Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Front Pharmacol ; 15: 1429214, 2024.
Article in English | MEDLINE | ID: mdl-39092221

ABSTRACT

Introduction: Black ginseng (BG) was processed by "steaming and drying" (generally nine times) repeatedly to produce "rare saponins" and secondary ginsenosides. Both ginseng (GS) and red ginseng (RG) were commonly used in treating heart failure (HF), and the latter was confirmed to be more potent, implying the presence of rare ginsenosides that contribute positively to the treatment of heart failure. Previous research indicated that rare ginsenosides are more abundant in BG than in RG. Consequently, this study aims to investigate the effects of BG and its components on HF to elucidate the active substances and their underlying mechanisms in the treatment of HF. Methods: The effects of BG and its fractions (water-eluted fraction (WEF), total saponin fraction (TSF), and alcohol-eluted fraction (AEF)) on rats with isoproterenol (ISO)-induced HF were explored, and steroids belonging to the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes were determined quantitatively using the ultra-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS) method. In addition, 16S rDNA sequencing was performed on the gut microbiota, followed by GC-MS analysis of short-chain fatty acids (SCFAs), and the biochemical indexes related to energy metabolism and the serum cyclic nucleotide system were also analyzed by ELISA. Results: Based on a thorough evaluation of energy metabolism and the endocrine system, it was observed that the effects of BG components on the hypothalamic-pituitary-thyroid (HPT) and HPA axes were more pronounced. Notably, the treatment efficacy of the low dose of the total saponin fraction (TSFL), water decoction (WD), and high dose of the polysaccharide fraction (PSFH) was superior based on pharmacodynamic indicators such as brain natriuretic peptide (BNP), creatine kinase (CK), and estradiol (E2)/T). Furthermore, the WD and BG components exhibited significant effects on androgens (T and androstenedione (A4)). The TSFL group exerts an anti-inflammatory effect by regulating Lactobacillus/Erysipelotrichales. The WD, PSFH, and TSFL may impact inflammatory cytokines through the gut microbiota (Lactobacillus/Erysipelotrichales) and their metabolites (acetate and butyrate), exerting an anti-inflammatory effect. Discussion: The BG and all its split components demonstrated varying levels of efficacy in alleviating HF, and TSF and PSF exhibited a significant protective effect on HF. The main active components in TSF were revealed to be ginsenosides Rk1, Rk3, 20-(S)-Rg3, and 20-(S)-Rh2 by the H9C2 cell experiment. The decoction of BG and its components exhibited a potent impact on androgen hormones, with an elevation trend. This phenomenon may be attributed to the activation of the eNOS-NO pathway through androgen regulation, thereby contributing to its anti-HF activities. The WD, PSFH, and TSFL may exert anti-inflammatory effects through the intestinal flora (Lactobacillaceae/Erysipelotrichaceae) and its metabolites (acetic acid and butyric acid), which affect the inflammatory factors. The different mechanisms of action of each component of HF also reflect the significance and necessity of the overall role of traditional Chinese medicine (TCM). Our research was the first to report that the E2/T is related to HF and can be used as an indicator to evaluate HF.

2.
Diabetes Metab Syndr Obes ; 17: 3009-3018, 2024.
Article in English | MEDLINE | ID: mdl-39155912

ABSTRACT

Background: The relationship between insulin resistance-related indices and the outcomes of acute ischemic stroke (AIS) is still unclear. This study aimed to explore the association between the Apo B/Apo A-1 ratio and the Prognostic Nutritional Index (PNI) with the 90-day outcomes of AIS. Methods: A total of 2011 AIS patients with a 3-month follow-up were enrolled in the present study from January 2017 to July 2021. Multivariate logistic regression modeling was performed to analyze the relationship between Apo B/Apo A-1 ratio, PNI, and AIS poor outcomes. The mediating effect between the three was analyzed using the Bootstrap method with PNI as the mediating variable. Results: Among the 2011 included AIS patients, 20.3% had a poor outcome. Patients were categorized according to quartiles of Apo B/Apo A-1 ratio and PNI. Multivariate logistic regression revealed that the fourth Apo B/Apo A-1 ratio quartile had poorer outcomes than the first quartile (OR 1.75,95%CL 1.21-2.53, P=0.003), and the fourth PNI quartile exhibited a lower risk of poor outcomes than the first quartile (OR 0.40, 95%CL 0.27-0.61, P<0.001). PNI displayed a significant partially mediating effect (21.4%) between the Apo B/Apo A-1 ratio and poor AIS outcomes. Conclusion: The Apo B/Apo A-1 ratio is a risk factor for poor AIS outcomes, whereas PNI acts as a protective factor. The association between the ApoB/ApoA-1 ratio and poor AIS outcomes was partially mediated by PNI.

