Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Opt Lett ; 49(15): 4366-4369, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090935

ABSTRACT

Sub-aperture polishing is a key technique for fabricating ultra-precision optics. However, the existence of the polishing errors that are difficult to be compensated by physical modeling seriously affects the manufacturing accuracy and efficiency of optical components. To address this problem, a data-based systematic error extraction and compensation (DSEC) method was proposed to enhance the polishing accuracy on optics. To maximize the extraction quality in a small dataset condition, the wavelet transform is introduced into the extraction process, and the uncertainty of the piston term in the interferometer measurement is improved by L1-norm optimization. Furthermore, two typical error sources (loss of polishing fluid in the edge and the robot trajectory error) are used to verify the effectiveness of the proposed method; in experimental verification, the root mean square (RMS) of the surface figure of a ϕ85-mm mirror was decreased from 0.069λ to 0.017λ, and the RMS of the 610 × 440 mm mirrors was achieved at 0.019λ after the edge compensation, where the polishing accuracy can be improved by more than 4 times; additionally, the RMS of the surface figure with an effective aperture of 480 × 360 mm mirror was reached at 0.011λ after the trajectory error compensation, where the polishing accuracy can be improved by more than 2 times. The proposed DSEC model offers insights that will help achieve advancement in the sub-aperture polishing process.

2.
Int J Biol Macromol ; : 134478, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39102908

ABSTRACT

Currently, the predominant method for managing pests in orchards is chemical control. However, prolonged use of chemicals leads to resistance issues and raise ecological safety. A promising approach to tackle these challenges involves nanoparticles-mediated delivery system of dsRNA and pesticides. Despite its potential, this strategy has not been widely applied in controlling pests in pear orchards. In this study, we developed a nanoparticle-mediated ternary biopesticide to tackle resistance and safety concerns associated with calmodulin dsRNA and cyantraniliprole. Initially, we assessed the effectiveness of cyantraniliprole against two key pear pests, Grapholita molesta and Cacopsylla chinensis. Subsequently, we observed an upregualtion of genes CaM and CN following cyantraniliprole treatment. Furthermore, inhibiting or silencing GmCaM and CcGaM enhanced the sensitivity to cyantraniliprole more effectively. By introducing hairpin RNA into the pET30a-BL21 RNaseIII system to silence GmCaM and CcCaM, we developed a nanoparticle-mediated co-delivery system that exhibited improved control over these two pests. Importantly, our research demonstrated that using reduced cyantraniliprole dosages through ternary biopesticides could help mitigate risks to natural enemies. Overall, our research emphasizes the enhanced effectiveness of ternary biopesticides in boosting the performance of dsRNA and pesticide against pear pests, while fostering environmental sustainability-a novel advancement in this field.

3.
ACS Nano ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028863

ABSTRACT

Förster resonance energy transfer (FRET)-based homogeneous immunoassay obviates tedious washing steps and thus is a promising approach for immunoassays. However, a conventional FRET-based homogeneous immunoassay operating in the visible region is not able to overcome the interference of complex biological samples, thus resulting in insufficient detection sensitivity and poor accuracy. Here, we develop a near-infrared (NIR)-to-NIR FRET platform (Ex = 808 nm, Em = 980 nm) that enables background-free high-throughput homogeneous quantification of various biomarkers in complex biological samples. This NIR-to-NIR FRET platform is portable and easy to operate and is mainly composed of a high-performance NIR-to-NIR FRET pair based on lanthanide-doped nanoparticles (LnNPs) and a custom-made microplate reader for readout of NIR luminescence signals. We demonstrate that this NIR-to-NIR FRET platform is versatile and robust, capable of realizing highly sensitive and accurate detection of various critical biomarkers, including small molecules (morphine and 1,25-dihydroxyvitamin D), proteins (human chorionic gonadotropin), and viral particles (adenovirus) in unprocessed complex biological samples (urine, whole blood, and feces) within 5-10 min. We expect this NIR-to-NIR FRET platform to provide low-cost healthcare for populations living in resource-limited areas and be widely used in many other fields, such as food safety and environmental monitoring.

