Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Front Plant Sci ; 15: 1396273, 2024.
Article in English | MEDLINE | ID: mdl-38882567

ABSTRACT

Fungal effectors play a crucial role in the interaction between pathogenic fungi and their hosts. These interactions directly influence the invasion and spread of pathogens, and the development of diseases. Common in fungal extracellular membrane (CFEM) effectors are closely associated with the pathogenicity, cell wall stability, and pathogenic processes of pathogenic fungi. The aim of this study was to investigate the role of CFEM proteins in Neostagonosporella sichuanensis in pathogen-host interactions. We retrieved 19 proteins containing CFEM structural domains from the genome of N. sichuanensis. By systematic analysis, five NsCFEM proteins had signal peptides but lacked transmembrane structural domains, and thus were considered as potential effectors. Among them, NsCFEM1 and NsCFEM2 were successfully cloned and their functions were further investigated. The validation results show that NsCFEM1 was localized in the cell membrane and nucleus, whereas NsCFEM2 was exclusively observed in the cell membrane. Both were identified as secreted proteins. Additionally, NsCFEM1 inhibited Bax-induced programmed cell death in Nicotiana benthamiana, whereas NsCFEM2 did not induce or inhibit this response. NsCFEM1 was implicated as a virulence factor that contributes to fungal growth, development, stress response, and pathogenicity. NsCFEM2 was implicated in maintenance of cell wall stability. This study lays a foundation for elucidating the role of CFEM proteins in the pathogen of fishscale bamboo rhombic-spot caused by N. sichuanensis. In particular, the functional studies of NsCFEM1 and NsCFEM2 revealed their potential roles in the interaction between N. sichuanensis and the host Phyllostachys heteroclada.

2.
Front Microbiol ; 15: 1374137, 2024.
Article in English | MEDLINE | ID: mdl-38887710

ABSTRACT

Bletilla striata is an endangered traditional medicinal herb in China. In May 2020, the emergence of white root rot severely impacted the quality and yield of B. striata, affecting about 5% of the plants at plant nurseries of the Chengdu Academy of Agricultural and Forestry Sciences. Through a series of experiments and evaluations, the pathogen was identified as Fusarium solani. This is the first report of B. striata white root rot caused by F. solani in Sichuan, China. To better understand this disease and provide data support for its control, a combination of morphological, molecular characterisation and pathogenicity determination was used in this study for assessment. Meanwhile, the effects of different carbon and nitrogen sources, culture medium, temperature, photoperiod and pH on mycelial growth and spore production of F. solani were investigated. In addition, effective fungicides were screened and the concentration ratios of fungicides were optimized using response surface methodology (RSM). The experimental results showed that sucrose was the optimum carbon source for the pathogen, and the optimum temperature and pH were 25°C and pH 7, respectively, while light did no significant effect. Effective fungicides were screened, among which difenoconazole showed the strongest inhibition with EC50 of 142.773 µg/mL. The optimum fungicide concentration scheme (difenoconazole, pyraclostrobin, and thiophanate-methyl at 395.42, 781.03, and 561.11 µg/mL, respectively) was obtained using response surface methodology (RSM) to improve the inhibition rate of 92.24 ± 0.34%. This study provides basic data for the pathogen characterization of B. striata white root rot and its potential fungicides in Sichuan, China. In addition, the optimal fungicide concentration ratios were obtained through response surface methodology (RSM) optimization, which significantly enhanced the fungicidal effect and provided a scientific basis for the future control of B. striata white root rot.

3.
Heliyon ; 10(9): e30015, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707411

ABSTRACT

Here, we presented 6 patients who were admitted to our institution and diagnosed as myasthenia gravis (MG) with tongue muscle atrophy. All these 6 patients developed symptoms of bulbar muscle weakness in acetylcholine receptor antibodies positive MG (AChR-MG) (3/6), muscle-specific receptor tyrosine kinase antibodies positive MG (MuSK-MG) (1/6), and sero-negative MG (2/6). Most of patients had "triple-furrowed" tongue except for patient 2 with irregular atrophy of tongue muscle. Tongue muscle atrophy occurs in patients with MuSK-MG, AChR-MG, and sero-negative MG. Atrophied tongue muscles of five patients with MG were reversible after immunotherapy.