3.
Adv Mater ; : e2409294, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39161092

ABSTRACT

Efficient gas sensors are critical for environmental monitoring and industrial safety. While metal oxide semiconductor (MOS) sensors are cost-effective, they struggle with poor selectivity, high operating temperatures, and limited stability. Electrochemical sensors, though selective and energy-efficient, face high costs, and stability issues due to precious metal catalysts like platinum on carbon (Pt/C). Herein, a novel, cost-effective electrochemical sensor using nitrogen-doped indium oxide In2O3- xN2 x /3Vx /3 (0.01≤x≤0.14), synthesized with varying nitriding times is presented. The optimized In2O3 N-40 min sensor demonstrates a remarkable response current of 771 nA to 10 ppm nitrogen dioxide (NO2) at ambient temperature, with outstanding long-term stability (over 30 days) and rapid response/recovery times (5/16 s). Compared to Pt/C sensors, it shows 84% and 67% reductions in response and recovery times, respectively, and maintains 98% performance after a month, versus 68% for Pt/C. This cost-effective sensor presents a promising alternative for electrochemical gas sensing, eliminating the need for precious metal catalysts.

4.
J Adv Res ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197817

ABSTRACT

INTRODUCTION: Simultaneous detection of proteins and mRNA within a single extracellular vesicle (EV) enables comprehensive analysis of specific EVs subpopulations, significantly advancing cancer diagnostics. However, developing a sensitive and user-friendly approach for simultaneously detecting multidimensional biomarkers in single EV is still challenging. OBJECTIVES: To facilitate the analysis of multidimensional biomarkers in EVs and boost its clinical application, we present a versatile droplet digital system facilitating the concurrent detection of membrane proteins and mRNA at the single EV level with high sensitivity and specificity. METHODS: The antibody-DNA conjugates were firstly prepared for EVs protein biomarkers recognition and signal transformation. Coupling with the assembled triplex droplet digital PCR system, a versatile droplet digital analysis assay for simultaneous detection of membrane protein and mRNA at a single EV level was developed. RESULTS: Our new droplet digital system displayed high sensitivity and specificity. Additionally, its clinical application was validated in a breast cancer cohort. As expected, this assay has demonstrated superior performance in distinguishing breast cancer from healthy individuals and benign controls through combined detection of EVs protein and mRNA markers compared to any single kind marker detections, especially for patients with breast cancer at early stage (AUC=0.9229). CONCLUSION: Consequently, this study proposes a promising strategy for accurately identifying and analyzing specific EV subgroups through the co-detection of proteins and mRNA at the single EV level, holding significant potential for future clinical applications.

5.
NPJ Sci Learn ; 9(1): 53, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39181867

ABSTRACT

Reading difficulty (RD) is associated with phonological deficits; however, it remains unknown whether the phonological deficits are different in children and adults with RD as reflected in foreign speech perception and production. In the current study, using functional Near-infrared spectroscopy (fNIRS), we found less difference between Chinese adults and Chinese children in the RD groups than the control groups in the activation of the right inferior frontal gyrus (IFG) and the dorsolateral prefrontal cortex (DLPFC) during Spanish speech perception, suggesting slowed development in these regions associated with RD. Furthermore, using multivariate pattern analysis (MVPA), we found that activation patterns in the left middle temporal gyrus (MTG), premotor, supplementary motor area (SMA), and IFG could serve as reliable markers of RD. We provide both behavioral and neurological evidence for impaired speech perception and production in RD readers which can serve as markers of RD.

