was that the likelihood of MCI occurrence increased by 9% when the hearing threshold exceeded 20 decibels. Conclusion: This study provides evidence from genomic and epidemiological investigations indicating that hearing loss may serve as a risk factor for cognitive impairment. While our epidemiological study has found both hearing loss and tinnitus as potential risk factors for cognitive decline, additional research is required to establish a causal relationship, particularly given that tinnitus can manifest as a symptom of various underlying medical conditions.

7.
Microbiol Spectr ; : e0023224, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912811

ABSTRACT

Soil salinization usually occurs in arid and semi-arid climate areas from 37 to 50 degrees north latitude and 73 to 123 degrees east longitude. These regions are inhabited by a large number of Coleopteran insects, which play an important role in the ecological cycle. However, little is known about the endosymbiotic microbial taxa and their biological characteristics in these insects. A study of endosymbiotic microorganisms of Coleoptera from Xinjiang, a typical arid and inland saline area, revealed that endosymbiont bacteria with salinity tolerance are common among the endosymbionts of Coleoptera. Functional prediction of the microbiota analysis indicated a higher abundance of inorganic ion transporters and metabolism in these endosymbiont strains. Screening was conducted on the tolerable 11% NaCl levels of Brevibacterium casei G20 (PRJNA754761), and differential metabolite and proteins were performed. The differential metabolites of the strain during the exponential and plateau phases were found to include benzene compounds, organic acids, and their derivatives. These results suggest that the endosymbiotic microorganisms of Coleoptera in this environment have adaptive evolution to extreme environments, and this group of microorganisms is also one of the important resources for mining saline and alkaline-tolerant chassis microorganisms and high-robustness enzymes. IMPORTANCE: Coleoptera insects, as the first largest order of insect class, have the characteristics of a wide variety and wide distribution. The arid and semi-arid climate makes it more adaptable. By studying the endosymbiont bacteria of Coleoptera insects, we can systematically understand the adaptability of endosymbiont bacteria to host and special environment. Through the analysis of endosymbiont bacteria of Coleoptera insects in different saline-alkali areas in arid and semi-arid regions of Xinjiang, it was found that bacteria in different host samples were resistant to saline-alkali stress. These results suggest that bacteria and their hosts co-evolved in response to this climate. Therefore, this study is of great significance for understanding the endosymbiont bacteria of Coleoptera insects and obtaining extremophile resources (Saline-alkali-resistant chassis strains with modification potential for the production of bulk chemicals and highly robust industrial enzymes).

8.
Article in English | MEDLINE | ID: mdl-38874905

ABSTRACT

Immune-mediated thrombotic thrombocytopenia purpura (iTTP) is a rare microvascular disease characterized by severe disseminated microvascular thrombose-bleeding syndrome. Caplacizumab has been approved for the treatment of iTTP in combination with Plasma Exchange (PE) and immunosuppressive therapy, but its role in iTTP therapy remains uncertain. Therefore, we conducted a meta-analysis to investigate the safety and efficacy of caplacizumab for the treatment of patients with iTTP. We searched electronic databases (PubMed, Embase, Cochrane Library, and Scopus) and reference lists of relevant articles to find articles published from 2015 to 2022. The time to normalization of the platelet count of the group caplacizumab is shorter than the group placebo (SMD = -0.72; 95% CI -0.88 to -0.56; P < 0.05). Caplacizumab reduced the incidence of mortality (OR = 0.41; 95% CI 0.18-0.92; P < 0.05), exacerbations (OR = 0.10; 95% CI 0.05-0.18; P < 0.05), and recurrence (OR = 0.17; 95% CI 0.06-0.50; P < 0.05). However, the bleeding events in the caplacizumab group were higher than those in the placebo group, especially severe bleeding events. There was no difference in ADAMTS13 activity and thromboembolic events between the two groups. Our analysis indicated that caplacizumab is effective and well tolerated for the treatment of iTTP. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022362370.