4.
Virology ; 597: 110142, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959723

ABSTRACT

OBJECTIVES: The specific humoral immune response resulting from inactivated vaccination following by BA.5 infection, and predictors of XBB variants re-infection in BA.5 infection-recovered nasopharyngeal carcinoma (BA.5-RNPC) patients, were explored. METHODS: Serum SARS-CoV-2 specific antibody levels were assessed using enzyme-linked-immunosorbent-assay. Univariate and multivariate binary logistic regression analyses were conducted to identify factors associated with the magnitude of specific humoral immunity and susceptibility to re-infection by XBB variants. RESULTS: Our data demonstrates that SARS-CoV-2 specific antibody levels were comparable between BA.5-RNPC patients and BA.5 infection-recovered-non-cancerous (BA.5-RNC) individuals. Specifically, serum levels of anti-ancestral-S1-IgG, anti-ancestral-nucleocapsid-protein (NP)-IgG, anti-BA.5-receptor binding domain (RBD)-IgG and anti-XBB.1.1.6-RBD-IgG were higher in BA.5-RNPC patients compared to those without a prior infection. Compared to BA.5-RNPC patients without vaccination, individuals who received inactivated vaccination exhibited significantly higher levels of anti-ancestral-S1-IgG and anti-XBB.1.16-RBD-IgG. Multivariate logistic regression analysis revealed that inactivated vaccination was the most significant predictor of all tested SARS-CoV-2 specific antibodies response. Subsequent analysis indicated that a low globulin level is an independent risk factor for XBB re-infection in BA.5-RNPC patients. CONCLUSIONS: The SARS-CoV-2 specific antibodies have been improved in vaccinated BA.5-RNPC patients. However, the baseline immunity status biomarker IgG is an indicators of XBB variant re-infection risk in BA.5-RNPC patients.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Reinfection , SARS-CoV-2 , Humans , Male , Female , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Middle Aged , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Risk Factors , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/virology , Reinfection/immunology , Reinfection/virology , Adult , Immunoglobulin G/blood , Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Humoral , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
5.
Vaccine ; : 126108, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39048466

ABSTRACT

BACKGROUND: Currently, there is limited understanding of the specific humoral immune response in BA.5-infected hemodialysis patients (BA.5-CHDPs) with previous COVID-19 vaccination. Additionally, the relevant risk factors for reinfection with XBB variants in BA.5-CHDPs have yet to be elucidated. METHOD: A total of 178 BA.5-CHDPs were enrolled in this study among 53 patients who had previous vaccination. To compare hemodialysis patients in both unvaccinated and vaccinated for their immune response to the BA.5 subtype infection, we assessed serum levels of anti-ancestral-S1-IgG, anti-BA.5-receptor binding domain (RBD)-IgG, and anti-XBB.1.16-RBD-IgG using enzyme-linked immunosorbent assay, the neutralizing antibody titer against BA.5 and XBB.1.16 was determined using pseudovirus neutralization assays. Univariate and multivariate binary logistic regression analyses were conducted to identify factors associated with severe infection, the magnitude of specific humoral immunity and susceptibility to XBB variants reinfection. RESULT: Our findings indicate that BA.5-CHDPs with full or booster vaccinations have higher levels of anti-ancestral-S1-IgG than unvaccinated individuals. However, levels of anti-BA.5-RBD-IgG and anti-XBB.1.16-RBD-IgG are much lower. Booster-vaccinated BA.5-CHDPs have significantly higher levels of BA.5 and XBB.1.16 specific antibodies and neutralizing antibodies than unvaccinated patients. Low globulin levels and shorter hemodialysis duration are independent risk factors for XBB reinfection in BA.5-CHDPs. CONCLUSION: Although XBB.1.16 specific neutralizing antibody levels were low in BA.5-CHDPs, these levels cannot predict the risk of reinfection; other potential risk factors need to be investigated in the future.

