Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
World J Clin Cases ; 12(27): 6087-6093, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39328860

ABSTRACT

BACKGROUND: Cataracts are a common ophthalmic disease and postoperative vision recovery is crucial to patient quality of life. Rational and efficient care models play an important role in promoting vision recovery. AIM: To evaluate the clinical effectiveness of procedural nursing care combined with communication intervention in vision recovery after cataract ultrasound emulsification. METHODS: A randomized controlled study was conducted on 100 patients with cataracts who underwent ultrasound emulsification surgery. They were randomly assigned to an experimental group or a control group. The experimental group received procedural nursing combined with Connect, Introduce, Communicate, Ask, Respond, Exit (CICARE) communication intervention, whereas the control group received conventional nursing. The effectiveness of the nursing model was assessed by comparing differences in vision recovery, pain scores, and mental health status between the two groups. RESULTS: It was found that over time the visual acuity of patients in both groups gradually recovered and patients in the experimental group had lower pain scores and superior mental health status than the control group (P < 0.05). CONCLUSION: Procedural nursing combined with CICARE communication intervention has positive effects on vision recovery in patients after cataract ultrasound emulsification.

2.
Genome Res ; 34(7): 981-996, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39122473

ABSTRACT

Fish show variation in feeding habits to adapt to complex environments. However, the genetic basis of feeding preference and the corresponding metabolic strategies that differentiate feeding habits remain elusive. Here, by comparing the whole genome of a typical carnivorous fish (Leiocassis longirostris Günther) with that of herbivorous fish, we identify 250 genes through both positive selection and rapid evolution, including taste receptor taste receptor type 1 member 3 (tas1r3) and trypsin We demonstrate that tas1r3 is required for carnivore preference in tas1r3-deficient zebrafish and in a diet-shifted grass carp model. We confirm that trypsin correlates with the metabolic strategies of fish with distinct feeding habits. Furthermore, marked alterations in trypsin activity and metabolic profiles are accompanied by a transition of feeding preference in tas1r3-deficient zebrafish and diet-shifted grass carp. Our results reveal a conserved adaptation between feeding preference and corresponding metabolic strategies in fish, and provide novel insights into the adaptation of feeding habits over the evolution course.


Subject(s)
Genome , Receptors, G-Protein-Coupled , Zebrafish , Animals , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Zebrafish/genetics , Feeding Behavior , Carps/genetics , Carps/metabolism , Food Preferences , Carnivory , Evolution, Molecular
3.
Food Res Int ; 192: 114766, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147487

ABSTRACT

Traditional ice is usually employed to preserve food freshness and extend shelf life. However, ice cannot bear repeated freeze - thaw cycles during the transportation and retailing process, resulting in microbial cross-contamination and spoilage of foods. Herein, succinoglycan riclin was oxidated (RO) and crosslinked with gelatin (Ge), the Ge-RO cryogels were prepared via Schiff base reaction and three freeze - thaw cycles. The Ge-RO cryogels showed improved storage modulus (G') and thermal stability compared with pure gelatin hydrogel. The polymer framework of Ge-RO gels exhibited stable properties against ice crystals destructions during nine freeze - thaw treatments. During the storage and repeated freeze - thaw treatments of shrimps, Ge-RO cryogels exhibited a remarkable preservation effect on shrimps, and their freshness was evaluated using an electronic nose technique equipped with ten sensors. The results demonstrated that the shrimp muscle preserved in ice generated off-odors and resulted in high sensor responses. The sensor responses were reduced sharply of shrimps preserved in cryogels. Moreover, 1H NMR-based metabolomics analysis revealed that shrimps in Ge-RO cryogels group reversed the metabolic perturbations compared with the traditional ice group, the metabolic pathways were related to energy metabolism, nucleotide metabolism, and amino acid metabolism, which provide new clues to the freshness of shrimps. Furthermore, RO exhibited superior antimicrobial activity against E. coli and S. aureus microorganisms. Thus, the crosslinked cryogels are potentially applicable to food preservation, offering sustainable and reusable solutions against traditional ice.


Subject(s)
Cryogels , Food Preservation , Gelatin , Animals , Gelatin/chemistry , Food Preservation/methods , Cryogels/chemistry , Ice , Penaeidae , Oxidation-Reduction , Shellfish/microbiology , Freezing , Electronic Nose , Food Storage/methods , Escherichia coli/drug effects
4.
J Sep Sci ; 47(14): e2400250, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034833