4.
bioRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562694

ABSTRACT

The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.

5.
Asian J Psychiatr ; 96: 104042, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615577

ABSTRACT

BACKGROUND: Previous studies have documented thalamic functional connectivity (FC) abnormalities in schizophrenia, typically examining the thalamus as a whole. The specific link between subregional thalamic FC and cognitive deficits in first-episode schizophrenia (FES) remains unexplored. METHODS: Using data from resting-state functional magnetic resonance imaging, we compared whole-brain FC with thalamic subregions between patients and HCs, and analyzed FC changes in drug-naïve patients separately. We then examined correlations between FC abnormalities with both cognitive impairment and clinical symptoms. RESULTS: A total of 33 FES patients (20 drug-naïve) and 32 age- and sex-matched healthy controls (HCs) were included. Compared to HCs, FES patients exhibited increased FC between specific thalamic subregions and cortical regions, particularly bilateral middle temporal lobe and cuneus gyrus, left medial superior frontal gyrus, and right inferior/superior occipital gyrus. Decreased FC was observed between certain thalamic subregions and the left inferior frontal triangle. These findings were largely consistent in drug-naïve patients. Notably, deficits in social cognition and visual learning in FES patients correlated with increased FC between certain thalamic subregions and cortical regions involving the right superior occipital gyrus and cuneus gyrus. The severity of negative symptoms was associated with increased FC between a thalamic subregion and the left middle temporal gyrus. CONCLUSION: Our findings suggest FC abnormalities between thalamic subregions and cortical areas in FES patients. Increased FC correlated with cognitive deficits and negative symptoms, highlighting the importance of thalamo-cortical connectivity in the pathophysiology of schizophrenia.


Subject(s)
Cognitive Dysfunction , Magnetic Resonance Imaging , Schizophrenia , Thalamus , Humans , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Male , Female , Thalamus/physiopathology , Thalamus/diagnostic imaging , Adult , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Young Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Connectome , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
6.
Int J Biol Macromol ; 266(Pt 1): 130637, 2024 May.
Article in English | MEDLINE | ID: mdl-38490396

ABSTRACT

Acute lung injury (ALI) is a prevalent and critical condition in clinical practice. Although certain pharmacological interventions have demonstrated benefits in preclinical studies, none have been proven entirely effective thus far. Therefore, the development of more efficient treatment strategies for ALI is imperative. In this study, we prepared nanostructured lipid carriers (NLCs) conjugated with anti-VCAM-1 antibodies to encapsulate melatonin (MLT), resulting in VCAM/MLT NLCs. This approach aimed to enhance the distribution of melatonin in lung vascular endothelial cells. The VCAM/MLT NLCs had an average diameter of 364 nm, high drug loading content, and a sustained drug release profile. Notably, the NLCs conjugated with anti-VCAM-1 antibodies demonstrated more specific cellular delivery mediated by the VCAM-1 receptors, increased cellular internalization, and enhanced accumulation in lung tissues. Treatment with VCAM/MLT NLCs effectively alleviated pulmonary inflammation by activating NLRP3 inflammasome-dependent pyroptosis through up-regulation of Sirtuin 1. Our findings suggest that VCAM/MLT NLCs demonstrate remarkable therapeutic effects on ALI in both in vitro and in vivo settings, making them a promising and efficient treatment strategy for ALI.


Subject(s)
Acute Lung Injury , Melatonin , Nanostructures , Vascular Cell Adhesion Molecule-1 , Animals , Humans , Male , Mice , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Drug Carriers/chemistry , Inflammasomes/metabolism , Lipids/chemistry , Melatonin/pharmacology , Melatonin/administration & dosage , Nanostructures/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Signal Transduction/drug effects , Sirtuin 1/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
7.
Heliyon ; 10(1): e23745, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38192761