6.
Child Dev ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39032033

ABSTRACT

Reading disability (RD) may be characterized by reduced print-speech convergence, which is the extent to which neurocognitive processes for reading and hearing words overlap. We examined how print-speech convergence changes from children (mean age: 11.07+0.48) to adults (mean age: 21.33+1.80) in 86 readers with or without RD. The participants were recruited in elementary schools and associate degree colleges in China (from 2020 to 2021). Three patterns of abnormalities were revealed: (1) persistent reduction of print-speech convergence in the left inferior parietal cortex in both children and adults with RD, suggesting a neural signature of RD; (2) reduction of print-speech convergence in the left inferior frontal gyrus only evident in children but not adults with RD, suggesting a developmental delay; and (3) increased print-speech convergence in adults with RD than typical adults in the bilateral cerebella/fusiform, suggesting compensations. It provides insights into developmental differences in brain functional abnormalities in RD.

7.
Curr Med Sci ; 44(4): 707-717, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38967891

ABSTRACT

OBJECTIVE: Obesity-induced kidney injury contributes to the development of diabetic nephropathy (DN). Here, we identified the functions of ubiquitin-specific peptidase 19 (USP19) in HK-2 cells exposed to a combination of high glucose (HG) and free fatty acid (FFA) and determined its association with TGF-beta-activated kinase 1 (TAK1). METHODS: HK-2 cells were exposed to a combination of HG and FFA. USP19 mRNA expression was detected by quantitative RT-PCR (qRT-PCR), and protein analysis was performed by immunoblotting (IB). Cell growth was assessed by Cell Counting Kit-8 (CCK-8) viability and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays. Cell cycle distribution and apoptosis were detected by flow cytometry. The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation (Co-IP) assays and IB. RESULTS: In HG+FFA-challenged HK-2 cells, USP19 was highly expressed. USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells. Moreover, USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1 (PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species (ROS) generation in HK-2 cells. Mechanistically, USP19 stabilized the TAK1 protein through deubiquitination. Importantly, increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells. CONCLUSION: The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1, providing a potential therapeutic strategy for combating DN.


Subject(s)
Apoptosis , Glucose , MAP Kinase Kinase Kinases , Humans , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Glucose/pharmacology , Apoptosis/drug effects , Cell Line , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/pharmacology , Fatty Acids, Nonesterified/adverse effects , Cell Proliferation/drug effects , Ubiquitination/drug effects , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Endopeptidases/metabolism , Endopeptidases/genetics , Protein Kinases
8.
Neuropsychologia ; 201: 108935, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38848989

ABSTRACT

Different tasks have been used in examining the neural functional differences associated with developmental dyslexia (DD), and consequently, different findings have been reported. However, very few studies have systematically compared multiple tasks in understanding what specific task differences each brain region is associated with. In this study, we employed an auditory rhyming task, a visual rhyming task, and a visual spelling task, in order to investigate shared and task-specific neural differences in Chinese children with DD. First, we found that children with DD had reduced activation in the opercular part of the left inferior frontal gyrus (IFG) only in the two rhyming tasks, suggesting impaired phonological analysis. Children with DD showed functional differences in the right lingual gyrus/inferior occipital gyrus only in the two visual tasks, suggesting deficiency in their visuo-orthographic processing. Moreover, children with DD showed reduced activation in the left dorsal inferior frontal gyrus and increased activation in the right precentral gyrus across all of the three tasks, suggesting neural signatures of DD in Chinese. In summary, our study successfully separated brain regions associated with differences in orthographic processing, phonological processing, and general lexical processing in DD. It advances our understanding about the neural mechanisms of DD.


Subject(s)
Brain Mapping , Brain , Dyslexia , Magnetic Resonance Imaging , Humans , Male , Female , Child , Dyslexia/physiopathology , Dyslexia/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Reading
9.
Adv Sci (Weinh) ; 11(29): e2401635, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38828658

ABSTRACT

The low mechanical reliability and integration failure are key challenges hindering the commercialization of geometrically flexible batteries. This work proposes that the failure of directly integrating flexible batteries using traditional rigid adhesives is primarily due to the mismatch between the generated stress at the adhesive/substrate interface, and the maximum allowable stress. Accordingly, a stress redistribution adhesive layer (SRAL) strategy is conceived by using elastic adhesive to redistribute the generated stress. The function mechanism of the SRAL strategy is confirmed by theoretical finite element analysis. Experimentally, a polyurethane (PU) type elastic adhesive (with maximum strain of 1425%) is synthesized and used as the SRAL to integrate rigid cells on different flexible substrates to fabricate directly integrated flexible battery with robust output under various harsh environments, such as stretching, twisting, and even bending in water. The SRAL strategy is expected to be generally applicable in various flexible devices that involve the integration of rigid components onto flexible substrates.

