Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 561, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840044

ABSTRACT

BACKGROUND: Artemisia selengensis, classified within the genus Artemisia of the Asteraceae family, is a perennial herb recognized for its dual utility in culinary and medicinal domains. There are few studies on the chloroplast genome of A. selengensis, and the phylogeographic classification is vague, which makes phylogenetic analysis and evolutionary studies very difficult. RESULTS: The chloroplast genomes of 10 A. selengensis in this study were highly conserved in terms of gene content, gene order, and gene intron number. The genome lengths ranged from 151,148 to 151,257 bp and were typical of a quadripartite structure with a total GC content of approximately 37.5%. The chloroplast genomes of all species encode 133 genes, including 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Due to the contraction and expansion of the inverted repeats (IR), the overlap of ycf1 and ndhF genes occurred at the inverted repeats B (IRB) and short single copy sequence (SSC) boundaries. According to a codon use study, the frequent base in the chloroplast genome of A. selengensis' third codon position was A/T. The number of SSR repeats was 42-44, most of which were single nucleotide A/T repeats. Sequence alignment analysis of the chloroplast genome showed that variable regions were mainly distributed in single copy regions, nucleotide diversity values of 0 to 0.009 were calculated by sliding window analysis, 8 mutation hotspot regions were detected, and coding regions were more conserved than non-coding regions. Analysis of non-synonymous substitution (Ka) and synonymous substitution (Ks) revealed that accD, rps12, petB, and atpF genes were affected by positive selection and no genes were affected by neutral selection. Based on the findings of the phylogenetic analysis, Artemisia selengensis was sister to the genus Artemisia Chrysanthemum and formed a monophyletic group with other Artemisia genera. CONCLUSIONS: In this research, the present study systematically compared the chloroplast genomic features of A. selengensis and provided important information for the study of the chloroplast genome of A. selengensis and the evolutionary relationships among Asteraceae species.


Subject(s)
Artemisia , Genome, Chloroplast , High-Throughput Nucleotide Sequencing , Phylogeny , Artemisia/genetics , Artemisia/classification , Base Composition , Microsatellite Repeats , Evolution, Molecular , Codon Usage
2.
Sci Rep ; 14(1): 13812, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38877050

ABSTRACT

We have designed, fabricated, and characterized implantable silicon neural probes with nanophotonic grating emitters that focus the emitted light at a specified distance above the surface of the probe for spatially precise optogenetic targeting of neurons. Using the holographic principle, we designed gratings for wavelengths of 488 and 594 nm, targeting the excitation spectra of the optogenetic actuators Channelrhodopsin-2 and Chrimson, respectively. The measured optical emission pattern of these emitters in non-scattering medium and tissue matched well with simulations. To our knowledge, this is the first report of focused spots with the size scale of a neuron soma in brain tissue formed from implantable neural probes.


Subject(s)
Neurons , Optogenetics , Photons , Optogenetics/methods , Optogenetics/instrumentation , Neurons/physiology , Animals , Prostheses and Implants , Silicon/chemistry
3.
ACS Synth Biol ; 13(6): 1679-1693, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38819389

ABSTRACT

Immune-checkpoint blockade (ICB) reinvigorates T cells from exhaustion and potentiates T-cell responses to tumors. However, most patients do not respond to ICB therapy, and only a limited response can be achieved in a "cold" tumor with few infiltrated lymphocytes. Synthetic biology can be used to engineer bacteria as controllable bioreactors to synthesize biotherapeutics in situ. We engineered attenuated Salmonella VNP20009 with synthetic gene circuits to produce PD-1 and Tim-3 scFv to block immunosuppressive receptors on exhausted T cells to reinvigorate their antitumor response. Secreted PD-1 and Tim-3 scFv bound PD-1+ Tim-3+ T cells through their targeting receptors in vitro and potentiated the T-cell secretion of IFN-γ. Engineered bacteria colonized the hypoxic core of the tumor and synthesized PD-1 and Tim-3 scFv in situ, reviving CD4+ T cells and CD8+ T cells to execute an antitumor response. The bacteria also triggered a strong innate immune response, which stimulated the expansion of IFN-γ+ CD4+ T cells within the tumors to induce direct and indirect antitumor immunity.