ABSTRACT

Reconstituted tobacco (RT) is a product made by reprocessing tobacco waste, experiencing a growing demand for heat-not-burn products. The purpose of this study is to analyze the main flavor ingredients in RT aerosol, as well as the transfer behavior of key flavor substances from substrates to aerosol and the concentrations of these compounds in the substrate after heating. First, we demonstrated that the odor of four RT aerosol samples could be distinguished using an electronic nose. Through non-targeted analysis, 93 volatile compounds were detected by gas chromatography-mass spectrometry, and 286 non/semi-volatile compounds were identified by ultra-high-performance liquid electrophoresis chromatography-mass spectrometry in aerosol. Furthermore, we found that the formation of RT aerosol involves primarily evaporation and distillation, however, the total content delivered from unheated RT samples to aerosol remains relatively low due to compound volatility and cigarette filtration. Thermal reactions during heating indicated the pyrolysis of chlorogenic acid to generate catechol and resorcinol, while Maillard reactions involving glucose and proline produced 2,3-dihydro-3,5-dihydroxy-6-methyl-4h-pyran-4-one. The study highlighted that heating RT at approximately 300°C could mitigate the production of harmful substances while still providing a familiar sensory experience with combusted tobacco.


Subject(s)
Flavoring Agents , Gas Chromatography-Mass Spectrometry , Nicotiana , Flavoring Agents/analysis , Flavoring Agents/chemistry , Nicotiana/chemistry , Hot Temperature , Aerosols/chemistry , Aerosols/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Tobacco Products/analysis , Heating , Odorants/analysis
5.
Carbohydr Polym ; 340: 122269, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858020

ABSTRACT

Cellulose nanofibrils (CNFs) are derived from biomass and have significant potential as fossil-based plastic alternatives used in disposable electronics. Controlling the nanostructure of fibrils is the key to obtaining strong mechanical properties and high optical transparency. Vacuum filtration is usually used to prepare the CNFs film in the literature; however, such a process cannot control the structure of the CNFs film, which limits the transparency and mechanical strength of the film. Here, direct ink writing (DIW), a pressure-controlled extrusion process, is proposed to fabricate the CNFs film, which can significantly harness the alignment of fibrils by exerting shear stress force on the filaments. The printed films by DIW have a compact structure, and the degree of fibril alignment quantified by the small angle X-ray diffraction (SAXS) increases by 24 % compared to the vacuum filtration process. Such a process favors the establishment of the chemical bond (or interaction) between molecules, therefore leading to considerably high tensile strength (245 ± 8 MPa), elongation at break (2.2 ± 0.5 %), and good transparency. Thus, proposed DIW provides a new strategy for fabricating aligned CNFs films in a controlled manner with tunable macroscale properties. Moreover, this work provides theoretical guidance for employing CNFs as structural and reinforcing materials to design disposable electronics.

6.
Antioxidants (Basel) ; 13(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929161

ABSTRACT

Starch is a common source of carbohydrates in aqua feed. High-starch diet can cause hepatic injury and lipid accumulation in fish. Mangiferin (MGF) can regulate lipid metabolism and protect the liver, but there is limited research on its effects in fish. In the present study, we investigated whether MGF could ameliorate high-starch-induced hepatic damage and lipid accumulation in channel catfish. The channel catfish (Ictalurus punctatus) were fed one of four experimental diets for eight weeks: a control diet (NCD), a high-starch diet (HCD), an HCD supplemented with 100 mg/kg MGF (100 MGF), and an HCD supplemented with 500 mg/kg MGF (500 MGF). The results demonstrated that the weight gain rate (WGR) (p = 0.031), specific growth rate (SGR) (p = 0.039), and feed conversion efficiency (FCE) (p = 0.040) of the 500 MGF group were significantly higher than those of the NCD group. MGF supplementation alleviated liver damage and improved antioxidant capacity (T-AOC) compared to those of the HCD group (p = 0.000). In addition, dietary MGF significantly reduced plasma glucose (GLU) (p = 0.000), triglyceride (TG) (p= 0.001), and low-density lipoprotein cholesterol (LDL) (p = 0.000) levels. It is noteworthy that MGF significantly reduced the plasma total cholesterol (TC) levels (p = 0.000) and liver TC levels (p = 0.005) of channel catfish. Dietary MGF improves cholesterol homeostasis by decreasing the expression of genes that are involved in cholesterol synthesis and transport (hmgcr, sqle, srebf2, sp1, and ldlr) and increasing the expression of genes that are involved in cholesterol catabolism (cyp7a1). Among them, the largest fold decrease in squalene epoxidase (sqle) expression levels was observed in the 100 MGF or 500 MGF groups compared with the HCD group, with a significant decrease of 3.64-fold or 2.20-fold (p = 0.008). And the 100 MGF or 500 MGF group had significantly decreased (by 1.67-fold or 1.94-fold) Sqle protein levels compared to those of the HCD group (p = 0.000). In primary channel catfish hepatocytes, MGF significantly down-regulated the expression of sqle (p = 0.030) and reduced cholesterol levels (p = 0.000). In NCTC 1469 cells, MGF significantly down-regulated the expression of sqle (p = 0.000) and reduced cholesterol levels (p = 0.024). In conclusion, MGF effectively inhibits sqle expression and reduces cholesterol accumulation. The current study shows how MGF supplementation regulates the metabolism and accumulation of cholesterol in channel catfish, providing a theoretical basis for the use of MGF as a dietary supplement in aquaculture.

