Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 141
1.
J Biopharm Stat ; : 1-9, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38562017

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

2.
Gastrointest Endosc ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38583544

BACKGROUND AND AIMS: Although commonly used for treating complications of chronic pancreatitis (CP), data on the frequency and factors associated with the use of pancreatic endotherapy (PET) are limited. Our aim was to define the utilization and factors predictive for receiving PET in a well-characterized CP cohort. METHODS: This is a cross-sectional analysis of data from PROCEED, a multicenter US cohort study of CP. PET modalities primarily consisted of ERCP. A treatment course was defined as the number of sessions performed for a specific indication. A repeat course was defined as PET >1 year after completion of the last course. Multivariable logistic regression identified predictive factors for receiving PET, and proportional rates model assessed risk factors for repeat PET. RESULTS: Of a total of 681 subjects, 238 (34.9%) received PET. Factors associated with receiving PET included female sex (OR: 1.26, 95% CI: 1.03-1.53), lower education (OR: 1.30, 95% CI: 1.04-1.62), income ≤ $50,000 per year (OR: 1.35, 95% CI: 1.07-1.71) and prior acute pancreatitis (AP) (OR: 1.74, 95% CI: 1.31, 2.32). 103/238 subjects (43.3%) underwent repeat PET at a median duration of 2 years with 23.1% receiving 2 courses, 9.7% receiving 3 courses, and 10.4% receiving 4+ courses. CONCLUSIONS: Nearly half of patients with CP who undergo PET received one or more repeat courses within 2-3 years. In addition to a prior history of AP, demographic and socioeconomic factors were associated with receiving PET.

3.
Cancer Commun (Lond) ; 44(5): 554-575, 2024 May.
Article En | MEDLINE | ID: mdl-38507505

BACKGROUND: Immune checkpoint blockade (ICB) has revolutionized the treatment of various cancer types. Despite significant preclinical advancements in understanding mechanisms, identifying the molecular basis and predictive biomarkers for clinical ICB responses remains challenging. Recent evidence, both preclinical and clinical, underscores the pivotal role of the extracellular matrix (ECM) in modulating immune cell infiltration and behaviors. This study aimed to create an innovative classifier that leverages ECM characteristics to enhance the effectiveness of ICB therapy. METHODS: We analyzed transcriptomic collagen activity and immune signatures in 649 patients with cancer undergoing ICB therapy. This analysis led to the identification of three distinct immuno-collagenic subtypes predictive of ICB responses. We validated these subtypes using the transcriptome data from 9,363 cancer patients from The Cancer Genome Atlas (TCGA) dataset and 1,084 in-house samples. Additionally, novel therapeutic targets were identified based on these established immuno-collagenic subtypes. RESULTS: Our categorization divided tumors into three subtypes: "soft & hot" (low collagen activity and high immune infiltration), "armored & cold" (high collagen activity and low immune infiltration), and "quiescent" (low collagen activity and immune infiltration). Notably, "soft & hot" tumors exhibited the most robust response to ICB therapy across various cancer types. Mechanistically, inhibiting collagen augmented the response to ICB in preclinical models. Furthermore, these subtypes demonstrated associations with immune activity and prognostic predictive potential across multiple cancer types. Additionally, an unbiased approach identified B7 homolog 3 (B7-H3), an available drug target, as strongly expressed in "armored & cold" tumors, relating with poor prognosis. CONCLUSION: This study introduces histopathology-based universal immuno-collagenic subtypes capable of predicting ICB responses across diverse cancer types. These findings offer insights that could contribute to tailoring personalized immunotherapeutic strategies for patients with cancer.


Collagen , Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/genetics , Collagen/metabolism , Tumor Microenvironment/immunology , Animals , Biomarkers, Tumor , Extracellular Matrix/metabolism , Mice , Transcriptome , Female , Prognosis
4.
Lab Med ; 2024 Mar 17.
Article En | MEDLINE | ID: mdl-38493322

Lupus nephritis (LN) is one of the most severe clinical manifestations of systemic lupus erythematosus (SLE). Notably, the clinical manifestations of LN are not always consistent with the histopathological findings. Therefore, the diagnosis and activity monitoring of this disease are challenging and largely depend on invasive renal biopsy. Renal biopsy has side effects and is associated with the risk of bleeding and infection. There is a growing interest in the development of novel noninvasive biomarkers for LN. In this review, we summarize most of the LN biomarkers discovered so far by correlating current knowledge with future perspectives. These biomarkers fundamentally reflect the biological processes of kidney damage and repair during disease. Furthermore, this review highlights the role of urinary cell phenotype detection in the diagnosis, monitoring, and treatment of LN and summarizes the limitations and countermeasures of this test.

