Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Water Res ; 261: 122044, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972237

ABSTRACT

Mercury (Hg) in runoff water poses significant ecological risks to aquatic ecosystems that can affect organisms. However, accurately identifying the sources and transformation processes of Hg in runoff water is challenging due to complex natural conditions. This study provides a comprehensive investigation of Hg dynamics in water from rainfall to runoff. The Hg isotope fractionation in water was characterized, which allows accurate quantification of Hg sources, transport, and transformations in rainfall-runoff processes. Δ200Hg and corrected Δ199Hg values can serve as reliable tracers for identifying Hg sources in the runoff water and the variation of δ202Hg can be explained by Hg transformation processes. During runoff migration processes, Hg from rainfall is rapidly absorbed on the land surface, while terrestrial Hg entering the water by the dissolution process becomes the primary component of dissolved mercury (DHg). Besides the dissolution and adsorption, microbial Hg(II) reduction and demethylation of MeHg were dominant processes for DHg in the runoff water that flows through the rice paddies, while photochemical Hg(II) reduction was the dominant process for DHg in the runoff water with low water exchange rates. Particulate Hg (PHg) in runoff water is dominantly originated by the terrestrial material and derived from the dissolution and adsorption process. Tracking sources and transformations of Hg in runoff water during the rainfall-runoff process provides a basis for studying Hg pollution in larger water bodies under complex environmental factors.

2.
Environ Int ; 189: 108792, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838487

ABSTRACT

Methylmercury (MeHg) exposure via rice consumption poses health risk to residents in mercury contaminated areas, such as the Wanshan Hg mining area (WSMA) in southwest China. Making use of the published data for WSMA, this study developed a database of rice MeHg concentrations for different villages in this region for the years of 2007, 2012, 2017, and 2019. The temporal changes of human MeHg exposure, health effects, and economic benefits under different ecological remediation measures were then assessed. Results from this study revealed a decrease of 3.88 µg/kg in rice MeHg concentration and a corresponding reduction of 0.039 µg/kg/d in probable daily intake of MeHg in 2019 compared to 2007 on regional average in the WSMA. Ecological remediation measures in this region resulted in the accumulated economic benefits of $38.7 million during 2007-2022, of which 84 % was from pollution source treatment and 16 % from planting structure adjustment. However, a flooding event in 2016 led to an economic loss of $2.43 million (0.38 % of regional total Gross Domestic Product). Planting structure adjustment generates the greatest economic benefits in the short term, whereas pollution source treatment maximizes economic benefits in the long term and prevents the perturbations from flooding event. These findings demonstrate the importance of ecological remediation measures in Hg polluted areas and provide the foundation for risk assessment of human MeHg exposure via rice consumption.


Subject(s)
Environmental Restoration and Remediation , Mercury , Methylmercury Compounds , Oryza , China , Environmental Restoration and Remediation/methods , Environmental Restoration and Remediation/economics , Mercury/analysis , Methylmercury Compounds/analysis , Humans , Mining , Environmental Pollution , Food Contamination/analysis , Environmental Monitoring , Environmental Exposure
3.
Ecotoxicol Environ Saf ; 262: 115316, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37541022

ABSTRACT

The study aimed to investigate heavy metals (HMs) concentrations in human hair based on fish consumption patterns in Qingdao, Xiamen, and Zhoushan. The (HMs) concentrations were determined using acid digestion and an inductively coupled plasma mass spectrometer (ICP-MS, NexION 300X, PerkinElmer). The associated health risks were investigated using risk assessment models described by the United States Environmental Protection Agency (USEPA). The order of fish HMs concentration in Qingdao was CdCrCu>Pb>Cr>As>Cd in all three study areas. The hair Zn concentration in 28 % of the studied population exceeded the safety standards. Overall, the hair HMs concentration was found to be high in middle-aged groups (19-45 and 45-59), and the hair HMs concentrations were high, especially in the case of females. A significant correlation was noticed between hair As (0.119; p < 0.05), Cr (0.231; p < 0.05),) and Cu (0.117; p < 0.05),) and fish consumption frequency. High Odd ratios (>2) were noticed for As, Cu and Zn in high fish-eating frequency. A significant non-carcinogenic risk was noticed in human Cr exposure (1.10E+00) in Xiamen, and the hazard index values indicated non-carcinogenic risk in Xiamen and Zhoushan. The carcinogenic risk for human As exposure (2.50E-05-7.09E-03) indicated a significant cancer risk.

