Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Mol Cell Cardiol ; 168: 44-57, 2022 07.
Article En | MEDLINE | ID: mdl-35447147

Obscurin is a large scaffolding protein in striated muscle that maintains sarcolemmal integrity and aligns the sarcoplasmic reticulum with the underlying contractile machinery. Ankyrins are a family of adaptor proteins with some isoforms that interact with obscurin. Previous studies have examined obscurin interacting with individual ankyrins. In this study, we demonstrate that two different ankyrins interact with obscurin's carboxyl terminus via independent ankyrin-binding domains (ABDs). Using in-vitro binding assays, co-precipitation assays, and FLIM-FRET analysis, we show that obscurin interacts with small ankyrin 1.5 (sAnk1.5) and the muscle-specific ankyrin-G isoform (AnkG107). While there is no direct interaction between sAnk1.5 and AnkG107, obscurin connects the two ankyrins both in vitro and in cells. Moreover, AnkG107 recruits ß-spectrin to this macromolecular protein complex and mutating obscurin's ABDs disrupts complex formation. To further characterize AnkG107 interaction with obscurin, we measure obscurin-binding to different AnkG107 isoforms expressed in the heart and find that the first obscurin-binding domain in AnkG107 principally mediates this interaction. We also find that AnkG107 does not bind to filamin-C and displays minimal binding to plectin-1 compared to obscurin. Finally, both sAnk1.5-GFP and AnkG107-CTD-RFP are targeted to the M-lines of ventricular cardiomyocytes and mutating their obscurin-binding domains disrupts the M-line localization of these ankyrin constructs. Altogether, these findings support a model in which obscurin can interact via independent binding domains with two different ankyrin protein complexes to target them to the sarcomeric M-line of ventricular cardiomyocytes.


Ankyrins , Muscle Proteins , Ankyrins/chemistry , Muscle Proteins/metabolism , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases , Rho Guanine Nucleotide Exchange Factors/genetics
2.
J Am Chem Soc ; 144(7): 3174-3181, 2022 02 23.
Article En | MEDLINE | ID: mdl-35143189

The therapeutic use of small interfering RNAs (siRNAs) as gene regulation agents has been limited by their poor stability and delivery. Although arranging siRNAs into a spherical nucleic acid (SNA) architecture to form siRNA-SNAs increases their stability and uptake, prototypical siRNA-SNAs consist of a hybridized architecture that causes guide strand dissociation from passenger strands, which limits the delivery of active siRNA duplexes. In this study, a new SNA design that directly attaches both siRNA strands to the SNA core through a single hairpin-shaped molecule to prevent guide strand dissociation is introduced and investigated. This hairpin-like architecture increases the number of siRNA duplexes that can be loaded onto an SNA by 4-fold compared to the original hybridized siRNA-SNA architecture. As a result, the hairpin-like siRNA-SNAs exhibit a 6-fold longer half-life in serum and decreased cytotoxicity. In addition, the hairpin-like siRNA-SNA produces more durable gene knockdown than the hybridized siRNA-SNA. This study shows how the chemistry used to immobilize siRNA on nanoparticles can markedly enhance biological function, and it establishes the hairpin-like architecture as a next-generation SNA construct that will be useful in life science and medical research.


Immobilized Nucleic Acids/pharmacology , RNA, Small Interfering/pharmacology , Cell Line, Tumor , Gene Silencing/drug effects , Gold/chemistry , Humans , Immobilized Nucleic Acids/chemistry , Immobilized Nucleic Acids/toxicity , Inverted Repeat Sequences , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Nucleic Acid Hybridization , RNA, Small Interfering/chemistry , RNA, Small Interfering/toxicity
3.
Anal Chem ; 92(11): 7845-7851, 2020 06 02.
Article En | MEDLINE | ID: mdl-32437125

We report a dual-readout, AuNP-based sandwich immunoassay for the device-free colorimetric and sensitive scanometric detection of disease biomarkers. An AuNP-antibody conjugate serves as a signal transduction and amplification agent by promoting the reduction and deposition of either platinum or gold onto its surface, generating corresponding colorimetric or light scattering (scanometric) signals, respectively. We apply the Pt-based colorimetric readout of this assay to the discovery of a novel monoclonal antibody (mAb) sandwich pair for the detection of an anthrax protective antigen (PA83). The identified antibody pair detects PA83 down to 1 nM in phosphate-buffered saline and 5 nM in human serum, which are physiologically relevant concentrations. Reducing gold rather than platinum onto the mAb-AuNP sandwich enables scanometric detection of subpicomolar PA83 concentrations, over 3 orders of magnitude more sensitive than the colorimetric readout.