5.
Theranostics ; 14(4): 1500-1516, 2024.
Article En | MEDLINE | ID: mdl-38389841

Rationale: Angiogenesis expedites tissue impairment in many diseases, including age-related macular degeneration (AMD), a leading cause of irreversible blindness in elderly. A substantial proportion of neovascular AMD patients, characterized by aberrant choroidal neovascularization (CNV), exhibit poor responses or adverse reactions to anti-VEGF therapy. Herein, we aimed to unveil the function of newly identified transfer RNA-derived small RNA, tRF-Glu-CTC, in the pathology of CNV and determine its potential in inhibiting angiogenesis. Methods: Small non-coding RNA sequencing and quantitative polymerase chain reaction were conducted to detect expression pattern of tRF-Glu-CTC in CNV development. Immunofluorescence staining, fundus fluorescein angiography and ex vivo choroidal sprouting assays were employed for the evaluation of tRF-Glu-CTC's function in CNV development. The role of tRF-Glu-CTC in endothelial cells were determined by in vitro endothelial cell proliferation, migration and tube formation assays. Transcriptome sequencing, dual-luciferase reporter assay and in vitro experiments were conducted to investigate downstream mechanism of tRF-Glu-CTC mediated pathology. Results: tRF-Glu-CTC exhibited substantial up-regulation in AMD patients, laser-induced CNV model, and endothelial cells under hypoxia condition, which is a hallmark of CNV. Inhibiting tRF-Glu-CTC reduced angiogenesis and hypoxia stress in the neovascular region without neuroretina toxicity in laser-induced CNV model, showing an anti-angiogenic effect comparable to bevacizumab, while overexpression of tRF-Glu-CTC significantly augmented CNV. Mechanically, under hypoxia condition, angiogenin was involved in the production of tRF-Glu-CTC, which in turn triggered endothelial cell tubulogenesis, migration and promoted the secretion of inflammatory factors via the suppression of vasohibin 1 (VASH1). When downregulating VASH1 expression, the inhibition of tRF-Glu-CTC showed minimal suppression on angiogenesis. Conclusions: This study demonstrated the important role of tRF-Glu-CTC in the progression of angiogenesis. Targeting of tRF-Glu-CTC may be an alternative to current anti-VEGF therapy for CNV in AMD and other conditions with angiogenesis.


Choroidal Neovascularization , Wet Macular Degeneration , Humans , Aged , Angiogenesis Inhibitors/pharmacology , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Visual Acuity , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/genetics , Choroidal Neovascularization/drug therapy , Hypoxia/metabolism , Cell Cycle Proteins/metabolism
6.
Nat Commun ; 14(1): 7610, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37993438

Metabolic reprogramming in malignant cells is a hallmark of cancer that relies on augmented glycolytic metabolism to support their growth, invasion, and metastasis. However, the impact of global adipose metabolism on tumor growth and the drug development by targeting adipose metabolism remain largely unexplored. Here we show that a therapeutic paradigm of drugs is effective for treating various cancer types by browning adipose tissues. Mirabegron, a clinically available drug for overactive bladders, displays potent anticancer effects in various animal cancer models, including untreatable cancers such as pancreatic ductal adenocarcinoma and hepatocellular carcinoma, via the browning of adipose tissues. Genetic deletion of the uncoupling protein 1, a key thermogenic protein in adipose tissues, ablates the anticancer effect. Similarly, the removal of brown adipose tissue, which is responsible for non-shivering thermogenesis, attenuates the anticancer activity of mirabegron. These findings demonstrate that mirabegron represents a paradigm of anticancer drugs with a distinct mechanism for the effective treatment of multiple cancers.