10.
J Chromatogr A ; 1729: 465040, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38838450

ABSTRACT

In this work, porous polyimide microfibers (PI-µF) were prepared by high-pressure wet spinning method, and successfully applied as adsorbents for solid phase extraction (SPE) of fluoroquinolones (FQs) in water and food samples. The PI-µFs of ∼10, 25, 50, 100 µm in diameter could be controlled by the inner diameter of quartz capillary nozzles. The flow resistance of SPE cartridges packed with 10 µm PI microfiber (10-PI-µF) and 25-PI-µF was comparable to or even lower than that of commercial SPE cartridges, while the flow resistance of 50-PI-µF and 100-PI-µF SPE cartridges was increased obviously due to tiny broken pieces. The 10-PI-µF and 25-PI-µF have a specific surface area of 102 m2 g-1 and 76 m2 g-1, mesopores of 22-32 nm, and large breakthrough volume of 110 mL/5 mg and 85 mL/5 mg for FQs, while the 50-PI-µF and 100-PI-µF had much lower specific surface area and hardly had retention for FQs. FQs from tap water, egg and milk samples were then extracted by PI-µF SPE, and analyzed by high performance liquid chromatography-fluorescence detector (HPLC-FLD). SPE parameters as type of elution solvent, elution solvent volume, pH value of sample solution, flow rate of sample solution, and breakthrough volume were first optimized in detail. Under the optimal conditions, the PI-µF SPE/HPLC-FLD method showed high recoveries (96.8%-107%), wide linearity (0.05-50 µg L-1, or 0.01-10 µg L-1), high determination coefficients (R2 ≥0.9992), and low limits of detection (LODs, 0.005-0.014 µg L-1). For the real tap water, egg and milk samples, the recoveries and RSDs were 81-119% and 0.8-9.8%, respectively. The results show that porous microfiber up to 25 µm in diameter is a promising solid-phase extraction adsorbent with the lowest flow resistance that can be used for trace organic pollutants in water and food samples.


Subject(s)
Fluoroquinolones , Limit of Detection , Milk , Solid Phase Extraction , Water Pollutants, Chemical , Solid Phase Extraction/methods , Fluoroquinolones/analysis , Fluoroquinolones/isolation & purification , Fluoroquinolones/chemistry , Porosity , Milk/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Chromatography, High Pressure Liquid/methods , Animals , Eggs/analysis , Adsorption , Pressure , Food Contamination/analysis , Resins, Synthetic/chemistry , Food Analysis/methods , Reproducibility of Results
11.
Angew Chem Int Ed Engl ; 63(30): e202404374, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38726699

ABSTRACT

Strategies for discovery of high-performance electrocatalysts are important to advance clean energy technologies. Metastable phases such as low temperature or interfacial structures that are difficult to access in bulk may offer such catalytically active surfaces. We report here that the suboxide Zr3O, which is formed at Zr-ZrO2 interfaces but does not appear in the experimental Zr-O phase diagram exhibits outstanding oxygen reduction reaction (ORR) performance surpassing that of benchmark Pt/C and most transition metal-based catalysts. Addition of Fe3C nanoparticles to give a Zr-Zr3O-Fe3C/NC catalyst (NC=nitrogen-doped carbon) gives a half-wave potential (E1/2) of 0.914 V, outperforming Pt/C and showing only a 3 mV decrease after 20,000 electrochemical cycles. A zinc-air battery (ZAB) using this cathode material has a high power density of 241.1 mW cm-2 and remains stable for over 50 days of continuous cycling, demonstrating potential for practical applications. Zr3O demonstrates that interfacial or other phases that are difficult to stabilize may offer new directions for the discovery of high-performance electrocatalysts.