Anthrax/diagnosis , Antigens, Bacterial/analysis , Bacterial Toxins/analysis , Immunoassay , Antibodies, Monoclonal/chemistry , Biomarkers/analysis , Colorimetry , Gold/chemistry , Metal Nanoparticles/chemistry
4.
Proc Natl Acad Sci U S A ; 117(3): 1312-1320, 2020 01 21.
Article En | MEDLINE | ID: mdl-31900365

Spherical nucleic acids (SNAs) are nanostructures formed by chemically conjugating short linear strands of oligonucleotides to a nanoparticle template. When made with modified small interfering RNA (siRNA) duplexes, SNAs act as single-entity transfection and gene silencing agents and have been used as lead therapeutic constructs in several disease models. However, the manner in which modified siRNA duplex strands that comprise the SNA lead to gene silencing is not understood. Herein, a systematic analysis of siRNA biochemistry involving SNAs shows that Dicer cleaves the modified siRNA duplex from the surface of the nanoparticle, and the liberated siRNA subsequently functions in a way that is dependent on the canonical RNA interference mechanism. By leveraging this understanding, a class of SNAs was chemically designed which increases the siRNA content by an order of magnitude through covalent attachment of each strand of the duplex. As a consequence of increased nucleic acid content, this nanostructure architecture exhibits less cell cytotoxicity than conventional SNAs without a decrease in siRNA activity.


Nanoparticles/chemistry , RNA Interference , RNA, Small Interfering/chemistry , Animals , Cell Line, Tumor , Drosophila melanogaster , Humans , Nanoparticles/metabolism , Nanoparticles/toxicity , RNA, Small Interfering/metabolism , Ribonuclease III/metabolism
5.
Proc Natl Acad Sci U S A ; 116(21): 10473-10481, 2019 05 21.
Article En | MEDLINE | ID: mdl-31068463

In the case of cancer immunotherapy, nanostructures are attractive because they can carry all of the necessary components of a vaccine, including both antigen and adjuvant. Herein, we explore how spherical nucleic acids (SNAs), an emerging class of nanotherapeutic materials, can be used to deliver peptide antigens and nucleic acid adjuvants to raise immune responses that kill cancer cells, reduce (or eliminate) tumor growth, and extend life in three established mouse tumor models. Three SNA structures that are compositionally nearly identical but structurally different markedly vary in their abilities to cross-prime antigen-specific CD8+ T cells and raise subsequent antitumor immune responses. Importantly, the most effective structure is the one that exhibits synchronization of maximum antigen presentation and costimulatory marker expression. In the human papillomavirus-associated TC-1 model, vaccination with this structure improved overall survival, induced the complete elimination of tumors from 30% of the mice, and conferred curative protection from tumor rechallenges, consistent with immunological memory not otherwise achievable. The antitumor effect of SNA vaccination is dependent on the method of antigen incorporation within the SNA structure, underscoring the modularity of this class of nanostructures and the potential for the deliberate design of new vaccines, thereby defining a type of rational cancer vaccinology.


Cancer Vaccines , Neoplasms, Experimental/prevention & control , Nucleic Acids/chemistry , Animals , Mice
6.
Nat Biomed Eng ; 3(4): 318-327, 2019 04.
Article En | MEDLINE | ID: mdl-30952978

Only a tiny fraction of the nanomedicine-design space has been explored, owing to the structural complexity of nanomedicines and the lack of relevant high-throughput synthesis and analysis methods. Here, we report a methodology for determining structure-activity relationships and design rules for spherical nucleic acids (SNAs) functioning as cancer-vaccine candidates. First, we identified ~1,000 candidate SNAs on the basis of reasonable ranges for 11 design parameters that can be systematically and independently varied to optimize SNA performance. Second, we developed a high-throughput method for making SNAs at the picomolar scale in a 384-well format, and used a mass spectrometry assay to rapidly measure SNA immune activation. Third, we used machine learning to quantitatively model SNA immune activation and identify the minimum number of SNAs needed to capture optimum structure-activity relationships for a given SNA library. Our methodology is general, can reduce the number of nanoparticles that need to be tested by an order of magnitude, and could serve as a screening tool for the development of nanoparticle therapeutics.