4.
Water Res ; 241: 120150, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37269625

ABSTRACT

Anthropogenic activities and climate change have significantly increased mercury (Hg) levels in seawater. However, the processes and sources of Hg in differing marine compartments (e.g. estuary, marine continental shelf (MCS) or pelagic area) have not been well studied, which makes it difficult to understand Hg cycling in marine ecosystems. To address this issue, the total Hg (THg) concentration, methylmercury (MeHg) concentration and stable Hg isotopes were determined in seawater and fish samples collected from differing marine compartments of the South China Sea (SCS). The results showed that the estuarine seawater exhibited substantially higher THg and MeHg concentrations than those in the MCS and pelagic seawater. Significantly negative δ202Hg (-1.63‰ ± 0.42‰) in estuarine seawater compared with that in pelagic seawater (-0.58‰ ± 0.08‰) may suggest watershed input and domestic sewage discharge of Hg in the estuarine compartment. The Δ199Hg value in estuarine fish (0.39‰ ± 0.35‰) was obviously lower than that in MCS (1.10‰ ± 0.54‰) and pelagic fish (1.15‰ ± 0.46‰), which showed that relatively little MeHg photodegradation occurred in the estuarine compartment. The Hg isotope binary mixing model based on Δ200Hg revealed that approximately 74% MeHg in pelagic fish is derived from atmospheric Hg(II) deposition, and over 60% MeHg in MCS fish is derived from sediments. MeHg sources for estuarine fish may be highly complex (e.g. sediment or riverine/atmospheric input) and further investigations are warranted to clarify the contribution of each source. Our study showed that Hg stable isotopes in seawater and marine fish can be used to identify the processes and sources of Hg in different marine compartments. This finding is of great relevance to the development of marine Hg food web models and the management of Hg in fish.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Mercury/analysis , Mercury Isotopes/analysis , Mercury Isotopes/metabolism , Food Chain , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring , Seawater , Fishes
5.
Environ Pollut ; 328: 121604, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37061018

ABSTRACT

The current study investigated the concentration of heavy metals (HMs) in human hair associated with fish and rice consumption in Wuhan City, central China. The mean values of As in 8/10 fish species exceeded the food safety standard of 0.015 mg/kg. The mean values (mg/kg) of HMs in rice followed a descending order of Zn (13.7)> Cu (1.9)>Cr (0.51)>As (0.11) >Cd (0.08) >Pb (0.04). The ascending order of HMs for male hair was Cd < As < Cr < Pb < Cu < Zn, while As < Cd < Cr < Pb < Cu < Zn for female. 30% of hair Cr and 22% of hair Zn contents exceeded the recommended values. The middle age (19-44) and adult (45-59) groups were the most vulnerable group, as the concentration for most elements was high in these age groups. A significant correlation was found between fish-eating frequency and hair Zn (r = 0.213; p < 0.05), and As (r = 0.204; p < 0.05). High odd ratios were found in a population with high fish-eating frequency, especially for Pb (7.19), As (3.1), Zn (3.83), and Cd (3.7). A significant non-carcinogenic risk was associated with Cr exposure through consuming herbivores, filter feeders, and omnivorous fish. The cancer risk values of Cd exposure (1.54E-04) via rice consumption and As exposure (1.25E-04) via consumption of omnivores fish indicate precautionary measures.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Adult , Animals , Humans , Male , Female , Cadmium , Lead , Urbanization , Environmental Monitoring , Metals, Heavy/analysis , China , Risk Assessment , Hair/chemistry , Soil Pollutants/analysis , Soil
6.
Environ Int ; 174: 107891, 2023 04.
Article in English | MEDLINE | ID: mdl-36963155