9.
Front Neurosci ; 18: 1380121, 2024.
Article in English | MEDLINE | ID: mdl-38846715

ABSTRACT

Objectives: Fibromyalgia (FM) has been associated with decreased hippocampal volume; however, the atrophy patterns of hippocampal subregions have not yet been identified. We therefore aimed to evaluate the volumes of hippocampal subregions in FM patients with mild cognitive impairment (MCI), and to explore the relationship between different subregional alterations and cognitive function. Methods: The study included 35 FM patients (21 with MCI and 14 without MCI) and 35 healthy subjects. All subjects performed the Montreal Cognitive Assessment (MoCA) to assess cognitive function. FreeSurfer V.7.3.2 was used to calculate hippocampal subregion volumes. We then compared hippocampal subregion volumes between the groups, and analyzed the relationship between hippocampal subregion volume and cognitive function using a partial correlation analysis method. Results: Compared with the healthy subjects, FM patients with MCI had smaller hippocampal volumes in the left and right CA1 head, Molecular layer head, GC-DG head, and CA4 head, and in the left Presubiculum head. Poorer executive function, naming ability, and attention were associated with left CA1 head and left Molecular layer head atrophy. By contrast, hippocampal subregion volumes in the FM patients without MCI were slightly larger than or similar to those in the healthy subjects, and were not significantly correlated with cognitive function. Conclusion: Smaller volumes of left CA1 head and left Molecular layer head were associated with poorer executive function, naming ability, and attention in FM patients with MCI. However, these results were not observed in the FM patients without MCI. These findings suggest that the hippocampal subregions of FM patients might present compensatory mechanisms before cognitive decline occurs.

10.
Sci Total Environ ; 940: 173575, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38823712

ABSTRACT

Decabromodiphenyl ethane (DBDPE) and polystyrene nanoplastics (PS-NPs) are emerging pollutants that seriously threaten the ecological safety of the aquatic environment. However, the hepatotoxicity effect of their combined exposure on aquatic organisms has not been reported to date. In, this study, the effects of single or co-exposure of DBDPE and PS-NPs on grass carp hepatocytes were explored and biomarkers related to oxidative stress, ferroptosis, and inflammatory cytokines were evaluated. The results show that both single and co-exposure to DBDPE and PS-NPs caused oxidative stress. Oxidative stress was induced by increasing the contents of pro-oxidation factors (ROS, MDA, and LPO), inhibiting the activity of antioxidant enzymes (CAT, GPX, T-SOD, GSH, and T-AOC), and downregulating the mRNA expressions of antioxidant genes (GPX1, GSTO1, SOD1, and CAT); the effects of combined exposure were stronger overall. Both single and co-exposure to DBDPE and PS-NPs also elevated Fe2+ content, promoted the expressions of TFR1, STEAP3, and NCOA4, and inhibited the expressions of FTH1, SLC7A11, GCLC, GSS, and GPX4; these effects resulted in iron overload-induced ferroptosis, where co-exposure had stronger adverse effects on ferroptosis-related biomarkers than single exposure. Moreover, single or co-exposure enhanced inflammatory cytokine levels, as evidenced by increased mRNA expressions of IL-6, IL-12, IL-17, IL-18, IL-1ß, TNF-α, IFN-γ, and MPO. Co-exposure exhibited higher expression of pro-inflammatory cytokines compared to single exposure. Interestingly, the ferroptosis inhibitor ferrostatin-1 intervention diminished the above changes. In brief, the results suggest that DBDPE and PS-NPs trigger elevated levels of inflammatory cytokines in grass crap hepatocytes. This elevation is achieved via oxidative stress and iron overload-mediated ferroptosis, where cytotoxicity was stronger under co-exposure compared to single exposure. Overall, the findings contribute to elucidating the potential hepatotoxicity mechanisms in aquatic organisms caused by co-exposure to DBDPE and PS-NPs.