6.
Plant Physiol Biochem ; 213: 108815, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861820

ABSTRACT

Plant Growth Regulators (PGRs) are functional compounds known for enhancing plant growth and development. However, their environmental impact is a concern due to poor water solubility and the need for substantial organic solvents. Recently, nano-delivery systems have emerged as a solution, offering a broad range of applications for small molecule compounds. This study introduces a nano-delivery system for Triacontanol (TA), utilizing a star polymer (SPc), aimed at promoting maize growth and improving physiological indicators. The system forms nearly spherical nanoparticles through TA's hydroxyl group and SPc's tertiary amine group. The TA/SPc nano-complex notably outperforms separate TA or SPc treatments in maize, increasing biomass, chlorophyll content, and nutrient absorption. It elevates chlorophyll content by 16.4%, 10.0%, and 6.2% over water, TA, and SPc treatments, respectively, and boosts potassium and nitrate ion uptake by up to 2 and 1.6 times compared to TA alone, leading to enhanced plant height and leaf growth. qRT-PCR analysis further demonstrated that the nano-complex enhanced cellular uptake through the endocytosis pathway by up-regulating endocytosis-related gene expression. The employment of TEM to observe vesicle formation during the internalization of maize leaves furnishes corroborative evidence for the participation of the endocytosis pathway in this process. This research confirms that SPc is an effective carrier for TA, significantly enhancing biological activity and reducing TA dosage requirements.


Subject(s)
Fatty Alcohols , Zea mays , Zea mays/growth & development , Zea mays/drug effects , Zea mays/metabolism , Fatty Alcohols/pharmacology , Nanoparticles/chemistry , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Polymers/chemistry , Polymers/pharmacology , Chlorophyll/metabolism
7.
J Diabetes Metab Disord ; 23(1): 1223-1231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932880

ABSTRACT

Purpose: As lifestyle changes, there is an increasing number of type 2 diabetes mellitus (T2DM) patients in China. The present study aimed to investigate the predictive value of the lipid accumulation product (LAP) for T2DM in Chinese elderlies over 65 years. Methods: The present cross-sectional study recruited 2,092 adults from communities of Pudong New Area of Shanghai. Questionnaires were filled and anthropometric and laboratory examinations were completed by all participants. The predictive value of different risk factors for T2DM was analyzed using the receiver operating characteristics curve (ROC). Results: LAP was found to be closely related to T2DM (adjusted OR: 0.613, 95% CI: 0.581-0.645). Fasting plasma glucose (FPG), LAP, and urea nigrogen (UN) were associated with T2DM in females, whereas FPG, LAP, neck circumference (NC) were associated with T2DM in males. When the cut-off value was 33.8, LAP displayed the optimal predictive performance. A gender difference was observed with an LAP of 37.95 demonstrating the best predictive value in males (AUC = 0.604, 95% CI: 0.577-0.652) and 60.2 in females (AUC = 0.617, 95% CI: 0.574-0.660), respectively. Conclusion: LAP is more significantly associated with the risk of T2DM in elderlies than FPG, UN or NC, and it serves as a strong predictor of T2DM. However, this is impacted by FPG and neck circumference to a certain extent. Future large-scale studies are needed to confirm its efficacy in predicting diabetes.

8.
Insect Biochem Mol Biol ; 171: 104150, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871132

ABSTRACT

Insect chitinases (Chts) play a crucial role in the molting process, enabling continuous growth through sequential developmental stages. Based on their high homology to insect Chts, TuCht1 (group II), TuCht4 (group I) and TuCht10 (group IV) were identified, and their roles during molting process were investigated. TuCht1 was mainly expressed in the deutonymphal stage, while TuCht4 was mainly expressed in the nymphal stage and the highest expression level of TuCht10 was observed in the larvae. Feeding RNAi assays have shown that group I TuCht4 and group Ⅳ TuCht10 are involved in mite molting. Suppression of TuCht4 or TuCht10 resulted in high mortality, molting abnormalities and the absence of distinct electron dense layers of chitinous horizontal laminae in the cuticle, as demonstrated by scanning electron microscopy and transmission electron microscopy. The nanocarrier mediated RNAi had significantly higher RNAi efficiency and caused higher mortality. The results of the present study suggest that chitinase genes TuCht4 and TuCht10 are potential targets for dietary RNAi, and demonstrates a nanocarrier-mediated delivery system to enhance the bioactivity of dsRNA, providing a potential technology for green pest management.