Adipose Tissue, White , Neoplasms , Animals , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism , Acetanilides/pharmacology , Acetanilides/metabolism , Energy Metabolism , Thermogenesis , Neoplasms/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
7.
ACS Appl Mater Interfaces ; 15(43): 50002-50014, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37851535

Two-dimensional (2D) nanomaterials as drug carriers and photosensitizers have emerged as a promising antitumor strategy. However, our understanding of 2D antitumor nanomaterials is limited to intrinsic properties or additive modification of different materials. Subtractive structural engineering of 2D nanomaterials for better antitumor efficacy is largely overlooked. Here, subtractively engineered 2D MXenes with uniformly distributed nanopores are synthesized. The nanoporous defects endowed MXene with enhanced surface plasmon resonance effect for better optical absorbance performance and strong exciton-phonon coupling for higher photothermal conversion efficiency. In addition, porous structure improves the binding ability between drug and unsaturated bonds, thus promoting drug-loading capacity and reducing uncontrolled drug release. Furthermore, the porous structure provides adhesion sites for filopodia, thereby promoting the cellular internalization of the drug. Clinically, osteosarcoma is the most common bone malignancy routinely treated with doxorubicin-based chemotherapy. There have been no significant treatment advances in the past decade. As a proof-of-concept, nanoporous MXene loaded with doxorubicin is developed for treating human osteosarcoma cells. The porous MXene platform results in a higher amount of doxorubicin-loading, faster near-infrared (NIR)-controlled doxorubicin release, higher photothermal efficacy under NIR irradiation, and increased cell adhesion and internalization. This facile method pioneers a new paradigm for enhancing 2D material functions and is attractive for tumor treatment.


Bone Neoplasms , Nanopores , Osteosarcoma , Humans , Nanomedicine , Doxorubicin/pharmacology , Doxorubicin/chemistry , Osteosarcoma/drug therapy , Phototherapy , Cell Line, Tumor
8.
Adv Drug Deliv Rev ; 201: 115084, 2023 10.
Article En | MEDLINE | ID: mdl-37689278

Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.


Corneal Neovascularization , Molecular Medicine , Animals , Neovascularization, Pathologic/drug therapy , Corneal Neovascularization/drug therapy , Corneal Neovascularization/pathology , Retina/pathology , Angiogenesis Inhibitors/therapeutic use
9.
Signal Transduct Target Ther ; 8(1): 305, 2023 08 18.
Article En | MEDLINE | ID: mdl-37591843

Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.


Fibroblast Growth Factor 2 , Vascular Endothelial Growth Factor B , Humans , Fibroblast Growth Factor 2/genetics , Immunotherapy , Receptor, Fibroblast Growth Factor, Type 1/genetics
10.
Virol J ; 20(1): 158, 2023 07 19.
Article En | MEDLINE | ID: mdl-37468960

African swine fever (ASF) is an acute infectious haemorrhagic fever of pigs caused by African swine fever virus (ASFV). Aloe-emodin (Ae) is an active ingredient of Chinese herbs with antiviral, anticancer, and anti-inflammatory effects. We investigated the antiviral activity and mechanism of action of Ae against ASFV using Real-time quantitative PCR (qPCR), western blotting, and indirect immunofluorescence assays. Ae significantly inhibited ASFV replication. Furthermore, transcriptomic analysis revealed that ASFV infection activated the NF-κB signaling pathway in the early stage and the apoptosis pathway in the late stage. Ae significantly downregulated the expression levels of MyD88, phosphor-NF-κB p65, and pIκB proteins as well as the mRNA levels of IL-1ß and IL-8 in porcine alveolar macrophages (PAMs) infected with ASFV, thereby inhibiting the activation of the NF-κB signaling pathway induced by ASFV. Flow cytometry and western blot analysis revealed that Ae significantly increased the percentage of ASFV-induced apoptotic cells. Additionally, Ae promoted apoptosis by upregulating the expression levels of cleaved-caspase3 and Bax proteins and downregulating the expression levels of Bcl-2 proteins. This suggests that Ae promotes apoptosis by inhibiting the NF-κB pathway, resulting in inhibition of ASFV replication. These findings have further improved therapeutic reserves for the prevention and treatment of ASF.