Subject(s)
Bromobenzenes , Carps , Ferroptosis , Hepatocytes , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Oxidative Stress/drug effects , Ferroptosis/drug effects , Carps/physiology , Water Pollutants, Chemical/toxicity , Hepatocytes/drug effects , Polystyrenes/toxicity , Bromobenzenes/toxicity , Inflammation/chemically induced , Flame Retardants/toxicity
12.
Toxicol Lett ; 398: 1-12, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815664

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) may cause drug-induced liver injury (DILI). However, the molecular mechanisms underlying NSAIDs hepatotoxicity remain elusive. Dysregulations of bile acids (BAs) have been implicated in various DILI. In this study, we systematically investigated the effects of ibuprofen, the most commonly used NSAID, on BA metabolism and signaling in adult male C57/BL6 mice after oral administration of ibuprofen (IBU) at clinically relevant doses (30, 100, and 200 mg/kg) for one week. Notably, IBU significantly decreased BA concentrations in the liver in a dose-dependent manner, with a concomitant increase in both mRNA and protein expression of cholesterol 7alpha-hydoxylase (CYP7A1), the rate-limiting enzyme for BA synthesis. Mechanically, IBU altered the composition of gut microbiota and increased cecal BAs, leading to reduced intestinal absorption of BAs and thus deactivated ileal farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) signaling. Additionally, diclofenac and indomethacin also induced hepatic Cyp7a1 expression in mice via their effects on gut microbiota and intestinal BA signaling. To conclude, the current findings suggest that NSAIDs-induced liver injury could be at least partially attributable to the dysregulation of BA metabolism and signaling.

13.
Toxicol In Vitro ; 98: 105842, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761881

ABSTRACT

Oleanane pentacyclic triterpenoids have been widely used in clinical practice. However, studies on their interactions with hepatic transporters remain limited. In this study, we systematically investigated the inhibitory effects of 14 oleanane pentacyclic triterpenoids on organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1 and OATP1B3), two liver-specific uptake transporters. Through fluorescence-based cellular uptake assays, we identified three potent OATP1B1 inhibitors (saikosaponin B1, saikosaponin A and 18ß-glycyrrhetinic acid) and five potent OATP1B3 inhibitors (echinocystic acid, 3-oxo-16α-hydroxy-olean-12-en-28ß-oic acid, chikusetsu saponin IVa, saikosaponin B1 and 18ß-glycyrrhetinic acid). Structural analysis revealed that free oleanane triterpenoids inhibited OATP1B1/1B3 more potently than triterpene glycosides. Despite their similar structures, 18ß-glycyrrhetinic acid exhibited much stronger inhibition on OATP1B1/1B3 than 18α-glycyrrhetinic acid, while both were substrates of OATP1B3. Interestingly, OATP1B3 overexpression significantly increased reactive oxygen species (ROS) levels in HepG2 cells after treatment with 18ß-glycyrrhetinic acid. To conclude, this study highlights the potential interactions of oleanane pentacyclic triterpenoids with OATP1B1/1B3, and provides novel insights into the anti-cancer activity of 18ß-glycyrrhetinic acid.


Subject(s)
Liver-Specific Organic Anion Transporter 1 , Oleanolic Acid , Solute Carrier Organic Anion Transporter Family Member 1B3 , Humans , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Liver-Specific Organic Anion Transporter 1/metabolism , HEK293 Cells , Hep G2 Cells , Saponins/pharmacology , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives
14.
Microbiol Spectr ; 12(7): e0428723, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38785444