Subject(s)
Chitinases , Molting , Tetranychidae , Animals , Molting/genetics , Chitinases/genetics , Chitinases/metabolism , Tetranychidae/genetics , Tetranychidae/growth & development , Nymph/genetics , Nymph/growth & development , Nymph/metabolism , RNA Interference , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism
9.
Inorg Chem ; 63(27): 12582-12592, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38917407

ABSTRACT

The InP-based quantum dots (QDs) have attracted much attention in the field of photocatalytic H2 evolution. However, a shell should be used for InP-based photocatalytic systems to passivate the numerous surface defects. Different from the traditional InP-based core/shell QDs with Type-I or Type-II band alignment, herein, the "reverse Type-II" core/shell QDs in which both the conduction and valence bands of shell materials are more negative than those of core materials have been well-designed by regulating the ratio of Cd/Zn of the alloyed ZnxCd1-xS shell. The reverse Type-II band alignment would realize the spatial separation of photogenerated carriers. More importantly, the photogenerated holes tend to rest on the shell in the reverse Type-II QDs, which facilitate hole transfer to the surface, the rate-determining step for solar H2 evolution using QDs. Therefore, the obtained InP/Zn0.25Cd0.75S core/shell QDs exhibit superior photocatalytic activity and stability under visible light irradiation. The rate of solar H2 evolution reaches 376.19 µmol h-1 mg-1 at the initial 46 h, with a turnover number of ∼2,157,000 per QD within 70 h irradiation.

10.
Methods ; 229: 41-48, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38880433

ABSTRACT

Graph neural networks (GNNs) have gained significant attention in disease prediction where the latent embeddings of patients are modeled as nodes and the similarities among patients are represented through edges. The graph structure, which determines how information is aggregated and propagated, plays a crucial role in graph learning. Recent approaches typically create graphs based on patients' latent embeddings, which may not accurately reflect their real-world closeness. Our analysis reveals that raw data, such as demographic attributes and laboratory results, offers a wealth of information for assessing patient similarities and can serve as a compensatory measure for graphs constructed exclusively from latent embeddings. In this study, we first construct adaptive graphs from both latent representations and raw data respectively, and then merge these graphs via weighted summation. Given that the graphs may contain extraneous and noisy connections, we apply degree-sensitive edge pruning and kNN sparsification techniques to selectively sparsify and prune these edges. We conducted intensive experiments on two diagnostic prediction datasets, and the results demonstrate that our proposed method surpasses current state-of-the-art techniques.


Subject(s)
Neural Networks, Computer , Humans , Machine Learning , Algorithms
11.
Nature ; 630(8016): 484-492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811729

ABSTRACT

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Subject(s)
Bacteria , Bacteriophages , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Bacteria/virology , Bacteria/genetics , Bacteria/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Chryseobacterium/genetics , Chryseobacterium/immunology , Chryseobacterium/virology , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , DNA Cleavage , Genetic Loci/genetics , Models, Molecular , Protein Domains
12.
Insect Sci ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728615

ABSTRACT

Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.

13.
Insect Biochem Mol Biol ; 169: 104126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663758

ABSTRACT

Insect wax accumulates on the surface of insect cuticle, which acts as an important protective barrier against rain, ultraviolet light radiation, pathogens, etc. The waxing behavior, wax composition and molecular mechanism underling wax biosynthesis are unclear in dustywings. Herein, the current study determined the vital developmental stage for waxing behavior in dustywings, examined the components of waxy secretions, and identified key regulatory genes for wax biosynthesis. The wax glands were mainly located on the thorax and abdomen of dustywing adults. The adults spread the waxy secretions over their entire body surface. The metabolomics analysis identified 32 lipids and lipid-like molecules, 15 organic acids and derivatives, 7 benzenoids, etc. as the main components of waxy secretions. The fatty acids represented the largest proportion of the category of lipid and lipid-like molecules. The conjoint analysis of metabolomics and transcriptomics identified two crucial genes fatty acyl-CoA reductase (CsFAR) and calmodulin (CsCaM) for wax biosynthesis. The down-regulation of these genes via nanocarrier-mediated RNA interference technology significantly reduced the amount of wax particles. Notably, the RNAi of CsCaM apparently suppressed the expression of most genes in fatty acid biosynthesis pathway, indicating the CsCaM might act as a main upstream regulator of fatty acid biosynthesis pathway.