ABSTRACT

Anthropogenic mercury (Hg) emissions have increased significantly since the Industrial Revolution, resulting in severe health impacts to humans. The consumptions of fish and rice were primary human methylmercury (MeHg) exposure pathways in Asia. However, the lifecycle from anthropogenic Hg emissions to human MeHg exposure is not fully understood. In this study, a recently developed approach, termed MeHg Compound-Specific Isotope Analysis (CSIA), was employed to track lifecycle of Hg in four typical Hg-emission areas. Distinct Δ199Hg of MeHg and inorganic Hg (IHg) were observed among rice, fish and hair. The Δ199Hg of MeHg averaged at 0.07 ± 0.15 ‰, 0.80 ± 0.55 ‰ and 0.43 ± 0.29 ‰ in rice, fish and hair, respectively, while those of IHg averaged at - 0.08 ± 0.24 ‰, 0.85 ± 0.43 ‰ and - 0.28 ± 0.68 ‰. In paddy ecosystem, Δ199Hg of MeHg in rice showed slightly positive shifts (∼0.2 ‰) from those of IHg, and comparable Δ199Hg of IHg between rice grain and raw/processed materials (coal, Hg ore, gold ore and sphalerite) were observed. Simultaneously, it was proved that IHg in fish muscle was partially derived from in vivo demethylation of MeHg. By a binary model, we estimated the relative contributions of rice consumption to human MeHg exposure to be 84 ± 14 %, 58 ± 26 %, 52 ± 20 % and 34 ± 15 % on average in Hg mining area, gold mining area, zinc smelting area and coal-fired power plant area, respectively, and positive shifts of δ202HgMeHg from fish/rice to human hair occurred during human metabolic processes. Therefore, the CSIA approach can be an effective tool for tracking Hg biogeochemical cycle and human exposure, from which new scientific knowledge can be generated to support Hg pollution control policies and to protect human health.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Animals , Humans , Mercury/analysis , Ecosystem , Environmental Monitoring , Methylmercury Compounds/analysis , Isotopes/analysis , Oryza/metabolism , Fishes/metabolism , Coal/analysis
7.
Br J Cancer ; 128(11): 2126-2139, 2023 06.
Article in English | MEDLINE | ID: mdl-36977825

ABSTRACT

BACKGROUND: Enhancing the response rate of immunotherapy will aid in the success of cancer treatment. Here, we aimed to explore the combined effect of immunogenic radiotherapy with anti-PD-L1 treatment in immunotherapy-resistant HNSCC mouse models. METHODS: The SCC7 and 4MOSC2 cell lines were irradiated in vitro. SCC7-bearing mice were treated with hypofractionated or single-dose radiotherapy followed by anti-PD-L1 therapy. The myeloid-derived suppressive cells (MDSCs) were depleted using an anti-Gr-1 antibody. Human samples were collected to evaluate the immune cell populations and ICD markers. RESULTS: Irradiation increased the release of immunogenic cell death (ICD) markers (calreticulin, HMGB1 and ATP) in SCC7 and 4MOSC2 in a dose-dependent manner. The supernatant from irradiated cells upregulated the expression of PD-L1 in MDSCs. Mice treated with hypofractionated but not single-dose radiotherapy were resistant to tumour rechallenge by triggering ICD, when combined with anti-PD-L1 treatment. The therapeutic efficacy of combination treatment partially relies on MDSCs. The high expression of ICD markers was associated with activation of adaptive immune responses and a positive prognosis in HNSCC patients. CONCLUSION: These results present a translatable method to substantially improve the antitumor immune response by combining PD-L1 blockade with immunogenic hypofractionated radiotherapy in HNSCC.


Subject(s)
Head and Neck Neoplasms , Immune Checkpoint Inhibitors , Myeloid-Derived Suppressor Cells , Squamous Cell Carcinoma of Head and Neck , Animals , Humans , Mice , B7-H1 Antigen/metabolism , Head and Neck Neoplasms/drug therapy , Immunotherapy/methods , Myeloid-Derived Suppressor Cells/metabolism , Prognosis , Squamous Cell Carcinoma of Head and Neck/drug therapy , Immune Checkpoint Inhibitors/therapeutic use
8.
Article in English | MEDLINE | ID: mdl-36673722

