Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Commun ; : 101001, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38863209

ABSTRACT

Nucleotide-binding site and leucine-rich repeat (NLR) proteins are activated by detecting pathogen effectors, which in turn trigger host defenses and cell death. Although many NLRs have been identified, the mechanisms responsible for NLR-triggered defense responses are still poorly understood. In this study, through a genome-wide association study approach, we identified a novel NLR gene, Blast Resistance Gene 8 (BRG8), which confers resistance to rice blast and bacterial blight diseases. BRG8 overexpression and complementation lines exhibit enhanced resistance to both pathogens. Subcellular localization assays showed that BRG8 is localized in both the cytoplasm and the nucleus. Additional evidence revealed that nuclear-localized BRG8 can enhance rice immunity without a hypersensitive response (HR)-like phenotype. We also demonstrated that the coiled-coil domain of BRG8 not only physically interacts with itself but also interacts with the KNOX Ⅱ protein HOMEOBOX ORYZA SATIVA59 (HOS59). Knockout mutants of HOS59 in the BRG8 background show enhanced resistance to Magnaporthe oryzae strain CH171 and Xoo strain CR4, similar to that of the BRG8 background. By contrast, overexpression of HOS59 in the BRG8 background will compromise the HR-like phenotype and resistance response. Further analysis revealed that HOS59 promotes the degradation of BRG8 via the 26S proteasome pathway. Collectively, our study highlights HOS59 as an NLR immune regulator that fine-tunes BRG8-mediated immune responses against pathogens, providing new insights into NLR associations and functions in plant immunity.

2.
Theor Appl Genet ; 137(7): 162, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884792

ABSTRACT

KEY MESSAGE: OsCOL5, an ortholog of Arabidopsis COL5, is involved in photoperiodic flowering and enhances rice yield through modulation of Ghd7 and Ehd2 and interactions with OsELF3-1 and OsELF3-2. Heading date, also known as flowering time, plays a crucial role in determining the adaptability and yield potential of rice (Oryza sativa L.). CONSTANS (CO)-like is one of the most critical flowering-associated gene families, members of which are evolutionarily conserved. Here, we report the molecular functional characterization of OsCOL5, an ortholog of Arabidopsis COL5, which is involved in photoperiodic flowering and influences rice yield. Structural analysis revealed that OsCOL5 is a typical member of CO-like family, containing two B-box domains and one CCT domain. Rice plants overexpressing OsCOL5 showed delayed heading and increases in plant height, main spike number, total grain number per plant, and yield per plant under both long-day (LD) and short-day (SD) conditions. Gene expression analysis indicated that OsCOL5 was primarily expressed in the leaves and stems with a diurnal rhythm expression pattern. RT-qPCR analysis of heading date genes showed that OsCOL5 suppressed flowering by up-regulating Ghd7 and down-regulating Ehd2, consequently reducing the expression of Ehd1, Hd3a, RFT1, OsMADS14, and OsMADS15. Yeast two-hybrid experiments showed direct interactions of OsCOL5 with OsELF3-1 and OsELF3-2. Further verification showed specific interactions between the zinc finger/B-box domain of OsCOL5 and the middle region of OsELF3-1 and OsELF3-2. Yeast one-hybrid assays revealed that OsCOL5 may bind to the CCACA motif. The results suggest that OsCOL5 functions as a floral repressor, playing a vital role in rice's photoperiodic flowering regulation. This gene shows potential in breeding programs aimed at improving rice yield by influencing the timing of flowering, which directly impacts crop productivity.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Oryza , Photoperiod , Plant Proteins , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/growth & development , Flowers/genetics , Plants, Genetically Modified/growth & development
3.
Front Physiol ; 15: 1399154, 2024.
Article in English | MEDLINE | ID: mdl-38706947