African Swine Fever Virus , African Swine Fever , Aloe , Emodin , Animals , African Swine Fever Virus/genetics , Aloe/metabolism , Antiviral Agents/pharmacology , Apoptosis , Emodin/pharmacology , NF-kappa B/metabolism , Signal Transduction , Swine , Virus Replication
11.
Proc Natl Acad Sci U S A ; 120(29): e2303740120, 2023 07 18.
Article En | MEDLINE | ID: mdl-37428914

Defining reliable surrogate markers and overcoming drug resistance are the most challenging issues for improving therapeutic outcomes of antiangiogenic drugs (AADs) in cancer patients. At the time of this writing, no biomarkers are clinically available to predict AAD therapeutic benefits and drug resistance. Here, we uncovered a unique mechanism of AAD resistance in epithelial carcinomas with KRAS mutations that targeted angiopoietin 2 (ANG2) to circumvent antivascular endothelial growth factor (anti-VEGF) responses. Mechanistically, KRAS mutations up-regulated the FOXC2 transcription factor that directly elevated ANG2 expression at the transcriptional level. ANG2 bestowed anti-VEGF resistance as an alternative pathway to augment VEGF-independent tumor angiogenesis. Most colorectal and pancreatic cancers with KRAS mutations were intrinsically resistant to monotherapies of anti-VEGF or anti-ANG2 drugs. However, combination therapy with anti-VEGF and anti-ANG2 drugs produced synergistic and potent anticancer effects in KRAS-mutated cancers. Together, these data demonstrate that KRAS mutations in tumors serve as a predictive marker for anti-VEGF resistance and are susceptible to combination therapy with anti-VEGF and anti-ANG2 drugs.


Carcinoma , Endothelial Growth Factors , Humans , Endothelial Growth Factors/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Angiopoietin-1/metabolism
12.
Adv Sci (Weinh) ; 10(24): e2301505, 2023 08.
Article En | MEDLINE | ID: mdl-37330661

The circadian clock in animals and humans plays crucial roles in multiple physiological processes. Disruption of circadian homeostasis causes detrimental effects. Here, it is demonstrated that the disruption of the circadian rhythm by genetic deletion of mouse brain and muscle ARNT-like 1 (Bmal1) gene, coding for the key clock transcription factor, augments an exacerbated fibrotic phenotype in various tumors. Accretion of cancer-associated fibroblasts (CAFs), especially the alpha smooth muscle actin positive myoCAFs, accelerates tumor growth rates and metastatic potentials. Mechanistically, deletion of Bmal1 abrogates expression of its transcriptionally targeted plasminogen activator inhibitor-1 (PAI-1). Consequently, decreased levels of PAI-1 in the tumor microenvironment instigate plasmin activation through upregulation of tissue plasminogen activator and urokinase plasminogen activator. The activated plasmin converts latent TGF-ß into its activated form, which potently induces tumor fibrosis and the transition of CAFs into myoCAFs, the latter promoting cancer metastasis. Pharmacological inhibition of the TGF-ß signaling largely ablates the metastatic potentials of colorectal cancer, pancreatic ductal adenocarcinoma, and hepatocellular carcinoma. Together, these data provide novel mechanistic insights into disruption of the circadian clock in tumor growth and metastasis. It is reasonably speculated that normalization of the circadian rhythm in patients provides a novel paradigm for cancer therapy.


Liver Neoplasms , Transforming Growth Factor beta , Mice , Humans , Animals , Transforming Growth Factor beta/metabolism , Tissue Plasminogen Activator/metabolism , Fibrinolysin/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Muscles , Brain/metabolism , Tumor Microenvironment
13.
J Colloid Interface Sci ; 649: 591-600, 2023 Nov.
Article En | MEDLINE | ID: mdl-37364459