ABSTRACT

Farmland heavy metal pollution-caused by both human activity and natural processes-is a major global issue. In the current study, principal component analysis (PCA), cluster analysis (CA), rare earth elements and yttrium (REY) analysis, and isotope fingerprinting were combined to identify sources of heavy metal pollution in soil from different farmland types in the upper-middle area of the Yangtze River. The concentrations of Zn and Cu were found to be higher in the vegetable base and tea plantation soil compared with their concentrations in the orangery soil. On the other hand, greater accumulation of Cd and Pb was observed in the orangery soil versus the vegetable base and tea plantation soils. Influenced by the type of bedrock, REY was significantly enriched in the orangery soil and depleted in the vegetable base soil, as compared with the tea plantation soil. The Pb isotopic compositions of the tea plantation (1.173-1.193 for 206Pb/207Pb and 2.070-2.110 for 208Pb/206Pb) and vegetable base (1.181-1.217 for 206Pb/207Pb and 2.052-2.116 for 208Pb/206Pb) soils were comparable to those of coal combustion soil. The compositions of 206Pb/207Pb (1.149-1.170) and 208Pb/206Pb (2.121-2.143) in the orangery soil fell between those observed in soils obtained from coal combustion and ore smelting sites. Using the IsoSource model, the atmospheric Pb contributions of the vegetable base, tea plantation, and orangery soils were calculated to be 66.6%, 90.1%, and 82.0%, respectively, and the bedrock contributions of Pb were calculated to be 33.3%, 9.90%, and 18.1%, respectively. Based on the PCA, CA, and REY results, as well as the Pb isotope model, it appears that heavy metals in the orangery soil may be derived from atmospheric deposition and bedrock weathering, while heavy metals in the vegetable base and tea plantation soils may be derived from mining and the use of fertilizer.


Subject(s)
Metals, Heavy , Metals, Rare Earth , Soil Pollutants , Humans , Soil , Farms , Yttrium/analysis , Lead/analysis , Rivers , Environmental Monitoring/methods , Soil Pollutants/analysis , Metals, Heavy/analysis , Metals, Rare Earth/analysis , Vegetables , Isotopes/analysis , Coal/analysis , Tea , China , Risk Assessment
9.
Article in English | MEDLINE | ID: mdl-36673881

ABSTRACT

The development of Earth's critical zone concept has strengthened the capacity of environmental science to better solve real-world problems, such as metal(loid) pollution in the remote alpine areas. The selected metal(loid) contents in soil, moss, and water were investigated to explore the geochemical distribution patterns, pollution levels, and potential ecological risks of metal(loid)s in the Shennongjia (SNJ) alpine critical zone of central China. The distribution of metal(loid)s in different spheres had horizontal and vertical differences. The maximum V, Ni, and Zn contents in water occurred at the sampling sites close to the Hohhot-Beihai Highway, while Dajiuhu Lake had the maximum Cu, Cr, and Mn contents. Most metal(loid) contents in the mosses showed an increasing trend from the northeast low-altitude area to the southwest high-altitude area, while As, Co, V, Ni, Cr, and Zn in soil decreased significantly with altitude and were enriched near the service areas and the highway. The contents of water Co and Ni, soil Cu and Mn, and moss As were evenly distributed and showed no significant differences with altitude. The enrichment factors, pollution index, Nemerow integrated pollution index, geo-accumulation index, heavy metal pollution index, contamination factor, and potential ecological risk index (PERI) were used to assess the pollution levels and ecological risks of SNJ soil, water, and atmosphere. The overall pollution levels of SNJ soil, moss, and water were low to moderate, low, and low, respectively. Soil V, Cu, Zn, moss As, Co, V, and Dajiuhu Lake water Mn were the main pollution factors. The ecological risks in the three spheres of the SNJ alpine critical zone were low to moderate, and As, Co, and V were the most critical potential ecological risk factors. The metal(loid)s pollution problem caused by the continuous development of tourism needs further attention.


Subject(s)
Metalloids , Metals, Heavy , Soil Pollutants , Environmental Monitoring , Soil Pollutants/analysis , Metals, Heavy/analysis , China , Soil/chemistry , Risk Assessment , Water
10.
Chem Commun (Camb) ; 59(7): 932-935, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36597866

ABSTRACT

Glutathione-responsive nanogels (CDNPs) crosslinked via crosslinker DBHD with the BRAF inhibitor dabrafenib and the COX2 inhibitor celecoxib were fabricated. The CDNPs can effectively induce tumor cell pyroptosis to activate robust antitumor immunity. Additionally, CDNPs combined with αPD-1 antibody greatly inhibited tumor growth in a melanoma mouse model with a prolonged survival time.