12.
Microb Cell Fact ; 23(1): 128, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704580

ABSTRACT

BACKGROUND: Anthraquinone-fused enediynes (AFEs) are excellent payloads for antibody-drug conjugates (ADCs). The yields of AFEs in the original bacterial hosts are extremely low. Multiple traditional methods had been adopted to enhance the production of the AFEs. Despite these efforts, the production titers of these compounds are still low, presenting a practical challenge for their development. Tiancimycins (TNMs) are a class of AFEs produced by Streptomyces sp. CB03234. One of their salient features is that they exhibit rapid and complete cell killing ability against various cancer cell lines. RESULTS: In this study, a combinatorial metabolic engineering strategy guided by the CB03234-S genome and transcriptome was employed to improve the titers of TNMs. First, re-sequencing of CB03234-S (Ribosome engineered mutant strains) genome revealed the deletion of a 583-kb DNA fragment, accounting for about 7.5% of its genome. Second, by individual or combined inactivation of seven potential precursor competitive biosynthetic gene clusters (BGCs) in CB03234-S, a double-BGC inactivation mutant, S1009, was identified with an improved TNMs titer of 28.2 ± 0.8 mg/L. Third, overexpression of five essential biosynthetic genes, including two post-modification genes, and three self-resistance auxiliary genes, was also conducted, through which we discovered that mutants carrying the core genes, tnmE or tnmE10, exhibited enhanced TNMs production. The average TNMs yield reached 43.5 ± 2.4 mg/L in a 30-L fermenter, representing an approximately 360% increase over CB03234-S and the highest titer among all AFEs to date. Moreover, the resulting mutant produced TNM-W, a unique TNM derivative with a double bond instead of a common ethylene oxide moiety. Preliminary studies suggested that TNM-W was probably converted from TNM-A by both TnmE and TnmE10. CONCLUSIONS: Based on the genome and transcriptome analyses, we adopted a combined metabolic engineering strategy for precursor enrichment and biosynthetic pathway reorganization to construct a high-yield strain of TNMs based on CB03234-S. Our study establishes a solid basis for the clinical development of AFE-based ADCs.


Subject(s)
Anthraquinones , Enediynes , Metabolic Engineering , Streptomyces , Streptomyces/metabolism , Streptomyces/genetics , Metabolic Engineering/methods , Anthraquinones/metabolism , Enediynes/metabolism , Multigene Family , Biosynthetic Pathways
13.
Dalton Trans ; 53(23): 9819-9826, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38787742

ABSTRACT

An AA'3B4O12-type perovskite oxide PbMn3(CrMn3)O12 was synthesized by high-pressure solid-state reactions at 8 GPa and 1373 K. Synchrotron X-ray diffraction shows a cubic crystal structure with the space group Im3̄. The charge states are verified by X-ray photoelectron spectroscopy to be PbMn3+3(Cr3+Mn3+2Mn4+)O12, where the Pb2+ and Mn3+ are 1 : 3 ordered respectively at A and A' sites, while the Cr3+, Mn3+ and Mn4+ are disorderly distributed at the B site. PbMn3(CrMn3)O12 features a long-range antiferromagnetic order of A'-site Mn3+ spins at about 66 K and a subsequent spin glass transition around 36 K due to the randomly distributed Cr3+, Mn3+, and Mn4+ cations at the B site. This unique stepwise order of A' and B-site spins indicates weak A'-B site spin interactions, which are dominated by the difference in the B-site Mn3+/Ni2+ and Mn4+ number in the quadruple perovskites AMn3B4O12.

14.
J Phys Chem Lett ; 15(19): 5223-5230, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38717392

ABSTRACT

In the anodic catalyst layer of a proton-exchange membrane (PEM) water electrolyzer, the triple-phase boundary (TPB) is mainly distributed on the surface of ultrafine iridium-based catalysts encapsulated by the ionomer within the catalyst-ionomer agglomerate. It is found that the ionomer at the TPB acts as a barrier to mass transport and a buffer for the bubble coverage during the oxygen evolution reaction (OER). The barrier effect can decrease the OER performance of the catalysts inside the agglomerate by ≤23%, while the buffer effect can separate the bubble evolution sites from the OER sites, turning the instant deactivation caused by the bubble coverage into a gradual performance loss caused by local water starvation. However, this local water starvation still deteriorates the catalyst performance because of the affinity of the ionomer surface for bubbles. Introducing additional transport paths into the agglomerate can reduce the barrier effect and regulate the bubble behavior, reducing the overpotential by 0.308 V at 5 A cm-2.