ABSTRACT

Background: Myasthenia gravis (MG) is an autoimmune disease characterized by generalized skeletal muscle contraction weakness due to autoantibodies targeting neural-muscular junctions. Here, we investigated the relationship between key cytokines and MG type, disease course, antibodies, and comorbidities. Method: Cytokine levels in serum samples collected from MG (n = 45) and healthy control (HC, n = 38) patients from January 2020 to June 2022 were quantified via flow cytometry. Results: Levels of IL-6 were higher in the MG group versus healthy individuals (p = 0.026) and in patients with generalized versus ocular MG (p = 0.019). IL-6 levels were positively correlated with QMG score. In patients with MG with both AChR and Titin antibodies, serum levels of sFas and granulysin were higher than in those with AChR alone (p = 0.036, and p = 0.028, respectively). LOMG had a reduction in serum levels of IL-2 compared to EOMG (p = 0.036). LOMG patients with diabetes had lower serum levels of IL-2, IL-4, and IFN-γ (p = 0.044, p = 0.038, and p = 0.047, respectively) versus those without diabetes. sFas in the MG with Abnormal thymus were reduced compared to those in MG with Normal thymus (p = 0.008). Conclusions: This study revealed a positive correlation between IL-6 level and MG status. Serum cytokine levels of the AChR + Titin MG group differed from those of the AChR group. LOMG had a lower IL-2 level. Comorbidities affect some cytokines in peripheral blood in MG serum.

8.
Bioorg Chem ; 143: 107036, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141330

ABSTRACT

This study reports a thermostable glucose-stimulated ß-glucosidase, BglY442, from hot-spring metagenomic data that was cloned and expressed in Escherichia coli BL21 (DE3). The molecular mass of recombinant BglY442 was 69.9 kDa and was used in the production of gardenia blue. The recombinant BglY442 showed its maximum activity at pH 6.0 and 75 °C, maintained 50 % activity at 70 °C for 36 h, presented over 90 % activity in a broad pH range and a wide range of pH stability. Moreover, BglY442 exhibited excellent tolerance toward methanol and ethanol. The specific activity of BglY442 was 235 U/mg at pH 6.0 and 75 °C with 10 mM pNPG as substrate. BglY442 activity increased by over fourfold with 2 M glucose or xylose. Specifically, the enzyme kinetics of BglY442 seem to be non-Michaelis-Menten kinetics or atypical kinetics because the Michaelis-Menten saturation kinetics were not observed with pNPG, oNPG or geniposide as substrates. Under optimum conditions, geniposide was dehydrated by BglY442 and reacted with nine amino acids respectively by the one-pot method. Only the Arg or Met derived pigments showed bright blue, and these two pigments had similar ultraviolet absorption spectra. The OD590 nm of GB was detected to be 1.06 after 24 h with the addition of Arg and 1.61 after 36 h with the addition of Met. The intermediate was elucidated and identified as ginipin. Molecular docking analysis indicated that the enzyme had a similar catalytic mechanism to the reported GH1 Bgls. BglY442 exhibited potential for gardenia blue production by the one-pot method. With outstanding thermostability and glucose tolerance, BglY442 should be considered a potential ß-glucosidase in biotechnology applications.


Subject(s)
Gardenia , Glucose , Iridoids , Glucose/pharmacology , Recombinant Proteins/metabolism , beta-Glucosidase/metabolism , Metagenome , Molecular Docking Simulation , Hydrogen-Ion Concentration , Enzyme Stability , Substrate Specificity , Temperature , Kinetics
9.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069247

ABSTRACT

Pheromone-binding proteins (PBPs) play important roles in binding and transporting sex pheromones. However, the PBP genes identified in coleopteran insects and their information sensing mechanism are largely unknown. Cyrtotrachelus buqueti (Coleoptera: Curculionidae) is a major insect pest of bamboo plantations. In this study, a novel PBP gene, CbuqPBP2, from C. buqueti was functionally characterized. CbuqPBP2 was more abundantly expressed in the antennae of both sexes than other body parts, and its expression level was significantly male-biased. Fluorescence competitive binding assays showed that CbuqPBP2 exhibited the strongest binding affinity to dibutyl phthalate (Ki = 6.32 µM), followed by styrene (Ki = 11.37 µM), among twelve C. buqueti volatiles. CbuqPBP2, on the other hand, showed high binding affinity to linalool (Ki = 10.55), the main volatile of host plant Neosinocalamus affinis. Furthermore, molecular docking also demonstrated the strong binding ability of CbuqPBP2 to dibutyl phthalate, styrene, and linalool, with binding energy values of -5.7, -6.6, and -6.0 kcal/mol, respectively, and hydrophobic interactions were the prevailing forces. The knockdown of CbuqPBP2 expression via RNA interference significantly reduced the electroantennography (EAG) responses of male adults to dibutyl phthalate and styrene. In conclusion, these results will be conducive to understanding the olfactory mechanisms of C. buqueti and promoting the development of novel strategies for controlling this insect pest.