Subject(s)
Cyclooxygenase 2 Inhibitors , Melanoma , Mice , Animals , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/therapeutic use , Nanogels , Pyroptosis , Melanoma/drug therapy , Protein Kinase Inhibitors , Bioengineering , Immunotherapy , Oximes , Mutation
11.
Food Chem ; 401: 134202, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36122489

ABSTRACT

Human exposure to monomethylmercury (MMHg) through seafood consumption is a global concern. This study investigates the potential sources and processes of MMHg in seafood of coastal and freshwater areas through combing of δ13C, δ15N, and specific Hg (including MMHg and inorganic Hg (IHg)) isotopes. The results showed that δ13C and δ15N values exhibit different patterns in coastal and freshwater species. Δ199HgMMHg/δ202HgMMHg values suggested that coastal and freshwater seafood undergo similar aqueous MMHg photodegradation processes. The Δ199HgMMHg values could distinguish that, coastal fish absorb MMHg from water column whereas coastal shellfish absorb MMHg mainly from sediment. The positive values of Δ199HgIHg in seafood could reflect in vivo MMHg demethylation and IHg reabsorption. Positive correlation between δ15N and Δ199HgIHg indicated that aquatic organisms in various trophic levels may have different MMHg demethylation efficiency. We proposed that combining of multiple isotopes can provide overall profiles on aquatic MMHg biogeochemical cycle and bioaccumulation.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Humans , Bioaccumulation , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Mercury/analysis , Fishes/metabolism , Lakes/chemistry , Seafood , Isotopes , Water/metabolism , Food Chain
12.
Acta Biomater ; 154: 497-509, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36367476

ABSTRACT

As the prominent feature of the development and progression of head and neck squamous cell carcinoma (HNSCC) is immunosuppression, therapeutic strategies to restore antitumor immunity have shown promising prospects. The efficacy of chemotherapy, a mainstay in HNSCC treatment, is exemplified by cytotoxic effects as well as immunostimulation, whereas compensatory activation of prosurvival signals in tumor tissues may compromise its efficacy. Aberrant activation of Src is present in many human malignancies including HNSCC, and is implicated in chemotherapy resistance. In this regard, tumor-microenvironment-responsive prodrug nanomicelles (PDO NPs) are rationally designed to combine chemotherapy (oxaliplatin, OXA) and Src inhibitors (dasatinib, DAS) for HNSCC therapy. PDO NPs are constructed by chemically modifying small-molecule prodrugs (DAS-OXA) loaded in block copolymer iPDPA with pH-triggered transforming capability. PDO NPs can controllably release drugs in response to tumor acidity, thus increasing tumor accumulation and therapeutic efficacy. Moreover, PDO NPs can elicit pyroptosis of tumor cells and induce T-cell-mediated antitumor immunity in murine HNSCC models. In summary, nanoprodrugs integrating Src inhibitors enhance the immunological effects of chemotherapy and provide insight into promising approaches for augmenting immunochemotherapy for HNSCC. STATEMENT OF SIGNIFICANCE: In this study, pH-responsive nanomicelles (PDO NPs) were constructed by loading a small molecular prodrug synthesized by the Src inhibitor dasatinib and the chemotherapy drug oxaliplatin into the amphiphilic block copolymer iPDPA to improve the immunological effects of chemotherapy for HNSCC. These nanomicelles can efficiently accumulate in tumor cells and achieve pH-responsive drug release. The PDO NPs can induce pyroptosis of tumor cells and potentiate antitumor immunity in subcutaneous and syngenetic orthotopic HNSCC mouse models, which may present a promising strategy to enhance immunochemotherapy for HNSCC.


Subject(s)
Antineoplastic Agents , Head and Neck Neoplasms , Prodrugs , Mice , Humans , Animals , Head and Neck Neoplasms/drug therapy , Squamous Cell Carcinoma of Head and Neck/drug therapy , Dasatinib/pharmacology , Dasatinib/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Oxaliplatin , Prodrugs/pharmacology , Prodrugs/therapeutic use , Hydrogen-Ion Concentration , Cell Line, Tumor , Tumor Microenvironment
13.
Article in English | MEDLINE | ID: mdl-36231549

ABSTRACT

Seawater and fish were collected from nearshore (Pearl River Estuarine, PRE) and offshore (middle of the South China Sea, MSCS) regions of the South China Sea (SCS) to determine the heavy metals (HMs) pollution status and biomagnification characteristics. Results show that Cu in PRE seawater was moderately contaminated. Overall pollution risk of seawater were PRE (3.32) > MSCS (0.56), whereas that of fish was MSCS (0.88) > PRE (0.42). δ13C and δ15N exhibited distinguished characteristics for PRE and MSCS fish, indicating the diverse energy sources, nitrogen sources, and food web structures of nearshore and offshore regions. Cu was biomagnified whereas Pb and Ni were biodiluted in offshore fish. Hg presented significant biomagnification in both of nearshore and offshore fish. Finally, the target hazard quotient of Hg (1.41) in MSCS fish exceeded the standard limit, which was posed by high Hg concentration and consumption rate of offshore fish.