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is one of the primary causes of mortality and morbidity worldwide. The gut microbiome, particularly the bacteriome, has been demonstrated to contribute to the progression of COPD. However, the influence of gut virome on the pathogenesis of COPD is rarely studied. Recent advances in viral metagenomics have enabled the rapid discovery of its remarkable role in COPD. In this study, deep metagenomics sequencing of fecal virus-like particles and bacterial 16S rRNA sequencing was performed on 92 subjects from China to characterize alterations of the gut virome in COPD. Lower richness and diversity of the gut virome were observed in the COPD subjects compared with the healthy individuals. Sixty-four viral species, including Clostridium phage, Myoviridae sp., and Synechococcus phage, showed positive relationships with pulmonary ventilation functions and had markedly declined population in COPD subjects. Multiple viral functions, mainly involved in bacterial susceptibility and the interaction between bacteriophages and bacterial hosts, were significantly declined in COPD. In addition, COPD was characterized by weakened viral-bacterial interactions compared with those in the healthy cohort. The gut virome showed diagnostic performance with an area under the curve (AUC) of 88.7%, which indicates the potential diagnostic value of the gut virome for COPD. These results suggest that gut virome may play an important role in the development of COPD. The information can provide a reference for the future investigation of diagnosis, treatment, and in-depth mechanism research of COPD. IMPORTANCE: Previous studies showed that the bacteriome plays an important role in the progression of chronic obstructive pulmonary disease (COPD). However, little is known about the involvement of the gut virome in COPD. Our study explored the disease-specific virome signatures of patients with COPD. We found the diversity and compositions altered of the gut virome in COPD subjects compared with healthy individuals, especially those viral species positively correlated with pulmonary ventilation functions. Additionally, the declined bacterial susceptibility, the interaction between bacteriophages and bacterial hosts, and the weakened viral-bacterial interactions in COPD were observed. The findings also suggested the potential diagnostic value of the gut virome for COPD. The results highlight the significance of gut virome in COPD. The novel strategies for gut virome rectifications may help to restore the balance of gut microecology and represent promising therapeutics for COPD.


Subject(s)
Bacteriophages , Feces , Gastrointestinal Microbiome , Pulmonary Disease, Chronic Obstructive , Virome , Pulmonary Disease, Chronic Obstructive/virology , Humans , Gastrointestinal Microbiome/genetics , Middle Aged , Male , Female , Aged , Feces/virology , Feces/microbiology , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/virology , RNA, Ribosomal, 16S/genetics , Metagenomics , China
15.
Arch Med Sci ; 20(2): 428-435, 2024.
Article in English | MEDLINE | ID: mdl-38757040

ABSTRACT

Introduction: Invasive micropapillary carcinoma (IMPC) treatment only relies on the standard treatment of nonspecific invasive breast cancer (NSIBC), and it remains controversial whether the survival of patients improves. Therefore, this study aimed to analyze the clinicopathological features of IMPC and to investigate the factors affecting its prognosis. Material and methods: This retrospective cohort study included 104 IMPC patients who met the study's inclusion criteria out of a total of 4,532 patients with invasive breast cancer between January 2015 and December 2019. A contemporaneous cohort of 230 patients with non-specific invasive breast cancer (NSIBC) who underwent surgery was identified and matched using propensity scores. Results: The survival rate for patients with IMPC ranged from 1.12% to 7.03%. Statistically significant differences were observed in the proportion of endocrine treatment, lymphatic invasion, estrogen receptor (ER)-positive rate, molecular subtypes, molecular typing, and 5-year loco-regional recurrence-free survival (LRRFS) between the two cohorts (p < 0.05). The univariate analysis showed that T stage, N stage, lymphatic invasion, vascular invasion, ER-positive rate, and progesterone receptor (PR)-negative rate were all prognosis risk factors (p < 0.05) for IMPC. Furthermore, the multivariate analysis indicated that lymphatic invasion and N stage were independent prognostic factors (p < 0.05). Conclusions: The incidence of micropapillary IMPC, among other pathological subtypes, is steadily increasing. ER-positive and PR-positive rates, as well as luminal subtypes, are frequent, with a concurrent increase in the 5-year locoregional recurrence rate. It would be interesting to compare the effect following these therapeutic modifications in larger cohorts in future studies.