Subject(s)
Coleoptera , Moths , Receptors, Odorant , Weevils , Female , Animals , Male , Carrier Proteins/metabolism , Coleoptera/metabolism , Weevils/genetics , Weevils/metabolism , Pheromones/metabolism , Dibutyl Phthalate , Molecular Docking Simulation , Styrenes/metabolism , Insect Proteins/metabolism , Moths/genetics , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Protein Binding
10.
J Control Release ; 364: 458-472, 2023 12.
Article in English | MEDLINE | ID: mdl-37935259

ABSTRACT

Cysteinyl aspartate-specific proteinase-1 (caspase-1) is a multifunctional inflammatory mediator in many inflammation-related diseases. Previous studies show that caspase-1 inhibitors produce effective therapeutic outcomes in a rat model of myasthenia gravis. However, tissue toxicity and unwanted off-target effects are the major disadvantages limiting their clinical application as therapeutic agents. This study shows that dendritic cell-derived extracellular vesicles (EVs) loaded with a caspase-1 inhibitor (EVs-VX-765) are phagocytized mainly by macrophages, and caspase-1 is precisely expressed in macrophages. Furthermore, EVs-VX-765 demonstrates excellent therapeutic effects through a macrophage-dependent mechanism, and it notably inhibits the level of interleukin-1ß and subsequently inhibits Th17 response and germinal center (GC) reactions. In addition, EVs-VX-765 demonstrates better therapeutic effects than routine doses of VX-765, although drug loading is much lower than routine doses, consequently reducing tissue toxicity. In conclusion, this study's findings suggest that EV-mediated delivery of caspase-1 inhibitors is effective for treating myasthenia gravis and is promising for clinical applications.


Subject(s)
Extracellular Vesicles , Myasthenia Gravis, Autoimmune, Experimental , Rats , Animals , Macrophages , Myasthenia Gravis, Autoimmune, Experimental/drug therapy , Caspase 1
11.
mBio ; : e0225423, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37877735

ABSTRACT

Apicomplexan parasites, including Toxoplasma gondii, encode many plant-like proteins, which play significant roles and present attractive targets for drug development. In this study, we have characterized the plant-like protein phosphatase PPKL, which is unique to the parasite and absent in its mammalian host. We have shown that its localization changes as the parasite divides. In non-dividing parasites, it is present in the cytoplasm, nucleus, and preconoidal region. As the parasite begins division, PPKL is enriched in the preconoidal region and the cortical cytoskeleton of nascent parasites. Later in the division, PPKL is present in the basal complex ring. Conditional knockdown of PPKL showed that it is essential for parasite propagation. Moreover, parasites lacking PPKL exhibit uncoupling of division, with normal DNA duplication but severe defects in forming daughter parasites. While PPKL depletion does not impair the duplication of centrosomes, it affects the stability of cortical microtubules. Both co-immunoprecipitation and proximity labeling identified the kinase DYRK1 as a potential functional partner of PPKL. Complete knockout of DYRK1 causes parasites to exhibit division defects with predominantly asynchronous divisions. Global phosphoproteomics analysis revealed a significant increase in phosphorylation of the microtubule-associated protein SPM1 in PPKL-depleted parasites, suggesting that PPKL regulates cortical microtubules by mediating the phosphorylation state of SPM1. More importantly, the phosphorylation of cell cycle-associated kinase Crk1, a known regulator of daughter cell assembly, is altered in PPKL-depleted parasites. Thus, we propose that PPKL regulates daughter parasite development by influencing the Crk1-dependent signaling pathway. IMPORTANCE Toxoplasma gondii can cause severe disease in immunocompromised or immunosuppressed patients and during congenital infections. Treating toxoplasmosis presents enormous challenges since the parasite shares many biological processes with its mammalian hosts, which results in significant side effects with current therapies. Consequently, proteins that are essential and unique to the parasite represent favorable targets for drug development. Interestingly, Toxoplasma, like other members of the phylum Apicomplexa, has numerous plant-like proteins, many of which play crucial roles and do not have equivalents in the mammalian host. In this study, we found that the plant-like protein phosphatase PPKL appears to be a key regulator of daughter parasite development. With the depletion of PPKL, the parasite shows severe defects in forming daughter parasites. This study provides novel insights into the understanding of parasite division and offers a new potential target for the development of antiparasitic drugs.