Subject(s)
Mercury , Metals, Heavy , Water Pollutants, Chemical , Animals , Bioaccumulation , China , Environmental Monitoring , Fishes , Lead , Metals, Heavy/analysis , Nitrogen , Risk Assessment , Water Pollutants, Chemical/analysis
14.
Int Immunopharmacol ; 111: 109113, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35944462

ABSTRACT

Epigenetic alterations, including DNA methylation, play crucial roles in the tumor. Epigenetic drugs like DNA methyltransferase-1 (DNMT1) inhibitors have been exhibited positive effects in cancer treatment. However, the role of DNMT1 in oral squamous cell carcinoma (OSCC) is less clearly described. What is more, the effects on the immune microenvironment of DNMT1 have not become appreciated. In this research, we determine the expression levels of DNMT1 and the association of prognosis by analyzing human OSCC tissue microarrays. Two different types of immunocompetent mouse OSCC models were established to explore the effects of DNMT1 inhibitor on the tumor microenvironment(TME). We identified DNMT1 was highly expressed both in human and mouse OSCC tissues. The expression levels of DNMT1 was also correlated with the immunosuppressive molecules and tumor-promoter such as VISTA, PD-L1, B7-H4, and PAK2, indicating a worse prognosis. Of particular concern is that DNMT1 inhibition improved TME and delayed tumor growth by decreasing myeloid-derived suppressor cells (MDSCs) and increasing tumor-infiltrating T cells. Our data suggests that DNMT1 play a key role in OSCC and has a possible immunotherapeutic marker treatment.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Animals , Carcinoma, Squamous Cell/genetics , DNA Methylation , Head and Neck Neoplasms/genetics , Humans , Mice , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Microenvironment
15.
Bull Environ Contam Toxicol ; 109(3): 534-541, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35876846

ABSTRACT

This study aims to investigate methylmercury (MeHg) demethylation processes in human gut. Here, we determined the compositions and MeHg demethylation rates of gut microbiota in residents from different Hg exposure levels (Wanshan (WS) town and Yangtou (YT) town) and different Hg exposure sources (Zhuchang (ZC) town and YT town) regions. MeHg and inorganic Hg exposure levels in residents of WS town were significantly higher than those of YT and ZC town. Desulfovibrio and Methanogens, which related to Hg methylation/demethylation, showed significantly higher abundance in WS and ZC, comparing with YT. In vitro experiments demonstrated that human intestinal microbiota could degrade MeHg directly. Besides, gut microbiota in WS and ZC exhibited significantly higher demethylation rates than YT, suggesting Desulfovibrio and Methanogens may play important roles in intestinal MeHg demethylation. This study highlights Hg exposure levels and sources may affect demethylation efficiency of gut microbiota, which provides new insights for MeHg demethylation processes in human body.


Subject(s)
Gastrointestinal Microbiome , Mercury , Methylmercury Compounds , Demethylation , Humans , Mercury/metabolism , Mercury/toxicity , Methylation , Methylmercury Compounds/metabolism , Methylmercury Compounds/toxicity
16.
Acta Pharm Sin B ; 12(7): 3139-3155, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35865097

ABSTRACT

Aberrant activation of oncogenic signaling pathways in tumors can promote resistance to the antitumor immune response. However, single blockade of these pathways is usually ineffective because of the complex crosstalk and feedback among oncogenic signaling pathways. The enhanced toxicity of free small molecule inhibitor combinations is considered an insurmountable barrier to their clinical applications. To circumvent this issue, we rationally designed an effective tumor microenvironment-activatable prodrug nanomicelle (PNM) for cancer therapy. PNM was engineered by integrating the PI3K/mTOR inhibitor PF-04691502 (PF) and the broad spectrum CDK inhibitor flavopiridol (Flav) into a single nanoplatform, which showed tumor-specific accumulation, activation and deep penetration in response to the high glutathione (GSH) tumoral microenvironment. The codelivery of PF and Flav could trigger gasdermin E (GSDME)-based immunogenic pyroptosis of tumor cells to elicit a robust antitumor immune response. Furthermore, the combination of PNM-induced immunogenic pyroptosis with anti-programmed cell death-1 (αPD-1) immunotherapy further boosted the antitumor effect and prolonged the survival time of mice. Collectively, these results indicated that the pyroptosis-induced nanoplatform codelivery of PI3K/mTOR and CDK inhibitors can reprogram the immunosuppressive tumor microenvironment and efficiently improve checkpoint blockade cancer immunotherapy.

