Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 63(12): 3192-3201, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38856467

ABSTRACT

The integration of the visual imaging system and the self-attitude determination system in on-orbit space projects necessitates robust star identification algorithms. However, disturbances in the on-orbit environment pose a challenge to the accuracy and efficiency of star identification algorithms. This paper introduces a novel star identification algorithm, to the best of our knowledge, designed for multiple large field of view (FOV) visual imaging systems, providing stability in the presence of the noise types, including position noise, lost-star noise, and fake-star noise. We employ the dynamic simulated star images generation method to construct simulated star image libraries suitable for various cameras with different FOV angles. Our algorithm comprises two parts: the star edge matching for coarse matching of interstellar angular distances based on linear assignment, and the star point registration for precise matching of star vectors. This innovative combination of local edge generation and global matching approach achieves an impressive 97.83% identification accuracy, maintaining this performance even with a standard deviation of one pixel in image plane errors and up to five missing stars. A comprehensive approach involving both simulated and empirical experiments was employed to validate the algorithm's effectiveness. This integration of the visual imaging system and the self-attitude determination system offers potential benefits such as reduced space equipment weight, simplified satellite launch processes, and decreased maintenance costs.

2.
Appl Opt ; 63(3): 793-803, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38294393

ABSTRACT

In order to bridge the fundamental commonalities between imaging models of camera lenses with different principles and structures, allowing for an accurate description of imaging characteristics across a wide range of field-of-view (FOV), we have proposed a generic camera calibration method on the basis of the projection model optimization strategy. First, in order to cover the current mainstream projection models, piecewise functions for geometric projection models and a polynomial function for the fitting projection model are designed. Then, the corresponding camera multistation self-calibration bundle adjustment (BA) module is developed for various projection models. Further, by integrating the self-calibration BA algorithm into the northern goshawk optimization architecture, iterative optimization is performed on the projection model adjustment parameters, camera interior parameters, camera exterior parameters, and lens distortion parameters until the target reprojection (RP) error reaches the global minimum. The experimental results indicate that the calibration RP root mean square error in this method is 1/20 pixel for a 68° FOV camera, 1/13 pixel for an 84° FOV camera, 1/9 pixel for a 115° FOV camera, 1/9 pixel for a 135° FOV camera, and 1/6 pixel for a 180° FOV camera. This calibration method offers fast and versatile optimization for various projection model types, encompassing a wide range of projection functions. It can efficiently determine the optimal projection model and all imaging parameters for multiple cameras during the calibration process.

3.
Opt Express ; 31(7): 11471-11489, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155781

ABSTRACT

Photogrammetry (PG) can present accurate data to evaluate the functional performance of large space structures. For camera calibration and orientation, the On-orbit Multi-view Dynamic Photogrammetry System (OMDPS) lacks appropriate spatial reference data. A multi-data fusion calibration method for all parameters for this kind of system is proposed in this paper as a solution to this issue. Firstly, a multi-camera relative position model is developed to solve the reference camera position unconstrained problem in the full-parameter calibration model of the OMDPS in accordance with the imaging model of stars and scale bar targets. Subsequently, the problem of adjustment failure and inaccurate adjustment in the multi-data fusion bundle adjustment is solved using the two-norm matrix and the weight matrix to adjust the Jacobian matrix with respect to all system parameters (e.g., camera interior parameters (CIP), camera exterior parameters (CEP), and lens distortion parameters (LDP)). Finally, all system parameters can be optimized simultaneously using this algorithm. In the actual data ground-based experiment, 333 spatial targets are measured using the V-star System (VS) and OMDPS. Taking the measurement of VS as the true value, the measurement results of OMDPS indicated that the in-plane Z-direction target coordinates root-mean-square error (RMSE) is less than 0.0538 mm and the Z-direction RMSE is less than 0.0428 mm. Out-of-plane Y-direction RMSE is less than 0.1514 mm. The application potential of the PG system for on-orbit measurement tasks is demonstrated through the actual data ground-based experiment.

4.
Sensors (Basel) ; 18(11)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30445745

ABSTRACT

Highly accurate and easy-to-operate calibration (to determine the interior and distortion parameters) and orientation (to determine the exterior parameters) methods for cameras in large volume is a very important topic for expanding the application scope of 3D vision and photogrammetry techniques. This paper proposes a method for simultaneously calibrating, orienting and assessing multi-camera 3D measurement systems in large measurement volume scenarios. The primary idea is building 3D point and length arrays by moving a scale bar in the measurement volume and then conducting a self-calibrating bundle adjustment that involves all the image points and lengths of both cameras. Relative exterior parameters between the camera pair are estimated by the five point relative orientation method. The interior, distortion parameters of each camera and the relative exterior parameters are optimized through bundle adjustment of the network geometry that is strengthened through applying the distance constraints. This method provides both internal precision and external accuracy assessment of the calibration performance. Simulations and real data experiments are designed and conducted to validate the effectivity of the method and analyze its performance under different network geometries. The RMSE of length measurement is less than 0.25 mm and the relative precision is higher than 1/25,000 for a two camera system calibrated by the proposed method in a volume of 12 m × 8 m × 4 m. Compared with the state-of-the-art point array self-calibrating bundle adjustment method, the proposed method is easier to operate and can significantly reduce systematic errors caused by wrong scaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...