12.
Front Plant Sci ; 14: 1226041, 2023.
Article in English | MEDLINE | ID: mdl-37701800

ABSTRACT

Salicylic acid (SA) has been recognized as a promising molecule for improving abiotic stress tolerance in plants due to its ability to enhance antioxidant defense system, and promote root architecture system. Recent research has focused on uncovering the mechanisms by which SA confers abiotic stress tolerance in horticultural crops. SA has been shown to act as a signaling molecule that triggers various physiological and morphological responses in plants. SA regulates the production of reactive oxygen species (ROS). Moreover, it can also act as signaling molecule that regulate the expression of stress-responsive genes. SA can directly interact with various hormones, proteins and enzymes involved in abiotic stress tolerance. SA regulates the antioxidant enzymes activities that scavenge toxic ROS, thereby reducing oxidative damage in plants. SA can also activate protein kinases that phosphorylate and activate transcription factors involved in stress responses. Understanding these mechanisms is essential for developing effective strategies to improve crop resilience in the face of changing environmental conditions. Current information provides valuable insights for farmers and plant researchers, offering new strategies to enhance crop resilience and productivity in the face of environmental challenges. By harnessing the power of SA and its signaling pathways, farmers can develop more effective stress management techniques and optimize crop performance. Plant researchers can also explore innovative approaches to breed or engineer crops with enhanced stress tolerance, thereby contributing to sustainable agriculture and food security.

13.
Front Psychiatry ; 14: 1243894, 2023.
Article in English | MEDLINE | ID: mdl-37720905

ABSTRACT

Objectives: Alzheimer's disease (AD) and late-life depression (LLD) frequently exhibit executive function deficits (EFD) and medial temporal lobe atrophy (MTA) as shared characteristics. The objective of this research was to examine the utility of the Trail Making Test (TMT) and the MTA scale in distinguishing between LLD and AD. Methods: A study of 100 patients, 50 with AD and 50 with LLD, was conducted using a cross-sectional design. The individuals were subjected to clinical evaluations to assess their level of depression and overall cognitive abilities, which included the Geriatric Depression Scale (GDS), Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA). We evaluated executive function deficits (EFD) through the use of the TMT, which includes both TMT-A and TMT-B. MTA was measured using magnetic resonance imaging. To evaluate the ability of TMT and MTA scale to distinguish between the two groups, a receiver operating characteristic (ROC) curve was utilized. To investigate the connections between MTA and neuropsychological measures, a correlation analysis was performed. Results: AD patients exhibited notably reduced MMSE, MoCA, and GDS scores, as well as an increased MTA total scores, time spent on TMT-A, and TMT-B compared to LLD patients (p < 0.05). TMT-A and TMT-B both exhibited excellent discriminatory power between AD and LLD, achieving area under curve (AUC) values of 92.2 and 94.2%, respectively. In AD patients, there was a negative correlation between MMSE and MoCA scores and MTA scores, while in LLD patients, there was a positive correlation between time spent on TMT-A and GDS scores and MTA scores. Conclusion: AD patients experience more severe EFD and MTA than LLD patients. The differential diagnosis of AD and LLD can be aided by the useful tool known as TMT. It is important to acknowledge that TMT is capable of capturing only a fraction of the executive function, thus necessitating a cautious interpretation of research findings.