Subject(s)
Calmodulin , Fatty Acids , Waxes , Animals , Calmodulin/metabolism , Calmodulin/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Waxes/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Biosynthetic Pathways
14.
Front Microbiol ; 15: 1352531, 2024.
Article in English | MEDLINE | ID: mdl-38591036

ABSTRACT

Objective: The limited existing knowledge regarding resistance to antimicrobial peptides (AMPs) is hindering their broad utilization. The aim of this study is to enhance the understanding of AMP resistance, a pivotal factor in the exploration of alternative drug development in response to the escalating challenge of antibiotic resistance. Methods: We utilized metagenomic functional selection to analyze genes resistant to AMPs, with a specific focus on the microbiota in soil and the human gut. Through a combination of experimental methods and bioinformatics analyses, our investigation delved into the possibilities of the evolution of resistance to AMPs, as well as the transfer or interchange of resistance genes among the environment, the human body, and pathogens. Additionally, we examined the cross-resistance between AMPs and evaluated interactions among AMPs and conventional antibiotics. Results: The presence of AMP resistance, including various resistance mechanisms, was observed in both soil and the human gut microbiota, as indicated by our findings. Significantly, the study underscored the facile evolution of AMP resistance and the potential for gene sharing or exchange among different environments. Notably, cross-resistance among AMPs was identified as a phenomenon, while cross-resistance between AMPs and antibiotics was found to be relatively infrequent. Conclusion: The results of our study highlight the significance of taking a cautious stance when considering the extensive application of AMPs. It is imperative to thoroughly assess potential resistance risks, with a particular focus on the development of resistance to AMPs across diverse domains. A comprehensive grasp of these aspects is essential for making well-informed decisions and ensuring the responsible utilization of AMPs in the ongoing fight against antibiotic resistance.

15.
Integr Cancer Ther ; 23: 15347354241247061, 2024.
Article in English | MEDLINE | ID: mdl-38641964

ABSTRACT

To investigate the effect of Jiedu Xiaozheng Yin (JXY) on the polarization of macrophages in colitis-associated colon cancer (CAC). An orthotopic model of CAC was established to monitor changes in the pathological state of mice. Colon length, number of colon tumors were recorded, and indices for liver, spleen, and thymus were calculated. Hematoxylin and eosin (H&E) staining was employed to observe intestinal mucosal injury and tumor formation. Immunohistochemistry (IHC) staining was utilized to investigate the effect of JXY on M1 and M2 polarization of macrophages in the colonic mucosa of CAC mice. For in vitro experiments, RT-qPCR (Reverse Transcription-quantitative PCR) and flow cytometry were used to observe the effect of JXY on various M1-related molecules such as IL-1ß, TNF-α, iNOS, CD80, CD86, and its phagocytic function as well as M2-related molecules including Arg-1, CD206, and IL-10. Subsequently, after antagonizing the TLR4 pathway with antagonists (TAK242, PDTC, KG501, SR11302, LY294002), the expression of IL-6, TNF-α, iNOS, and IL-1ß mRNA were detected by RT-qPCR. In vivo experiments, the results showed that JXY improved the pathological condition of mice in general. And JXY treatment decreased the shortening of colon length and number of tumors as compared to non-treated CAC mice. Additionally, JXY treatment improved the lesions in the colonic tissue and induced a polarization of intestinal mucosal macrophages towards the M1 phenotype, while inhibiting polarization towards the M2 phenotype. In vitro experiments further confirmed that JXY treatment promoted the activation of macrophages towards the M1 phenotype, leading to increased expression of IL-1ß, TNF-α, iNOS, CD80, CD86, as well as enhanced phagocytic function. JXY treatment concomitantly inhibited the expression of M2-phenotype related molecules Arginase-1 (Arg-1), CD206, and IL-10. Furthermore, JXY inhibited M1-related molecules such as IL-6, TNF-α, iNOS, and IL-1ß after antagonizing the TLR4 pathway. Obviously, JXY could exhibit inhibitory effects on the development of colon tumors in mice with CAC by promoting M1 polarization through TLR4-mediated signaling and impeding M2 polarization of macrophages.


Subject(s)
Colitis-Associated Neoplasms , Drugs, Chinese Herbal , Macrophages , Animals , Mice , Colitis-Associated Neoplasms/drug therapy , Colitis-Associated Neoplasms/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Interleukin-10/metabolism , Interleukin-6/metabolism , Macrophages/drug effects , Macrophages/metabolism , Phenotype , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Front Neurol ; 15: 1304524, 2024.
Article in English | MEDLINE | ID: mdl-38585365