High-Throughput Screening Assays/methods , Machine Learning , Nanomedicine , Alkaline Phosphatase/metabolism , Animals , Cell Line , Humans , Liposomes , Nanoparticles/chemistry , Nucleic Acids/chemistry , Oligonucleotides/chemistry , Structure-Activity Relationship
7.
Cardiovasc Res ; 107(4): 466-77, 2015 Sep 01.
Article En | MEDLINE | ID: mdl-26109584

AIMS: Excitation-contraction coupling in cardiomyocytes requires the proper targeting and retention of membrane proteins to unique domains by adaptor proteins like ankyrin-B. While ankyrin-B has been shown to interact with a variety of membrane and structural proteins located at different subcellular domains in cardiomyocytes, what regulates the specificity of ankyrin-B for particular interacting proteins remains elusive. METHODS AND RESULTS: Here, we report the identification of two novel ankyrin-B isoforms AnkB-188 and AnkB-212 in human, rat, and mouse hearts. Novel cDNAs for both isoforms were isolated by long-range PCR of reverse-transcribed mRNA isolated from human ventricular tissue. The isoforms can be discriminated based on their function and subcellular distribution in cardiomyocytes. Heterologous overexpression of AnkB-188 increases sodium-calcium exchanger (NCX) membrane expression and current, while selective knockdown of AnkB-188 in cardiomyocytes reduces NCX expression and localization in addition to causing irregular contraction rhythms. Using an isoform-specific antibody, we demonstrate that the expression of AnkB-212 is restricted to striated muscles and is localized to the M-line of cardiomyocytes by interacting with obscurin. Selective knockdown of AnkB-212 significantly attenuates the expression of endogenous ankyrin-B at the M-line but does not disrupt NCX expression at transverse tubules in cardiomyocytes. CONCLUSION: The identification and characterization of two functionally distinct ankyrin-B isoforms in heart provide compelling evidence that alternative splicing of the ANK2 gene regulates the fidelity of ankyrin-B interactions with proteins.


Ankyrins/genetics , Myocardium/metabolism , Alternative Splicing/genetics , Animals , Cytoskeleton/genetics , Cytoskeleton/metabolism , Humans , Mice , Muscle, Skeletal/metabolism , Myocytes, Cardiac/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism
8.
PLoS One ; 10(5): e0128177, 2015.
Article En | MEDLINE | ID: mdl-26024478

Ankyrin-G is an adaptor protein that links membrane proteins to the underlying cytoskeletal network. Alternative splicing of the Ank3 gene gives rise to multiple ankyrin-G isoforms in numerous tissues. To date, only one ankyrin-G isoform has been characterized in heart and transcriptional regulation of the Ank3 gene is completely unknown. In this study, we describe the first comprehensive analysis of Ank3 expression in heart. Using a PCR-based screen of cardiac mRNA transcripts, we identify two new exons and 28 alternative splice variants of the Ank3 gene. We measure the relative expression of each splice variant using quantitative real-time PCR and exon-exon boundary spanning primers that specifically amplify individual Ank3 variants. Six variants are rarely expressed (<1%), while the remaining variants display similar expression patterns in three hearts. Of the five first exons in the Ank3 gene, exon 1d is only expressed in heart and skeletal muscle as it was not detected in brain, kidney, cerebellum, and lung. Immunoblot analysis reveals multiple ankyrin-G isoforms in heart, and two ankyrin-G subpopulations are detected in adult cardiomyocytes by immunofluorescence. One population co-localizes with the voltage-gated sodium channel NaV1.5 at the intercalated disc, while the other population expresses at the Z-line. Two of the rare splice variants excise a portion of the ZU5 motif, which encodes the minimal spectrin-binding domain, and these variants lack ß-spectrin binding. Together, these data demonstrate that Ank3 is subject to complex splicing regulation resulting in a diverse population of ankyrin-G isoforms in heart.


Alternative Splicing , Ankyrins/genetics , Heart/physiology , Animals , Animals, Newborn , Ankyrins/metabolism , Exons , Gene Expression Regulation , Mice , Myocytes, Cardiac/physiology , Protein Isoforms/genetics , RNA, Messenger , Spectrin/metabolism
...