7.
Org Lett ; 26(18): 3801-3805, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38668390

ABSTRACT

Herein, we report a formal synthesis of (±)-arborisidine via the creation of Jiao's intermediate with the critical caged structure. Starting from tryptamine, a Pictet-Spengler cyclization forged the piperidine ring, a Pd-catalyzed indole allylation and ring-closing metathesis protocol afforded a bridged aza-bicyclo[3.3.1]nonane moiety, and an intramolecular N-alkylation closed the final pyrrolidine ring. This study provides a new approach to the unique caged framework of arborisidine and relevant alkaloids.

8.
Antioxidants (Basel) ; 13(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38671934

ABSTRACT

An 88-day feeding trial was conducted to evaluate the effects of dietary inosine 5'-monophosphate (5'-IMP) on the growth performance and salinity and oxidative stress resistance in the juvenile gibel carp CAS III (Carassius auratus gibelio; initial body weight: 7.48 g). Four isonitrogenous and isoenergetic diets containing exogenous 5'-IMP were formulated. P1, P2, P3 and P4 were diets containing 5'-IMP at four concentrations (0, 1, 2 and 4 g kg-1). The four diets were randomly allotted to triplicate tanks in a recirculating system. After the feeding trial, six fish per tank were netted randomly and placed into 12‱ saline water to test their response to salinity stress. The results indicated that the feed conversion rate was enhanced by dietary supplementation with 5'-IMP. The appetite, plasma neuropeptide Y level and feeding rate of the P3 group were lower than those in the control treatment group. Dietary supplementation with 5'-IMP improved the osmoregulatory adaptation of gibel carp under acute salinity stress. Six hours after the salinity stress treatment, in the dietary 5'-IMP treatment group, the plasma cortisol and K+ concentrations were lower and the Na+/K+-ATPase activity was greater than that in the control group. Dietary supplementation with 5'-IMP promoted the expression of the glucocorticoid receptors NKA-α1b and NKCC and retarded the expression of Hsp70 in P4-treated gill filaments and kidneys. Dietary supplementation with 5'-IMP resulted in a stable oxidative-stress-resistant phenotype characterized by increased levels of cellular antioxidants, including SOD, catalase, glutathione peroxidase, glutathione reductase and MPO. The above results of the current study demonstrate that supplementation of 5'-IMP can promote feed utilization and have positive influences on the salinity and oxidative stress resistance of gibel carp.

9.
Heliyon ; 10(5): e27050, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434370

ABSTRACT

Background: Tetrahydrobiopterin (BH4) deficiency is a rare cause of hyperphenylalaninemia (HPA). The incidence of this condition varies based on region and ethnicity. In the early stages, patients typically do not exhibit any symptoms, and HPA is identified only through newborn screening for diseases. It is important to distinguish BH4 deficiency from phenylketonuria (PKU, MIM # 261600). Timely diagnosis and treatment of BH4 deficiency are crucial for the prognosis of patients. Case presentation: We present two rare cases of Chinese Tibetan children with BH4D, diagnosed through biochemical tests and genetic sequencing. Case 1 is a male infant, 2 months old, with a newborn screening (NBS) Phe level of 1212 µmol/L (reference range <120 µmol). The biopterin(B) level was 0.19 mmol/molCr (reference range: 0.42-1.92 mmol/molCr), with a B% of 5.67% (reference range: 19.8%-50.3%). Gene sequencing revealed a homozygous missense variant [NM_000317.3 (PTS): c.259C > T (p.Pro87Ser), rs104894276, ClinVar variation ID: 480]. The patient was treated with a Phe-reduced diet and oral sapropterin, madopar and is currently 3 years and 4 months old, showing mild global developmental delay. Case 2 is a 40-day-old female infant with a Phe level of 2442.11 µmol/L and dihydropteridine reductase (DHPR) activity of 0.84 nmol/(min. 5 mm disc) (reference range: 1.02-3.35 nmol/min.5 mm disc. Gene sequencing revealed a compound heterozygous genotype [NM_000320.3(QDPR): c.68G > A (p.Gly23Asp), rs104893863, ClinVar Variation ID: 490] and [NM_000320.3(QDPR) c.419C > A (p. Ala140Asp), ClinVar ID: 2444501]. The patient was treated with a Phe-reduced diet and oral madopar, 5-hydroxytryptophan. At the age of 1 year, she exhibited severe global developmental delay with seizures. Conclusion: We identified and treated two cases of BH4D in Tibetan populations in China, marking the first confirmed instances. Our report emphasizes the significance of conducting differential diagnosis tests for BH4D.