ABSTRACT

Background: Endovascular treatment of severe intracranial atherosclerotic stenosis (ICAS) using coronary drug-eluting stents (DESs) significantly reduces the risk of in-stent restenosis (ISR) and stroke recurrence. However, there are few reports regarding the treatment of ICAS with intracranial dedicated DES. Herein, we present our experience with the feasibility, safety, and medium-term follow-up outcomes of a novel intracranial DES, named NOVA stent, in patients with symptomatic severe ICAS (≥70%). Methods: From December 2021 to May 2022, patients with symptomatic severe ICAS who underwent implantation of the NOVA stent in our institution were retrospectively analyzed for procedural results, perioperative complications, imaging and clinical follow-up outcomes. Results: Twenty-four patients, 16 (66.7%) with anterior circulation lesions and 8 (33.3%) with posterior circulation lesions, were enrolled. All patients with intracranial ICA (n = 6), middle cerebral artery (n = 10), basilar artery (n = 3), intracranial vertebral artery (n = 3), and the vertebrobasilar junction (n = 2) stenosis were treated successfully using NOVA stents. The severity of stenosis ranged from 75 to 96% (mean 85.9%) before treatment and this was reduced to 0 to 20% (mean 8.6%) immediately after stent placement. Symptomatic distal embolism occurred in one case; however, there were no other perioperative complications. The mean follow-up duration was 12.2 ± 1.06 months. No symptomatic ischemic events occurred during follow-up. Follow-up cerebral angiography was performed in 22 of 24 patients (91.7%), and significant ISR occurred in one patient (4.2%). Conclusion: Our results demonstrate that implantation of the novel intracranial DES NOVA in severe ICAS is feasible, safe, and effective in selected cases, reducing the incidence of ISR, and showing excellent midterm clinical outcomes, providing a promising option for ICAS treatment.

17.
Ann Surg Oncol ; 31(7): 4271-4280, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38453768

ABSTRACT

BACKGROUND: This study assessed the performance of early contrast-enhanced magnetic resonance (ECE-MR) in the detecting of complete tumor response (ypT0) in patients with esophageal squamous cell carcinoma following neoadjuvant therapy. PATIENTS AND METHODS: Preoperative MR images of consecutive patients who underwent neoadjuvant therapy and surgical resection were reviewed retrospectively. The accuracy of ECE-MR and T2WI+DWI was evaluated by comparing the findings with pathological results. Receiver operating characteristic curve analysis was used to assess the diagnostic performance, and DeLong method was applied to compare the areas under the curves (AUC). Chi-squared analysis was conducted to explore the difference in pathological changes. RESULTS: A total of 198 patients (mean age 62.6 ± 7.8 years, 166 men) with 201 lesions were included. The AUC of ECE-MR was 0.85 (95% CI 0.79-0.90) for diagnosing ypT1-4, which was significantly higher than that of T2WI+DWI (AUC 0.69, 95% CI 0.63-0.76, p < 0.001). The diagnostic performance of both T2WI+DWI and ECE-MR improved with increasing tumor stage. The AUCs of ECE-MRI were higher in ypT1 and ypT2 tumors than T2WI+DWI. Degree 2-3 tumor-infiltrating lymphocytes and neutrophils were commonly seen in ypT0 tumors misdiagnosed by ECE-MR. CONCLUSIONS: Visual evaluation of ECE-MR is a promising diagnostic protocol for the detection of complete tumor response, especially for differentiation with early stage tumors. The accurate diagnosis of complete tumor response after neoadjuvant therapy using imaging modalities is of important significance for clinical decision-making for patients with esophageal squamous cell carcinoma. It is hoped that early contrast-enhanced MR will provide supportive advice for the development of individualized treatment options for patients.


Subject(s)
Contrast Media , Esophageal Neoplasms , Magnetic Resonance Imaging , Neoadjuvant Therapy , Humans , Male , Female , Retrospective Studies , Middle Aged , Esophageal Neoplasms/pathology , Esophageal Neoplasms/therapy , Esophageal Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Follow-Up Studies , Esophagectomy , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/pathology , Prognosis , Aged , ROC Curve
18.
Chemosphere ; 355: 141784, 2024 May.
Article in English | MEDLINE | ID: mdl-38537714