Subject(s)
Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Salmonella , Immune Checkpoint Inhibitors/pharmacology , Animals , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Mice , Salmonella/immunology , Salmonella/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatitis A Virus Cellular Receptor 2/genetics , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , Humans , Interferon-gamma/metabolism , Interferon-gamma/immunology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Single-Chain Antibodies/pharmacology , Mice, Inbred C57BL , Synthetic Biology/methods , CD4-Positive T-Lymphocytes/immunology , Immunotherapy/methods
4.
Lab Chip ; 24(9): 2397-2417, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38623840

ABSTRACT

Optical techniques, such as optogenetic stimulation and functional fluorescence imaging, have been revolutionary for neuroscience by enabling neural circuit analysis with cell-type specificity. To probe deep brain regions, implantable light sources are crucial. Silicon photonics, commonly used for data communications, shows great promise in creating implantable devices with complex optical systems in a compact form factor compatible with high volume manufacturing practices. This article reviews recent developments of wafer-scale multifunctional nanophotonic neural probes. The probes can be realized on 200 or 300 mm wafers in commercial foundries and integrate light emitters for photostimulation, microelectrodes for electrophysiological recording, and microfluidic channels for chemical delivery and sampling. By integrating active optical devices to the probes, denser emitter arrays, enhanced on-chip biosensing, and increased ease of use may be realized. Silicon photonics technology makes possible highly versatile implantable neural probes that can transform neuroscience experiments.


Subject(s)
Brain , Brain/physiology , Humans , Animals , Brain Mapping/instrumentation , Neurons/physiology , Neurons/cytology , Silicon/chemistry , Nanotechnology/instrumentation , Optogenetics/instrumentation
5.
Small Methods ; 7(3): e2200925, 2023 03.
Article in English | MEDLINE | ID: mdl-36605001

ABSTRACT

Immune intervention of B cell activation to blockade the production of autoantibodies provokes intense interest in the field of systemic lupus erythematosus (SLE) therapy development. Although the survival rate for SLE is improved, many patients die untimely. Engineered cell membrane vesicles manifest remarkable capacity of targeted drug delivery and immunomodulation of immune cells such as B cells. Herein, this work engineered cellular nanovesicles (NVs) presenting CD40 (CD40 NVs) that can blunt B cells and thus alleviate SLE. CD40 NVs disrupt the CD40/CD40 ligand (CD40L) costimulatory signal axis through the blockade of CD40L on CD4+ T cells. Therefore, the CD40 NVs restrain the generation of the germinal center structure and production of antibodies from B cells. Furthermore, immunosuppressive drug mycophenolate mofetil (MMF) is also encapsulated in the vesicles (MMF-CD40 NVs), which is employed to deplete immunocytes including B cells, T cells, and dendritic cells. Together, CD40 NVs are promising formulations for relieving autoimmunity and lupus nephritis in MRL/lpr mice.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Mice , Animals , Lupus Nephritis/drug therapy , CD40 Ligand/metabolism , Mice, Inbred MRL lpr , CD40 Antigens/metabolism , Lupus Erythematosus, Systemic/drug therapy , Cell Membrane , Mycophenolic Acid
6.
J Extracell Vesicles ; 11(12): e12289, 2022 12.
Article in English | MEDLINE | ID: mdl-36468941

ABSTRACT

Neoantigens derived from mutant proteins in tumour cells could elicit potent personalized anti-tumour immunity. Nevertheless, the layout of vaccine vehicle and synthesis of neoantigen are pivotal for stimulating robust response. The power of synthetic biology enables genetic programming bacteria to produce therapeutic agents under contol of the gene circuits. Herein, we genetically engineered bacteria to synthesize fusion neoantigens, and prepared bacteria derived vesicles (BDVs) presenting the neoantigens (BDVs-Neo) as personalized therapeutic vaccine to drive systemic antitumour response. BDVs-Neo and granulocyte-macrophage colony-stimulating factor (GM-CSF) were inoculated subcutaneously within hydrogel (Gel), whereas sustaining release of BDVs-Lipopolysaccharide (LPS) and GM-CSF recruited the dendritic cells (DCs). Virtually, Gel-BDVs-Neo combined with the programmed cell death protein 1 (PD-1) antibody intensively enhanced proliferation and activation of tumour-infiltrated T cells, as well as memory T cell clone expansion. Consequently, BDVs-Neo combining with checkpoint blockade therapy effectively prevented tumour relapse and metastasis.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Cancer Vaccines/therapeutic use , Immunotherapy , Antigens, Neoplasm/genetics , Neoplasms/therapy , Bacteria
7.
Opt Lett ; 47(5): 1073-1076, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230293

ABSTRACT

Implantable silicon neural probes with integrated nanophotonic waveguides can deliver patterned dynamic illumination into brain tissue at depth. Here, we introduce neural probes with integrated optical phased arrays and demonstrate optical beam steering in vitro. Beam formation in brain tissue is simulated and characterized. The probes are used for optogenetic stimulation and calcium imaging.