15.
Neuroepidemiology ; : 1-12, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749405

ABSTRACT

INTRODUCTION: The contribution of individual and combined inflammatory markers for the prognosis of acute ischemic stroke (AIS) remains elusive. This study investigated the effect of systemic inflammatory response index (SIRI), and neutrophil to high-density lipoprotein ratio (NHR), which is mediated by fasting blood glucose (FBG), on 90-day prognosis of patients with AIS. METHODS: In this pre-specified substudy of an observational cohort study, 2,828 patients with AIS were enrolled from the Nanjing Stroke Registry between January 2017 and July 2021. Peripheral venous blood was collected from patients fasting for at least 8 h within 24 h of admission to gather information on the following parameters: neutrophil count, lymphocyte count, monocyte count, HDL level, and fasting blood glucose level. Then, the SIRI and NHR values were calculated. Following this, the correlation among SIRI, NHR, and modified Rankin Scale (mRS) scores 90 days after onset was examined via univariate and multivariate logistic analyses. Lastly, mediation analysis was performed to examine the relationship between systematic inflammatory response and study outcomes mediated by FBG. RESULTS: SIRI and NHR were both negatively correlated with clinical outcomes (p < 0.05). Logistic regression analysis revealed that SIRI and NHR were independently associated with poor outcomes after adjusting for potential confounders. Subgroup analyses further validated these correlations. Meanwhile, mediation analysis corroborated that FBG partially mediated the associations between SIRI and a poor prognosis at 90 days (indirect effect estimate = 0.0038, bootstrap 95% CI 0.001-0.008; direct effect estimate = 0.1719, bootstrap 95% CI 0.1258-0.2179). Besides, FBG also played a mediating role between NHR and poor outcomes (indirect effect estimate = 0.0066, bootstrap 95% CI 0.002-0.120; direct effect estimate = 0.1308, bootstrap 95% CI 0.0934-0.1681). CONCLUSION: Our study demonstrated that SIRI and NHR are positively associated with poor clinical and mortality outcomes at 90 days in AIS patients, which was partially mediated by FBG.

16.
Int J Biol Macromol ; 271(Pt 1): 132241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768916

ABSTRACT

The abnormal uric acid (UA) level in urine can serve as warning signals of many diseases, such as gout and metabolic cardiovascular diseases. The current methods for detecting UA face limitations of instrument dependence and the requirement for non-invasiveness, making it challenging to fulfill the need for home-based application. In this study, we designed an aptasensor that combined UA-specific transcriptional regulation and a fluorescent RNA aptamer for convenient urinary UA testing. The concentration of UA can be translated into the intensity of fluorescent signals. The aptasensor showed higher sensitivity and more robust anti-interference performance. UA levels in the urine of different volunteers could be accurately tested using this method. In addition, a paper-based aptasensor for UA self-testing was manufactured, in which the urinary UA levels could be determined using a smartphone-based colorimetric approach. This work not only demonstrates a new approach for the design of disease-associated aptasensor, but also offers promising ideas for home-based detection of UA.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Paper , Uric Acid , Uric Acid/urine , Humans , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Self-Testing , Colorimetry/methods , Transcription, Genetic , Urinalysis/methods , Urinalysis/instrumentation
17.
Beilstein J Org Chem ; 20: 741-752, 2024.
Article in English | MEDLINE | ID: mdl-38633914

ABSTRACT

Crocins are water-soluble apocarotenoids isolated from the flowers of crocus and gardenia. They exhibit various pharmacological effects, including neuroprotection, anti-inflammatory properties, hepatorenal protection, and anticancer activity. They are often used as coloring and seasoning agents. Due to the limited content of crocins in plants and the high cost of chemical synthesis, the supply of crocins is insufficient to meet current demand. The biosynthetic pathways for crocins have been elucidated to date, which allows the heterologous production of these valuable compounds in microorganisms by fermentation. This review article provides a comprehensive overview of the chemistry, pharmacological activity, biosynthetic pathways, and heterologous production of crocins, aiming to lay the foundation for the large-scale production of these valuable natural products by using engineered microbial cell factories.