17.
Acta Pharm Sin B ; 12(1): 451-466, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35127398

ABSTRACT

The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.

18.
Chemosphere ; 296: 134043, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35189201

ABSTRACT

Pine needles are reliable passive bio-samplers that can be used to monitor atmospheric pollution levels. This study applied Pb isotope and multivariate statistical analyses to pine needles to examine the characteristics, sources, and ecological risks of atmospheric heavy metal pollution in the cities of the middle reaches of the Yangtze River, China. The heavy metal concentrations were higher than those measured in pine needles elsewhere in the world. They were higher in the metropolitan city (Wuhan) than in the medium-sized city (Yichang) and lowest in the natural setting (Shennongjia Forestry District), which is consistent with trends in urbanization and industrialization. Principal component analysis grouped the metals into three main sets associated with industrial activities and traffic sources. The Pb composition determined the main anthropogenic Pb sources were vehicle exhaust and industrial activities related to the lead-zinc ore, only a few of which were coal combustion. Three risk assessment indexes (pollution load index, ecological risk index, and bioconcentration factor) suggest that atmospheric heavy metals in the study area pose moderate environmental and health risks.


Subject(s)
Metals, Heavy , Pinus , Soil Pollutants , China , Cities , Environmental Monitoring , Environmental Pollution/analysis , Lead/analysis , Metals, Heavy/analysis , Risk Assessment , Soil Pollutants/analysis
19.
Adv Sci (Weinh) ; 8(24): e2101840, 2021 12.
Article in English | MEDLINE | ID: mdl-34705343

ABSTRACT

The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage-associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor-specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual-responsive nano-prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual-responsive system facilitates the nano-prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo-photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo-photodynamic therapy and control-release PTX synergistically induce gasdermin E (GSDME)-related pyroptosis. It is speculated that inspired chemo-photodynamic therapy using the presented nano-prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/therapy , Immunotherapy/methods , Photochemotherapy/methods , Prodrugs/therapeutic use , Pyroptosis/drug effects , Tumor Microenvironment/drug effects , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Drug Liberation , Female , Glutathione/therapeutic use , Mice , Mice, Inbred BALB C , Paclitaxel/therapeutic use , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/therapeutic use
20.
Environ Sci Technol ; 55(18): 12493-12503, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34468125

ABSTRACT

Monomethylmercury (MMHg) exposure can induce adverse neurodevelopmental effects in humans and is a global environmental health concern. Human exposure to MMHg occurs predominately through the consumption of fishery foods and rice in Asia, but it is challenging to quantify these two exposure sources. Here, we innovatively utilized MMHg compound-specific stable isotope analyses (MMHg-CSIA) of the hair to quantify the human MMHg sources in coastal and inland areas, where fishery foods and rice are routinely consumed. Our data showed that the fishery foods and rice end members had distinct Δ199HgMMHg values in both coastal and inland areas. The Δ199HgMMHg values of the human hair were comparable to those of fishery foods but not those of rice. Positive shifts in the δ202HgMMHg values of the hair from diet were observed in the study areas. Additionally, significant differences in δ202Hg versus Δ199Hg were detected between MMHg and inorganic Hg (IHg) in the human hair but not in fishery foods and rice. A binary mixing model was developed to estimate the human MMHg exposures from fishery foods and rice using Δ199HgMMHg data. The model results suggested that human MMHg exposures were dominated (>80%) by fishery food consumption and were less affected by rice consumption in both the coastal and inland areas. This study demonstrated that the MMHg-CSIA method can provide unique information for tracking human MMHg exposure sources by excluding the deviations from dietary surveys, individual MMHg absorption/demethylation efficiencies, and the confounding effects of IHg.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Environmental Monitoring , Hair/chemistry , Humans , Isotopes , Mercury/analysis
SELECTION OF CITATIONS
SEARCH DETAIL