16.
ACS Omega ; 9(19): 20807-20818, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764684

ABSTRACT

Studying the gas-water distribution characteristics is essential in guiding the efficient development of gas fields. The relationship between gas and water in the Sudong 41-33 Block is complicated and has not been adequately researched. In recent years, gas wells have suffered from increased water/gas ratios and significant liquid loadings, which greatly affect the development of the block. A comprehensive analysis of formation water, log interpretation, and production data was conducted to determine the gas-water distribution characteristics and main controlling factors in the Sudong 41-33 Block. The findings indicate the following. (1) The formation water in the study area consists mainly of CaCl2 brine with high total dissolved solids (TDS) (with an average value of 36.06 g/L). The hydrochemical characteristics indicate that the formation water is typical sedimentary buried water under well-sealing conditions, which is markedly different from shallow river water and seawater. (2) The formation water can be categorized into three types: edge-bottom water under the gas layer (Type I), stagnant water in tight sandstone (Type II), and isolated lenticular water (Type III). The water layer distribution in the plane is mainly concentrated in the northwest region, whereas it is dispersed in other regions. On the vertical, the water layer mainly appears in P2x8-1, P2x8-2, and P1s2 Members. (3) The physical properties of the reservoir, hydrocarbon generation intensity (HGI), source rock-reservoir relationship, and mini-structure are the main factors affecting the gas-water distribution in the study area. Based on the clarification of the characteristics of gas and water distribution and its main controlling factors, it is of great importance to accurately identify the water layer, avoid the direct development of the water layer, adopt the proper production pressure differential, and carry out drainage gas production measures in time to ensure the effective development of the gas field.

17.
Adv Sci (Weinh) ; 11(24): e2306671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639383

ABSTRACT

Cancer metastasis is the leading cause of mortality in patients with hepatocellular carcinoma (HCC). To meet the rapid malignant growth and transformation, tumor cells dramatically increase the consumption of nutrients, such as amino acids. Peptide transporter 1 (PEPT1), a key transporter for small peptides, has been found to be an effective and energy-saving intracellular source of amino acids that are required for the growth of tumor cells. Here, the role of PEPT1 in HCC metastasis and its underlying mechanisms is explored. PEPT1 is upregulated in HCC cells and tissues, and high PEPT1 expression is associated with poor prognosis in patients with HCC. PEPT1 overexpression dramatically promoted HCC cell migration, invasion, and lung metastasis, whereas its knockdown abolished these effects both in vitro and in vivo. Mechanistic analysis revealed that high PEPT1 expression increased cellular dipeptides in HCC cells that are responsible for activating the MAP4K4/G3BP2 signaling pathway, ultimately facilitating the phosphorylation of G3BP2 at Thr227 and enhancing HCC metastasis. Taken together, these findings suggest that PEPT1 acts as an oncogene in promoting HCC metastasis through dipeptide-induced MAP4K4/G3BP2 signaling and that the PEPT1/MAP4K4/G3BP2 axis can serve as a promising therapeutic target for metastatic HCC.


Subject(s)
Carcinoma, Hepatocellular , Dipeptides , Liver Neoplasms , Peptide Transporter 1 , Signal Transduction , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Dipeptides/metabolism , Dipeptides/pharmacology , Mice , Signal Transduction/genetics , Peptide Transporter 1/metabolism , Peptide Transporter 1/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Neoplasm Metastasis , Male , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Movement/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice, Nude
18.
Water Res ; 257: 121660, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38688190