18.
ACS Omega ; 9(14): 15818-15832, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617642

ABSTRACT

How to realize efficient treatment of coal slime generated by a coal washing operation is an urgent problem to be solved in this industry. The presence of clay minerals, especially highly hydrophilic montmorillonite (MMT), is the key to the poor treatment effect of coal slime. Polyacrylamide (PAM) is very popular as a polymer agent to improve the treatment of coal slime. However, when it is used to treat coal slime with a high content of MMT, the selection of PAM type and the mechanism of action are still lacking. In this study, the effects of different types of PAM on the treatment of coal slime water containing MMT are considered by sedimentation and press filtration tests. The interaction mechanism of PAM on the MMT surface is studied by using ζ-potential, Brunauer-Emmett-Teller (BET) analysis, low-field nuclear magnetic resonance, density functional theory (DFT), and molecular dynamics (MD) simulations. The results show that the three PAM can improve the sedimentation and filtration effect of coal slime water, and the performance is CPAM > NPAM > APAM. The ζ-potential of the MMT (001) surface increases under the action of three PAM, and the effect of CPAM is the most significant. The adsorption of PAM on the MMT (001) surface has the ability to neutralize the surface charge of MMT. The flocculation of MMT particles under PAM results in an increase of particle size and a decrease of specific surface area. Meanwhile, the pore volume of MMT decreases, and the average pore size increases. In addition, PAM mainly removes vicinal water on the MMT surface. The active sites of the MMT surface and PAM are calculated by DFT. The adsorption of three PAM structural units on the MMT Na-001 surface and non-001 surface is nonbonding interaction, and the adsorption energy of CPAM is the largest. And the left shift of εp of the O atom on the MMT surface is conducive to the stable adsorption of CPAM. The MD results show that the concentration of water molecules on the surface of MMT Na-001 decreases after PAM is adsorbed on the MMT Na-001 surface, indicating that PAM can keep water molecules away from the surface of MMT, which means that the hydrophobicity of the MMT surface is enhanced. This study has guiding significance for the selection of PAM and the development of new flocculants in the treatment of coal slime with a high content of MMT.

19.
J Chromatogr A ; 1720: 464814, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38490140

ABSTRACT

A magnetic polyimide (PI) nanocomposite has been synthesized by phase inversion of PI and simultaneous encapsulation of Fe3O4 nanoparticles. The Fe3O4/PI nanocomposite was characterized by a variety of characterization techniques, including infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, and vibrating sample magnetometry. The results showed that the prepared nanocomposite had a homogeneous structure, adequate specific surface area (76.1 m2/g) and high saturation magnetization (42.9 emu/g). Using parabens as model analytes, the performance of the Fe3O4/PI nanocomposite as an adsorbent for magnetic solid-phase extraction (MSPE) was evaluated. The extracted parabens were desorbed and determined by gas chromatography-mass spectrometry (GC-MS). The parameters affecting the extraction and desorption efficiency of parabens were optimized. Under the optimal conditions, the developed MSPE/GC-MS method was successfully applied to the determination of parabens in cooking wine. The MSPE/GC-MS method exhibited broad linearity (0.2-100 µg/L), low detection limits (0.04-0.05 µg/L), and satisfactory extraction recoveries (79.2 %-113.3 %) with relative standard deviations (RSDs) ranging from 0.7 % to 10.4 %. For real cooking wine samples, the spiked recoveries ranged from 91.7 % to 118.7 % with RSDs of 1.0 %-11.2 %. The results demonstrated that the Fe3O4/PI nanocomposite was an effective adsorbent, and this work provides a novel reference for the easy preparation of magnetic adsorbent materials.


Subject(s)
Nanocomposites , Wine , Gas Chromatography-Mass Spectrometry , Parabens , Adsorption , Magnetic Phenomena , Solid Phase Extraction/methods , Nanocomposites/chemistry , Limit of Detection , Chromatography, High Pressure Liquid/methods
20.
Angew Chem Int Ed Engl ; 63(19): e202401364, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38465572

ABSTRACT

The development of high-purity and high-energy-density green hydrogen through water electrolysis holds immense promise, but issues such as electrocatalyst costs and power consumption have hampered its practical application. In this study, we present a promising solution to these challenges through the use of a high-performance bifunctional electrocatalyst for energy-efficient hydrogen production via coupled hydrazine degradation. The biphasic metal nitrides with highly lattice-matched structures are deliberately constructed, forming an enhanced local electric field between the electron-rich Ni3N and electron-deficient Co3N. Additionally, Mn is introduced as an electric field engine to further activate electron redistribution. Our Mn@Ni3N-Co3N/NF bifunctional electrocatalyst achieves industrial-grade current densities of 500 mA cm-2 at 0.49 V without degradation, saving at least 53.3 % energy consumption compared to conventional alkaline water electrolysis. This work will stimulate the further development of metal nitride electrocatalysts and also provide new perspectives on low-cost hydrogen production and environmental protection.

SELECTION OF CITATIONS
SEARCH DETAIL