ABSTRACT

The improper use of synthetic pesticides has caused adverse effects on global ecosystems and human health. As a part of sustainable pest management strategy, natural predators, along with nano-pesticides, have made significant contributions to ecological agriculture. The cooperative application of both approaches may overcome their limitations, substantially reducing pesticide application while controlling insect pests efficiently. Herein, the current study introduced a cationic star polymer (SPc) to prepare two types of nano-pesticides, which were co-applied with predatory stinkbugs Picromerus lewisi to achieve perfect cooperative pest control. The SPc exhibited nearly no toxicity against predatory stinkbugs at the working concentration, but it led to the death of predatory stinkbugs at extremely high concentration with the lethal concentration 50 (LC50) value of 13.57 mg/mL through oral feeding method. RNA-seq analysis revealed that the oral feeding of SPc could induce obvious stress responses, leading to stronger phagocytosis, exocytosis, and energy synthesis to ultimately result in the death of predatory stinkbugs. Then, the broflanilide and chlorobenzuron were employed to prepare the self-assembled nano-pesticides via hydrogen bond and Van der Waals force, and the complexation with SPc broke the self-aggregated structures of pesticides and reduced their particle sizes down to nanoscale. The bioactivities of prepared nano-pesticides were significantly improved toward common cutworm Spodoptera litura with the corrected mortality increase by approximately 30%. Importantly, predatory stinkbugs exhibited a strong predation selectivity for alive common cutworms to reduce the exposure risk of nano-pesticides, and the nano-pesticides showed negligible toxicity against predators. Thus, the nano-pesticides and predatory stinkbugs could be applied simultaneously for efficient and sustainable pest management. The current study provides an excellent precedent for perfect cooperative pest control via nano-pesticide and natural predator.


Subject(s)
Pesticides , Animals , Humans , Pesticides/toxicity , Ecosystem , Predatory Behavior , Pest Control, Biological/methods , Agriculture/methods , Pest Control
19.
Viruses ; 16(2)2024 02 15.
Article in English | MEDLINE | ID: mdl-38400075

ABSTRACT

Bemisia tabaci (Gennadius) is an important invasive pest transmitting plant viruses that are maintained through a plant-insect-plant cycle. Tomato yellow leaf curl virus (TYLCV) can be transmitted in a persistent manner by B. tabaci, which causes great losses to global agricultural production. From an environmentally friendly, sustainable, and efficient point of view, in this study, we explored the function of d-limonene in reducing the acquisition and transmission of TYLCV by B. tabaci as a repellent volatile. D-limonene increased the duration of non-feeding waves and reduced the duration of phloem feeding in non-viruliferous and viruliferous whiteflies by the Electrical Penetration Graph technique (EPG). Additionally, after treatment with d-limonene, the acquisition and transmission rate of TYLCV was reduced. Furthermore, BtabOBP3 was determined as the molecular target for recognizing d-limonene by real-time quantitative PCR (RT-qPCR), fluorescence competitive binding assays, and molecular docking. These results confirmed that d-limonene is an important functional volatile which showed a potential contribution against viral infections with potential implications for developing effective TYLCV control strategies.


Subject(s)
Begomovirus , Hemiptera , Solanum lycopersicum , Animals , Limonene , Molecular Docking Simulation , Insect Vectors , Plant Diseases/prevention & control , Feeding Behavior
20.
J Colloid Interface Sci ; 662: 183-191, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38341941

ABSTRACT

Modulating the electronic structure of platinum (Pt) through a support is an important strategy for enhancing its electrocatalytic properties. In this work, to explore the impact of support electronegativity on Pt's catalytic activity for hydrogen evolution, we chose diverse metals with varying electronegativities that are stable in acidic solutions, such as titanium (Ti), molybdenum (Mo), and tungsten (W), as supports. Ti is the optimal support according to density functional theory (DFT) calculations. As expected, the Pt@Ti catalyst demonstrated remarkable efficiency in the hydrogen evolution reaction (HER), displaying a minimal overpotential of 13 mV at -10 mA cm-2, a Tafel slope of 34.5 mV dec-1, and sustained durability over 110 h in a 0.5 M H2SO4 solution. To unravel the metal-support interaction (MSI) between Pt and Ti, a comprehensive exploration encompassing both experimental investigations and DFT calculations was undertaken. The results elucidate that the outstanding HER performance of Pt@Ti stems from robust synergies forged between Pt and Ti atoms within the Ti support. This work not only furnishes a technique for producing electrocatalysts with superior efficiency and stability but also streamlines the process of choosing the most appropriate metal support. Moreover, it enhances comprehension of the interaction between Pt and the metal support.

SELECTION OF CITATIONS
SEARCH DETAIL