14.
Redox Biol ; 65: 102843, 2023 09.
Article in English | MEDLINE | ID: mdl-37573838

ABSTRACT

Methylglyoxal (MGO) is a highly reactive metabolite generated by glycolysis. Although abnormal accumulation of MGO has been reported in several autoimmune diseases such as multiple sclerosis and rheumatoid arthritis, the role of MGO in autoimmune diseases has not yet been fully investigated. In this study, we found that the intracellular MGO levels increased in activated immune cells, such as microglia and lymphocytes. Treatment with MGO inhibited inflammatory cell accumulation in the spinal cord and ameliorated the clinical symptoms in EAE mice. Further analysis indicated that MGO suppressed M1-polarization of microglia cells and diminished their inflammatory cytokine production. MGO also inhibited the ability of microglial cells to recruit and activate lymphocytes by decreasing chemokine secretion and expression of co-stimulatory molecules. Furthermore, MGO negatively regulated glycolysis by suppressing glucose transporter 1 expression. Mechanically, we found that MGO could activate nuclear factor erythroid 2-related factor 2 (NRF2) pathway and NRF2 could bind to the promoter of IκBζ gene and suppressed its transcription and subsequently pro-inflammatory cytokine production. In conclusion, our results showed that MGO acts as an immunosuppressive metabolite by activating the NRF2-IκBζ.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Microglia , Mice , Animals , Microglia/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pyruvaldehyde/metabolism , Magnesium Oxide/metabolism , Mice, Inbred C57BL , Cytokines/metabolism
15.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37398039

ABSTRACT

Apicomplexan parasites, including Toxoplasma gondii, encode many plant-like proteins, which play significant roles and present attractive targets for drug development. In this study, we have characterized the plant-like protein phosphatase PPKL, which is unique to the parasite and absent in its mammalian host. We have shown that its localization changes as the parasite divides. In non-dividing parasites, it is present in the cytoplasm, nucleus, and preconoidal region. As the parasite begins division, PPKL is enriched in the preconoidal region and the cortical cytoskeleton of the nascent parasites. Later in the division, PPKL is present in the basal complex ring. Conditional knockdown of PPKL showed that it is essential for parasite propagation. Moreover, parasites lacking PPKL exhibit uncoupling of division, with normal DNA duplication but severe defects in forming daughter parasites. While PPKL depletion does not impair the duplication of centrosomes, it affects the rigidity and arrangement of the cortical microtubules. Both Co-Immunoprecipitation and proximity labeling identified the kinase DYRK1 as a potential functional partner of PPKL. Complete knockout of DYRK1 phenocopies lack of PPKL, strongly suggesting a functional relationship between these two signaling proteins. Global phosphoproteomics analysis revealed a significant increase in phosphorylation of the microtubule-associated proteins SPM1 in PPKL-depleted parasites, suggesting PPKL regulates the cortical microtubules by mediating the phosphorylation state of SPM1. More importantly, the phosphorylation of cell cycle-associated kinase Crk1, a known regulator of daughter cell assembly, is altered in PPKL-depleted parasites. Thus, we propose that PPKL regulates daughter parasite development by influencing the Crk1-dependent signaling pathway.