ABSTRACT

Introduction: The integrity of the erythrocyte membrane cytoskeletal network controls the morphology, specific surface area, material exchange, and state of erythrocytes in the blood circulation. The antioxidant properties of resveratrol have been reported, but studies on the effect of resveratrol on the hypoxia-induced mechanical properties of erythrocytes are rare. Methods: In this study, the effects of different concentrations of resveratrol on the protection of red blood cell mor-phology and changes in intracellular redox levels were examined to select an appropriate concentration for further study. The Young's modulus and surface roughness of the red blood cells and blood viscosity were measured via atomic force microsco-py and a blood rheometer, respectively. Flow cytometry, free hemoglobin levels, and membrane lipid peroxidation levels were used to characterize cell membrane damage in the presence and absence of resveratrol after hypoxia. The effects of oxida-tive stress on the erythrocyte membrane proteins band 3 and spectrin were further investigated by immunofluorescent label-ing and Western blotting. Results and discussion: Resveratrol changed the surface roughness and Young's modulus of the erythrocyte mem-brane, reduced the rate of eryptosis in erythrocytes after hypoxia, and stabilized the intracellular redox level. Further data showed that resveratrol protected the erythrocyte membrane proteins band 3 and spectrin. Moreover, resistance to band 3 pro-tein tyrosine phosphorylation and sulfhydryl oxidation can protect the stability of the erythrocyte membrane skeleton net-work, thereby protecting erythrocyte deformability under hypoxia. The results of the present study may provide new insights into the roles of resveratrol in the prevention of hypoxia and as an antioxidant.

4.
Brain Sci ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38790485

ABSTRACT

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. Functional magnetic resonance imaging (fMRI) can be used to measure the temporal correlation of blood-oxygen-level-dependent (BOLD) signals in the brain to assess the brain's intrinsic connectivity and capture dynamic changes in the brain. In this study, the hidden Markov model (HMM) and dynamic graph (DG) theory are used to study the spatial-temporal characteristics and dynamics of brain networks based on dynamic functional connectivity (DFC). By using HMM, we identified three typical brain states for ASD and healthy control (HC). Furthermore, we explored the correlation between HMM time-varying properties and clinical autism scale scores. Differences in brain topological characteristics and dynamics between ASD and HC were compared by DG analysis. The experimental results indicate that ASD is more inclined to enter a strongly connected HMM brain state, leading to the isolation of brain networks and alterations in the topological characteristics of brain networks, such as default mode network (DMN), ventral attention network (VAN), and visual network (VN). This work suggests that using different data-driven methods based on DFC to study brain network dynamics would have better information complementarity, which can provide a new direction for the extraction of neuro-biomarkers in the early diagnosis of ASD.

5.
J Colloid Interface Sci ; 669: 864-876, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38749225

ABSTRACT

Solar-driven photothermal conversion can produce clean water from dye wastewater while leaving the dye in the evaporation medium. Herein, a biomass-based composite hydrogel via down-fiber carbon (DFC) aerogel modified with chitosan-polyvinyl alcohol (CS-PVA) hydrogel was designed to address the aforementioned problem. The CS-PVA@DFC hydrogel integrated the capacity of simultaneous clean water production/dye adsorption during the day and continuous dye adsorption during the night. Furthermore, the modification of the CS-PVA hydrogel endowed the composite hydrogel with enhanced compression stress of 190.07 kPa (76.03 times that of DFC aerogel of 2.50 kPa) and impressive resilient recovery. Moreover, the CS-PVA@DFC hydrogel possessed solar light absorption of 99.56 % and strengthened water replenishment capacity due to the high porosity and CS-PVA hydrophilic network structure. The CS-PVA@DFC hydrogel demonstrated a stable, high evaporation rate of 2.34 kg·m-2·h-1 and simultaneous dye adsorption capacity of 70.39 % for treating methyl orange dye solution within 5 h. Additionally, the 24-h outdoor test showed that the CS-PVA@DFC hydrogel possessed excellent clean water production capacity during the daytime (reaching 4.17 kg·m-2·h-1 at 1:00p.m.) and continuous satisfactory dye adsorption capacity all day (89.68 %). These findings will inspire researchers seeking opportunities to improve the mechanical properties of aerogel and its application for treating wastewater, especially wastewater with harmful dyes.

6.
Int J Biochem Cell Biol ; 172: 106585, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734232

ABSTRACT

Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid ß-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid ß-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid ß-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid ß-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids ß-oxidation.