Traditional polyolefin separators for lithium-ion batteries (LIBs) often experience limited thermal stability and intrinsic flammability, resulting in great safety risks during their usage. Therefore, it is highly important to develop novel flame-retardant separators for safe LIBs with high performance. In this work, we report a flame-retardant separator derived from boron nitride (BN) aerogel with a high BET surface area of 1127.3 m2 g-1. The aerogel was pyrolyzed from a melamine-boric acid (MBA) supramolecular hydrogel, which was self-assembled at an ultrafast speed. The in-situ evolution details of the nucleation-growth process of the supramolecules could be observed in real-time using a polarizing microscope under ambient conditions. The BN aerogel was further composited with bacterial cellulose (BC) to form a BN/BC composite aerogel with excellent flame-retardant performance, electrolyte-wetting ability and high mechanical property. By using the BN/BC composite aerogel as the separator, the developed LIBs exhibited high specific discharge capacity of 146.5 mAh g-1 and excellent cyclic performance, maintaining 500 cycles with a capacity degradation of only 0.012% per cycle. The high-performance flame-retardant BN/BC composite aerogel represents a promising candidate for separators not only in LIBs but also in other flexible electronics.

14.
Virus Res ; 333: 199139, 2023 Aug.
Article En | MEDLINE | ID: mdl-37217033

Porcine reproductive and respiratory syndrome (PRRS) is a severe respiratory disease caused by porcine reproductive and respiratory syndrome virus (PRRSV) that can lead to the abortion of pregnant sows and decreased boar semen quality. However, the mechanisms of PRRSV replication in the host have not yet been fully elucidated. As lipid metabolism and lipid droplets (LDs) have been reported to play important roles in the replication of various viruses, we aimed to explore the mechanisms through which LDs affect PRRSV replication. Laser confocal and transmission electron microscopy revealed that PRRSV infection promoted intracellular LD accumulation, which was significantly reduced by treatment with the NF-κB signaling pathway inhibitors BAY11-7082 and metformin hydrochloride (MH). In addition, treatment with a DGAT1 inhibitor significantly reduced the protein expression of Phosphorylated NF-ΚB P65and PIκB and the transcription of IL-1ß and IL-8 in the NF-κB signaling pathway. Furthermore, we showed that the reduction of the NF-κB signaling pathway and LDs significantly reduced PRRSV replication. Together, the findings of this study suggest a novel mechanism through which PRRSV regulates the NF-κB signaling pathway to increase LD accumulation and promote viral replication. Moreover, we demonstrated that both BAY11-7082 and MH can reduce PRRSV replication by reducing the NF-κB signaling pathway and LD accumulation. This study lays a theoretical foundation for research on the mechanism of PRRS prevention and control, as well as the research and development of antiviral drugs.


Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Male , Female , Porcine respiratory and reproductive syndrome virus/metabolism , NF-kappa B/metabolism , Lipid Droplets/metabolism , Semen Analysis , Cell Line , Virus Replication , Lipids
15.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article En | MEDLINE | ID: mdl-37047837

Microbial fatty acids are synthesized by Type II fatty acid synthase and could be tailored by acyl-ACP thioesterase. With the prospects of medium-chain fatty-acid-derivative biofuels, the selectivity of thioesterase has been studied to control the fatty acid product chain length. Here, we report an alternative approach by manipulating the acyl carrier protein portion of acyl-ACP to switch the chain length propensity of the thioesterase. It was demonstrated that ChFatB2 from Cuphea hookeriana preferred C10-ACP to C8-ACP with ACP from E. coli, while converting preference to C8-ACP with ACP from Cuphea lanceolate. Circular dichroism (CD) results indicated that the C8-EcACP encountered a 34.4% α-helix increment compared to C10-EcACP, which resulted in an approximate binding affinity decrease in ChFatB2 compared to C10-EcACP. Similarly, the C10-ClACP2 suffered a 45% decrease in helix content compared to C8-ClACP2, and the conformational changes resulted in an 18% binding affinity decline with ChFatB2 compared with C10-ClACP2. In brief, the study demonstrates that the ACP portion of acyl-ACP contributes to the selectivity of acyl-ACP thioesterase, and the conformational changes of EcACP and ClACP2 switch the chain length preference of ChFatB2 between C8 and C10. The result provides fundamentals for the directed synthesis of medium-chain fatty acids based on regulating the conformational changes of ACPs.