ABSTRACT

Pesticides and plastics bring convenience to agriculture and life, but also bring residual pollution in the environment. Emamectin benzoate (EMB) is the most popular pesticide at present. The harm of microplastics (MPs) to water and aquatic organisms is gradually increasing, and the possibility that it appears synchronously with various pesticides increases. However, the damage of EMB and MPs to the carp midgut and its mechanism have not been clarified. Therefore, based on the EMB or/and MPs exposure models, this study explored the mechanism of midgut injury through transcriptomics, immunofluorescence, western blot methods, and so on. Studies in vivo and in vitro showed that EMB or MPs exposure caused cilia shortening, lysosome damage, and ROS overproduction, which led to Fe2+ content increase, GSH/GSSG system disorder, lipid peroxidation, and ferroptosis. This process further led to the down-regulation of Cx43, Occludin, Claudin, and ZO-1, which further caused barrier damage, immune-related genes (immunoglobulin, IFN-γ) decrease and inflammation-related genes (TNF-α, IL-1ß) increase. Combined exposure was more significant than that of single exposure, and the addition of EN6 and NAC proved that lysosome/ROS/ferroptosis regulated these midgut damages. In conclusion, EMB or/and MPs exposure induce tight junction disorder, immune disorder and inflammation in carp midgut through the lysosome/ROS/ferroptosis pathway.


Subject(s)
Carps , Inflammation , Ivermectin , Lysosomes , Microplastics , Animals , Microplastics/toxicity , Lysosomes/drug effects , Inflammation/chemically induced , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Ferroptosis/drug effects , Tight Junctions/drug effects , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism
19.
Front Immunol ; 15: 1346878, 2024.
Article in English | MEDLINE | ID: mdl-38590522

ABSTRACT

Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish enduring infections and play a part in various diseases. Despite their deployment of multiple tactics to evade the immune system, both localized and systemic inflammatory responses are triggered by the innate immune system's recognition of them. Recent progress has offered more profound understandings of the mechanisms behind the activation of the innate immune system by herpesviruses, specifically through inflammatory signaling. This process encompasses the initiation of an intracellular nucleoprotein complex, the inflammasome associated with inflammation.Following activation, proinflammatory cytokines such as IL-1ß and IL-18 are released by the inflammasome, concurrently instigating a programmed pathway for cell death. Despite the structural resemblances between herpesviruses, the distinctive methods of inflammatory activation and the ensuing outcomes in diseases linked to the virus exhibit variations.The objective of this review is to emphasize both the similarities and differences in the mechanisms of inflammatory activation among herpesviruses, elucidating their significance in diseases resulting from these viral infections.Additionally, it identifies areas requiring further research to comprehensively grasp the impact of this crucial innate immune signaling pathway on the pathogenesis of these prevalent viruses.


Subject(s)
Herpesviridae Infections , Virus Diseases , Humans , Inflammasomes/metabolism , Caspase 1/metabolism , Signal Transduction
20.
Int Wound J ; 21(4): e14758, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629618

ABSTRACT

A meta-analysis was conducted to comprehensively explore the effects of platelet-rich plasma (PRP) combined with negative pressure wound therapy (NPWT) in treating patients with chronic wounds. Computer searches were conducted, from database infection to November 2023, in EMBASE, Google Scholar, Cochrane Library, PubMed, Wanfang and China National Knowledge Infrastructure databases for randomized controlled trials (RCTs) on the use of PRP combined with NPWT technology for treating chronic wounds. Two researchers independently screened the literature, extracted data and conducted quality assessments according to the inclusion and exclusion criteria. Stata 17.0 software was employed for data analysis. Overall, 18 RCTs involving 1294 patients with chronic wounds were included. The analysis revealed that, compared with NPWT alone, the use of PRP combined with NPWT technology significantly improved the healing rate (odds ratios [OR] = 1.92, 95% confidence intervals [CIs]: 1.43-2.58, p < 0.001) and total effective rate (OR = 1.31, 95% CI: 1.23-1.39, p < 0.001), and also significantly shortened the healing time of the wound (standardized mean difference = -2.01, 95% CI: -2.58 to -1.45, p < 0.001). This study indicates that the treatment of chronic wounds with PRP combined with NPWT technology can significantly enhance clinical repair effectiveness and accelerate wound healing, with a high healing rate, and is worth further promotion and practice.


Subject(s)
Negative-Pressure Wound Therapy , Platelet-Rich Plasma , Humans , Bandages , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...