Subject(s)
Enoyl-CoA Hydratase , Hepatocytes , Lipid Metabolism , Liver , Mice, Inbred C57BL , Oxidation-Reduction , Peroxisomes , Tamoxifen , Animals , Tamoxifen/pharmacology , Mice , Lipid Metabolism/drug effects , Liver/metabolism , Liver/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Oxidation-Reduction/drug effects , Male , Peroxisomes/metabolism , Peroxisomes/drug effects , Enoyl-CoA Hydratase/metabolism , Enoyl-CoA Hydratase/genetics , Up-Regulation/drug effects , Diet, High-Fat/adverse effects , Female , Fatty Acids/metabolism
7.
Phys Med Biol ; 69(11)2024 May 20.
Article in English | MEDLINE | ID: mdl-38688288

ABSTRACT

Objective. Most deep neural network-based diffusion tensor imaging methods require the diffusion gradients' number and directions in the data to be reconstructed to match those in the training data. This work aims to develop and evaluate a novel dynamic-convolution-based method called FlexDTI for highly efficient diffusion tensor reconstruction with flexible diffusion encoding gradient scheme.Approach. FlexDTI was developed to achieve high-quality DTI parametric mapping with flexible number and directions of diffusion encoding gradients. The method used dynamic convolution kernels to embed diffusion gradient direction information into feature maps of the corresponding diffusion signal. Furthermore, it realized the generalization of a flexible number of diffusion gradient directions by setting the maximum number of input channels of the network. The network was trained and tested using datasets from the Human Connectome Project and local hospitals. Results from FlexDTI and other advanced tensor parameter estimation methods were compared.Main results. Compared to other methods, FlexDTI successfully achieves high-quality diffusion tensor-derived parameters even if the number and directions of diffusion encoding gradients change. It reduces normalized root mean squared error by about 50% on fractional anisotropy and 15% on mean diffusivity, compared with the state-of-the-art deep learning method with flexible diffusion encoding gradient scheme.Significance. FlexDTI can well learn diffusion gradient direction information to achieve generalized DTI reconstruction with flexible diffusion gradient scheme. Both flexibility and reconstruction quality can be taken into account in this network.


Subject(s)
Deep Learning , Diffusion Tensor Imaging , Image Processing, Computer-Assisted , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted/methods
8.
Anal Bioanal Chem ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358531

ABSTRACT

α-Glucosidase (α-Glu) is implicated in the progression and pathogenesis of type II diabetes (T2D). In this study, we developed a rapid colorimetric technique using platinum nanoparticles stabilized by chitosan (Ch-PtNPs) to detect α-Glu activity and its inhibitor. The Ch-PtNPs facilitate the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB) in the presence of dissolved O2. The catalytic hydrolysis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) by α-Glu produces ascorbic acid (AA), which reduces oxTMB to TMB, leading to the fading of the blue color. However, the presence of α-Glu inhibitors (AGIs) hinders the generation of AA, allowing Ch-PtNPs to re-oxidize colorless TMB back to blue oxTMB. This unique phenomenon enables the colorimetric detection of α-Glu activity and AGIs. The linear range for α-Glu was found to be 0.1-1.0 U mL-1 and the detection limit was 0.026 U mL-1. Additionally, the half-maximal inhibition value (IC50) for acarbose, an α-Glu inhibitor, was calculated to be 0.4769 mM. Excitingly, this sensing platform successfully detected α-Glu activity in human serum samples and effectively screened AGIs. These promising findings highlight the potential application of the proposed strategy in clinical diabetes diagnosis and drug discovery.