16.
Front Psychiatry ; 14: 1224914, 2023.
Article in English | MEDLINE | ID: mdl-37502809

ABSTRACT

Objective: Suicidality is commonly observed in patients with depressive episodes, and electroconvulsive therapy (ECT) has been found to be effective in treating these patients. However, the role of ECT in suicidality remains unclear. This study used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the changes in brain function before and after ECT in depressed patients with suicidality. Methods: In total, 26 depressed patients with suicidality underwent rs-fMRI at baseline and after 8-12 sessions of ECT. In addition, 32 healthy controls (HCs) matched for age, gender, and educational level underwent rs-fMRI once. The amplitude of low-frequency fluctuations (ALFF), the fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo) were measured to evaluate whole brain function. Differences between the groups and time points (before and after ECT) were compared. Clinical symptoms were assessed using the 17-item Hamilton Depression Scale (HAMD-17) and Beck Scale for Suicide Ideation (BSSI). Results: At baseline, patients exhibited decreased ALFF in the right postcentral and precentral gyrus and decreased fALFF in the right supramarginal and postcentral gyrus, left superior frontal gyrus (SFG), as well as the superior and middle temporal gyrus compared to HCs. Patients also had lower ReHo in the left amygdala, anterior cingulate, and postcentral gyrus, and in the right thalamus, insula, and postcentral gyrus. They also exhibited higher ALFF in the bilateral temporal gyrus and insula as well as higher fALFF in the cerebellum. Following ECT, fALFF in the left SFG and orbital frontal cortex (OFC) significantly increased and was inversely correlated with the reduction of BSSI scores (r = -0.416, p = 0.048), whereas no correlation was found with changes in HAMD-17scores. Conclusion: Our findings suggest that the left SFG and OFC may play a key role in the mechanism of ECT for suicidality. The decrease of fALFF in the left SFG and OFC may represent a potential mechanism through which ECT effectively treats suicidality in depressed patients.

18.
CNS Neurosci Ther ; 29(12): 4139-4146, 2023 12.
Article in English | MEDLINE | ID: mdl-37458208

ABSTRACT

BACKGROUND: Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy is a novel autoimmune disease of central nervous system (CNS). It is unclear whether Epstein-Barr virus (EBV) is related to autoimmune GFAP astrocytopathy. OBJECTIVE: To describe the clinical, laboratory, and imaging characteristics of patients with autoimmune GFAP astrocytopathy. METHODS: The clinical, laboratory, and imaging findings of patients are presented. The levels of GFAP in CSF were detected by ELISA. T and B cell subsets in CSF were detected by flow cytometry. GFAP-IgG in serum and cerebrospinal fluid (CSF) were tested by cell-based assay (CBA) and tissue-based assay (TBA). RESULTS: All three patients had fever, cognitive dysfunction, limb weakness, and positive GFAP-IgG with EBV infection in CSF. Enteric glia cells may involve in this disease. Typical imaging findings include the gadolinium enhancement of linear perivascular radial perpendicular to the ventricle, meningeal enhancement (especially in midbrain interpeduncal fossa), longitudinally extensive lesions involving spindle cords, and more T2/Flair-hyperintense lesions in the periventricular white matter at late stage. The patients had poor response to antiviral treatment and strong response to steroid pulse therapy. CONCLUSION: EBV could induce CNS autoimmune response in autoimmune GFAP astrocytopathy. The detection of GFAP-IgG and EBV may facilitate the early diagnosis in these patients.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Astrocytes/metabolism , Autoantibodies , Contrast Media , Epstein-Barr Virus Infections/pathology , Gadolinium , Glial Fibrillary Acidic Protein , Herpesvirus 4, Human/metabolism , Immunoglobulin G
19.
MycoKeys ; 98: 19-35, 2023.
Article in English | MEDLINE | ID: mdl-37287767

ABSTRACT

The fungal genus Microcera consists of species mostly occurring as parasites of scale insects, but are also commonly isolated from soil or lichens. In the present study, we surveyed the diversity and assess the taxonomy of entomopathogenic fungi in Sichuan Province, China. Two new species of Microcera, viz. M.chrysomphaludis and M.pseudaulacaspidis, were isolated from scale insects colonising walnut (Juglansregia). Maximum Likelihood and Bayesian Inference analyses of ITS, LSU, tef1-α, rpb1, rpb2, acl1, act, tub2, cmdA and his3 sequence data provide evidence for the validity of the two species and their placement in Nectriaceae (Hypocreales). Microcerapseudaulacaspidis primarily differs from similar species by having more septate and smaller cylindrical macroconidia, as well as DNA sequence data. Meanwhile, Microcerachrysomphaludis has elliptical, one-septate ascospores with acute ends and cylindrical, slightly curved with 4-6 septate macroconidia up to 78 µm long. Morphological descriptions with illustrations of the novel species and DNA-based phylogeny generated from analyses of multigene dataset are also provided to better understand species relationships.

SELECTION OF CITATIONS
SEARCH DETAIL
...