Acyl Carrier Protein , Escherichia coli , Acyl Carrier Protein/metabolism , Escherichia coli/metabolism , Thiolester Hydrolases/metabolism , Fatty Acids/metabolism
16.
J Virol ; 97(4): e0188922, 2023 04 27.
Article En | MEDLINE | ID: mdl-37022174

African swine fever (ASF) is a highly infectious disease caused by the African swine fever virus (ASFV) in swine. It is characterized by the death of cells in infected tissues. However, the molecular mechanism of ASFV-induced cell death in porcine alveolar macrophages (PAMs) remains largely unknown. In this study, transcriptome sequencing of ASFV-infected PAMs found that ASFV activated the JAK2-STAT3 pathway in the early stages and apoptosis in the late stages of infection. Meanwhile, the JAK2-STAT3 pathway was confirmed to be essential for ASFV replication. AG490 and andrographolide (AND) inhibited the JAK2-STAT3 pathway, promoted ASFV-induced apoptosis, and exerted antiviral effects. Additionally, CD2v promoted STAT3 transcription and phosphorylation as well as translocation into the nucleus. CD2v is the main envelope glycoprotein of the ASFV, and further investigations showed that CD2v deletion downregulates the JAK2-STAT3 pathway and promotes apoptosis to inhibit ASFV replication. Furthermore, we discovered that CD2v interacts with CSF2RA, which is a hematopoietic receptor superfamily member in myeloid cells and a key receptor protein that activates receptor-associated JAK and STAT proteins. In this study, CSF2RA small interfering RNA (siRNA) downregulated the JAK2-STAT3 pathway and promoted apoptosis to inhibit ASFV replication. Taken together, ASFV replication requires the JAK2-STAT3 pathway, while CD2v interacts with CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication. These results provide a theoretical basis for the escape mechanism and pathogenesis of ASFV. IMPORTANCE African swine fever is a hemorrhagic disease caused by the African swine fever virus (ASFV), which infects pigs of different breeds and ages, with a fatality rate of up to 100%. It is one of the key diseases affecting the global livestock industry. Currently, no commercial vaccines or antiviral drugs are available. Here, we show that ASFV replicates via the JAK2-STAT3 pathway. More specifically, ASFV CD2v interacts with CSF2RA to activate the JAK2-STAT3 pathway and inhibit apoptosis, thereby maintaining the survival of infected cells and promoting viral replication. This study revealed an important implication of the JAK2-STAT3 pathway in ASFV infection and identified a novel mechanism by which CD2v has evolved to interact with CSF2RA and maintain JAK2-STAT3 pathway activation to inhibit apoptosis, thus elucidating new information regarding the signal reprogramming of host cells by ASFV.


African Swine Fever Virus , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Viral Envelope Proteins , Virus Replication , Animals , African Swine Fever/virology , African Swine Fever Virus/genetics , Apoptosis/genetics , Swine , Virus Replication/genetics , Viral Envelope Proteins/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Host Microbial Interactions , Down-Regulation
17.
Cancer Commun (Lond) ; 43(6): 637-660, 2023 06.
Article En | MEDLINE | ID: mdl-37120719

BACKGROUND: Tumors possess incessant growth features, and expansion of their masses demands sufficient oxygen supply by red blood cells (RBCs). In adult mammals, the bone marrow (BM) is the main organ regulating hematopoiesis with dedicated manners. Other than BM, extramedullary hematopoiesis is discovered in various pathophysiological settings. However, whether tumors can contribute to hematopoiesis is completely unknown. Accumulating evidence shows that, in the tumor microenvironment (TME), perivascular localized cells retain progenitor cell properties and can differentiate into other cells. Here, we sought to better understand whether and how perivascular localized pericytes in tumors manipulate hematopoiesis. METHODS: To test if vascular cells can differentiate into RBCs, genome-wide expression profiling was performed using mouse-derived pericytes. Genetic tracing of perivascular localized cells employing NG2-CreERT2:R26R-tdTomato mouse strain was used to validate the findings in vivo. Fluorescence-activated cell sorting (FACS), single-cell sequencing, and colony formation assays were applied for biological studies. The production of erythroid differentiation-specific cytokine, erythropoietin (EPO), in TME was checked using quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA, magnetic-activated cell sorting and immunohistochemistry. To investigate BM function in tumor erythropoiesis, BM transplantation mouse models were employed. RESULTS: Genome-wide expression profiling showed that in response to platelet-derived growth factor subunit B (PDGF-B), neural/glial antigen 2 (NG2)+ perivascular localized cells exhibited hematopoietic stem and progenitor-like features and underwent differentiation towards the erythroid lineage. PDGF-B simultaneously targeted cancer-associated fibroblasts to produce high levels of EPO, a crucial hormone that necessitates erythropoiesis. FACS analysis using genetic tracing of NG2+ cells in tumors defined the perivascular localized cell-derived subpopulation of hematopoietic cells. Single-cell sequencing and colony formation assays validated the fact that, upon PDGF-B stimulation, NG2+ cells isolated from tumors acted as erythroblast progenitor cells, which were distinctive from the canonical BM hematopoietic stem cells. CONCLUSIONS: Our data provide a new concept of hematopoiesis within tumor tissues and novel mechanistic insights into perivascular localized cell-derived erythroid cells within TME. Targeting tumor hematopoiesis is a novel therapeutic concept for treating various cancers that may have profound impacts on cancer therapy.