9.
Acad Radiol ; 31(6): 2488-2500, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38142175

ABSTRACT

RATIONALE AND OBJECTIVES: Stroke patients commonly face challenges during magnetic resonance imaging (MRI) examinations due to involuntary movements. This study aims to overcome these challenges by utilizing multiple overlapping-echo detachment (MOLED) quantitative technology. Through this technology, we also seek to detect microstructural changes of the normal-appearing corticospinal tract (NA-CST) in subacute-chronic stroke patients. MATERIALS AND METHODS: 79 patients underwent 3.0 T MRI scans, including routine scans and MOLED technique. A deep learning network was utilized for image reconstruction, and the accuracy, reliability, and resistance to motion of the MOLED technique were validated on phantoms and volunteers. Subsequently, we assessed motor dysfunction severity, ischemic lesion volume, T2 values of the bilateral NA-CST, and the T2 ratio (rT2) between the ipsilesional and contralesional NA-CST in patients. RESULTS: The MOLED technique showed high accuracy (P < 0.001) and excellent repeatability, with a mean coefficient of variation (CoV) of 1.11%. It provided reliable quantitative results even under head movement, with a mean difference (Meandiff)= 0.28% and a standard deviation difference (SDdiff)= 1.34%. Additionally, the T2 value of the ipsilesional NA-CST was significantly higher than contralesional side (P < 0.001), and a positive correlation was observed between rT2 and the severity of motor dysfunction (rs =0.575, P < 0.001). Furthermore, rT2 successfully predicted post-stroke motor impairment, with an area under the curve (AUC) was 0.883. CONCLUSION: The MOLED technique offers significant advantages for quantitatively imaging stroke patients with involuntary movements. Additionally, T2 mapping from MOLED can detect microstructural changes in the NA-CST, potentially aiding in monitoring stroke-induced motor impairment.


Subject(s)
Magnetic Resonance Imaging , Pyramidal Tracts , Stroke , Humans , Male , Female , Middle Aged , Pyramidal Tracts/diagnostic imaging , Stroke/diagnostic imaging , Stroke/complications , Magnetic Resonance Imaging/methods , Aged , Reproducibility of Results , Chronic Disease , Adult , Motion , Phantoms, Imaging , Deep Learning
10.
J Magn Reson Imaging ; 60(3): 964-976, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38112331

ABSTRACT

BACKGROUND: Meningioma subtype is crucial in treatment planning and prognosis delineation, for grade 1 meningiomas. T2 relaxometry could provide detailed microscopic information but is often limited by long scanning times. PURPOSE: To investigate the potential of T2 maps derived from multiple overlapping-echo detachment imaging (MOLED) for predicting meningioma subtypes and Ki-67 index, and to compare the diagnostic efficiency of two different region-of-interest (ROI) placements (whole-tumor and contrast-enhanced, respectively). STUDY TYPE: Prospective. PHANTOM/SUBJECTS: A phantom containing 11 tubes of MnCl2 at different concentrations, eight healthy volunteers, and 75 patients with grade 1 meningioma. FIELD STRENGTH/SEQUENCE: 3 T scanner. MOLED, T2-weighted spin-echo sequence, T2-dark-fluid sequence, and postcontrast T1-weighted gradient echo sequence. ASSESSMENT: Two ROIs were delineated: the whole-tumor area (ROI1) and contrast-enhanced area (ROI2). Histogram parameters were extracted from T2 maps. Meningioma subtypes and Ki-67 index were reviewed by a neuropathologist according to the 2021 classification criteria. STATISTICAL TESTS: Linear regression, Bland-Altman analysis, Pearson's correlation analysis, independent t test, Mann-Whitney U test, Kruskal-Wallis test with Bonferroni correction, and multivariate logistic regression analysis with the P-value significance level of 0.05. RESULTS: The MOLED T2 sequence demonstrated excellent accuracy for phantoms and volunteers (Meandiff = -1.29%, SDdiff = 1.25% and Meandiff = 0.36%, SDdiff = 2.70%, respectively), and good repeatability for volunteers (average coefficient of variance = 1.13%; intraclass correlation coefficient = 0.877). For both ROI1 and ROI2, T2 variance had the highest area under the curves (area under the ROC curve = 0.768 and 0.761, respectively) for meningioma subtyping. There was no significant difference between the two ROIs (P = 0.875). Significant correlations were observed between T2 parameters and Ki-67 index (r = 0.237-0.374). DATA CONCLUSION: MOLED T2 maps can effectively differentiate between meningothelial, fibrous, and transitional meningiomas. Moreover, T2 histogram parameters were significantly correlated with the Ki-67 index. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Magnetic Resonance Imaging , Meningeal Neoplasms , Meningioma , Phantoms, Imaging , Humans , Meningioma/diagnostic imaging , Female , Male , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Middle Aged , Magnetic Resonance Imaging/methods , Adult , Prospective Studies , Aged , Ki-67 Antigen/metabolism , Contrast Media , ROC Curve , Neoplasm Grading
SELECTION OF CITATIONS
SEARCH DETAIL