Subject(s)
Optogenetics , Silicon , Brain/diagnostic imaging
8.
Theranostics ; 11(12): 6033-6043, 2021.
Article in English | MEDLINE | ID: mdl-33897897

ABSTRACT

Immune checkpoint blockade therapies, especially those targeting the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) have achieved impressive clinical responses in multiple types of cancers. To optimize the therapeutic effect of the checkpoint antibodies, many strategies including targeting delivery, controlled release, and cellular synthesis have been developed. However, within these strategies, antibodies were attached to drug carriers by chemical bonding, which may affect the steric configuration and function of the antibodies. Herein, we prepared cluster of differentiation 64 (CD64), a natural catcher of the fragment crystalline (Fc) of monomeric immunoglobulin G (IgG), and over-expressed it on the cell membrane nanovesicles (NVs) as PD-L1 antibody delivery vehicle (CD64-NVs-aPD-L1), which was employed to disrupt the PD-1/PD-L1 immunosuppressive signal axis for boosting T cell dependent tumor elimination. Meanwhile, chemical immunomodulatory drug cyclophosphamide (CP) was also encapsulated in the vesicle (CD64-NVs-aPD-L1-CP), to simultaneously restrain the regulatory T cells (Tregs) and invigorate Ki67+CD8+ T cells, then further enhance their anti-tumor ability. Methods: The cell membrane NVs overexpressing CD64 were incubated with PD-L1 antibody and chemotherapeutic agent CP to prepare CD64-NVs-aPD-L1-CP. Results: The CD64-NVs-aPD-L1-CP could simultaneously interrupt the immunosuppressive effect of PD-L1 and decrease the inhibition of Tregs, leading to tumor growth suppression and survival time extension. Conclusion: CD64-NVs are charismatic carriers to achieve both checkpoint blockade and immunomodulatory drugs for combined cancer immunotherapy.


Subject(s)
Antibodies/immunology , Drug Carriers/chemistry , Neoplasms/immunology , Neoplasms/therapy , Receptors, IgG/immunology , Receptors, IgG/metabolism , Animals , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Cell Membrane/metabolism , Cyclophosphamide/pharmacology , Genetic Engineering/methods , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/immunology , Immunoglobulin G/metabolism , Immunotherapy/methods , Mice , Mice, Inbred C57BL
9.
J Biomed Nanotechnol ; 16(9): 1394-1405, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33419493

ABSTRACT

Colorectal cancer frustrates with high relapse after the traditional treatment including surgery and chemotherapy. Neoantigen-based therapeutic vaccine has achieved high response rate in the clinical trials rising the immunotherapy as a promising alternative for colorectal cancer. Herein, colon cancer cells derived neoantigen peptide Adpgk were employed to be co-encapsulated with black phosphorus quantum dots into liposome (Adpgk-BPQDs-liposome) as therapeutic vaccine. Adpgk-BPQDs-liposome were dispersed in F127 gel containing GM-CSF. The heat generated by black phosphorus (BP) under 808 nm near-infrared laser irradiation accelerates the F127 gel ablation and the release of GM-CSF, which recruit APC cells and prime the native T cells. The tumor bearing mice received the programmed cell death protein 1 (PD-1) checkpoint blockade antibody combined with photo-thermal gel intensively prevented the tumor progress. Furthermore, the tumor infiltrating CD8+ T cells were significantly increased which lead to the elimination of the tumor.


Subject(s)
Antigens , Immunotherapy , Peptides , Quantum Dots , Animals , CD8-Positive T-Lymphocytes , Liposomes , Mice , Neoplasm Recurrence, Local , Phosphorus , Vaccines
10.
Opt Express ; 27(26): 37400-37418, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878521

ABSTRACT

We present passive, visible light silicon nitride waveguides fabricated on ≈ 100 µm thick 200 mm silicon wafers using deep ultraviolet lithography. The best-case propagation losses of single-mode waveguides were ≤ 2.8 dB/cm and ≤ 1.9 dB/cm over continuous wavelength ranges of 466-550 nm and 552-648 nm, respectively. In-plane waveguide crossings and multimode interference power splitters are also demonstrated. Using this platform, we realize a proof-of-concept implantable neurophotonic probe for optogenetic stimulation of rodent brains. The probe has grating coupler emitters defined on a 4 mm long, 92 µm thick shank and operates over a wide wavelength range of 430-645 nm covering the excitation spectra of multiple opsins and fluorophores used for brain stimulation and imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...