Erythropoiesis , Neoplasms , Animals , Mice , Bone Marrow/physiology , Cell Differentiation , Mammals , Neoplasms/metabolism , Pericytes , Tumor Microenvironment
18.
J Colloid Interface Sci ; 639: 408-415, 2023 Jun.
Article En | MEDLINE | ID: mdl-36812856

Flexible and multifunctional zinc ion batteries (ZIBs) play an important role in flexible or wearable electronics. Polymer gels with outstanding mechanical stretchability and high ionic conductivity are very promising to be used as electrolytes for the solid-state ZIBs. Herein, a novel ionogel of poly(N,N'-dimethylacrylamide)/zinc trifluoromethanesulfonate (PDMAAm/Zn(CF3SO3)2) is designed and synthesized by UV-initiated polymerization of monomer DMAAm in ionic liquid solvent 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]). The prepared PDMAAm/Zn(CF3SO3)2 ionogels possess high mechanical performance (893.7% tensile strain and 151.0 kPa tensile strength), moderate ionic conductivity (0.96 mS cm-1) and superior healable performance. The as-prepared ZIBs based on PDMAAm/Zn(CF3SO3)2 ionogel electrolyte assembled by carbon nanotubes (CNTs)/polyaniline as cathode and CNTs/Zn as anode not only exhibit excellent electrochemical properties (up to 2.5 V), flexible and cyclic performance, but also possess good healability for five broken/healed cycles with slight 12.5% performance decay. More significantly, the broken/healed ZIBs exhibit superior flexibility and cyclic stability. This ionogel electrolyte can be extended the flexible energy storage devices for use in other multifunctional portable and wearable energy related devices.

20.
Environ Sci Pollut Res Int ; 30(10): 27593-27602, 2023 Feb.
Article En | MEDLINE | ID: mdl-36383319

Water scarcity is a worldwide problem. Recycled municipal wastewater is considered a useful alternative to the conventional types of water resources. In this study, a shallow constructed wetland (SCW) with porous filter material and Rotala rotundifolia was used for advanced municipal sewage treatment. The wetland without plant was set as the control (SCW-C). The pollutant removal performance of the system at different hydraulic retention times (HRTs) was investigated. The diversity of the microbial community was analyzed, and the fate of nutrients, mainly N and P, in the system was discussed. Results showed that SCW was efficient in pollutant removal. Effluent concentrations of chemical oxygen demand (COD), total phosphorus (TP), and ammonium nitrogen (NH4+-N) were 15.0-23.6, 0.19-0.28, and 0.83-1.16 mg/L, separately, with average removal efficiencies of 61.2%, 46.3%, and 88.1% at HRT 18 h, which met the requirements of type [Formula: see text] water set by the environmental quality standards for surface water in China. The richness and evenness of the bacterial community were significantly higher in the plant-rooted SCW. They increased along with the system. The dominant genera in the system were phosphate-solubilizing bacteria, nitrifying bacteria, and denitrifying bacteria. The P in the influent mainly flowed to the substrate and plant. At the same time, most N was removed by nitrification and denitrification. These findings suggested that the SCW could remove pollutants from the municipal sewage effluent and meet the standard requirement at low HRT.


Environmental Pollutants , Sewage , Waste Disposal, Fluid/methods , Wetlands , Porosity , Phosphorus , Nitrogen/analysis , Water , Denitrification , Bioreactors
...