10.
Article in English | MEDLINE | ID: mdl-38547756

ABSTRACT

Black porgy (Acanthopagrus schlegelii) is an important marine aquaculture species in China. It is an ideal object for the cultivation of low-salinity aquaculture strains in marine fish and the study of salinity tolerance mechanisms in fish because of its strong low-salinity tolerance ability. Gill is the main osmoregulatory organ in fish, and the liver plays an important role in the adaptation of the organism to stressful environments. In order to understand the coping mechanisms of the gills and livers of black porgy in different salinity environments, this study explored these organs after 30 days of culture in hypoosmotic (0.5 ppt), isosmotic (12 ppt), and normal seawater (28 ppt) at histologic, physiologic, and transcriptomic levels. The findings indicated that gill exhibited a higher number of differentially expressed genes than the liver, emphasizing the gill's heightened sensitivity to salinity changes. Protein interaction networks and enrichment analyses highlighted energy metabolism as a key regulatory focus at both 0.5 ppt and 12 ppt salinity in gills. Additionally, gills showed enrichment in ions, substance transport, and other metabolic pathways, suggesting a more direct regulatory response to salinity stress. The liver's regulatory patterns at different salinities exhibited significant distinctions, with pathways and genes related to metabolism, immunity, and antioxidants predominantly activated at 0.5 ppt, and molecular processes linked to cell proliferation taking precedence at 12 ppt salinity. Furthermore, the study revealed a reduction in the volume of the interlamellar cell mass (ILCM) of the gills, enhancing the contact area of the gill lamellae with water. At 0.5 ppt salinity, hepatic antioxidant enzyme activity increased, accompanied by oxidative stress damage. Conversely, at 12 ppt salinity, gill NKA activity significantly decreased without notable changes in liver structure. These results underscore the profound impact of salinity on gill structure and function, highlighting the crucial role of the liver in adapting to salinity environments.


Subject(s)
Gills , Liver , Perciformes , Salinity , Animals , Gills/metabolism , Liver/metabolism , Perciformes/genetics , Perciformes/metabolism , Perciformes/physiology , Transcriptome , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation
11.
Aquac Nutr ; 2023: 1397508, 2023.
Article in English | MEDLINE | ID: mdl-37901279

ABSTRACT

Excessive carbohydrate intake leads to metabolic disorders in fish. However, few literatures have reported the appropriate carbohydrate level for zebrafish, and the metabolic response to dietary carbohydrate remains largely unknown in zebrafish. This study assessed the responses of zebrafish and zebrafish liver cell line (ZFL) to different carbohydrate levels. In vivo results showed that ≥30% dietary dextrin levels significantly increased the plasma glucose content, activated the expression of hepatic glycolysis-related genes, and inhibited the expression of hepatic gluconeogenesis-related genes in zebrafish. Oil red O staining, triglyceride content, and Hematoxylin-Eosin staining results showed that dietary dextrin levels of ≥30% significantly increased lipid accumulation and liver damage, as well as processes related to glycolipid metabolism and inflammation in zebrafish. In ZFL, the transcription factor sterol regulatory element binding protein-1c signal intensity, 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY 493/503) signal intensity, and triglyceride content were also significantly increased when incubated in high glucose, along with abnormal glycolipid metabolism and increased inflammation-related genes. In conclusion, we demonstrated that the maximum dietary carbohydrate level in adult zebrafish should be less than 30%. Excess dietary carbohydrates (30%-50%) caused hepatic steatosis and damage to zebrafish, similar to that seen in aquaculture species. Thus, this study assessed responses to different carbohydrate levels in zebrafish and illustrated that zebrafish is an optimal model for investigating glucose metabolism in some aquatic animals.

12.
J Nutr Biochem ; 122: 109452, 2023 12.
Article in English | MEDLINE | ID: mdl-37748621

ABSTRACT

Insulin-sensitive lipogenesis dominates the body lipid deposition; however, nonalcoholic fatty liver disease (NAFLD) develops in the insulin-resistant state. The regulation mechanism of insulin resistance-driven NAFLD remains elusive. Using zebrafish model of insulin resistance (ZIR, insrb-/-) and mouse hepatocytes (NCTC 1469), we explored the regulation mechanism of insulin resistance-driven hepatic lipid deposition under the stimulation of carbohydrate diet (CHD). In ZIR model, insulin resistance induced hyperlipidemia and elevated hepatic lipid deposition via elevating the gene/protein expressions of lipogenic enzymes, that was activated by carbohydrate response element binding protein (ChREBP), rather than sterol regulatory element binding proteins 1c (SREBP-1c). The metabolomic analysis in zebrafish and silencing of chrebp in mouse hepatocytes revealed that the increased hepatic frucotose-6-phosphate (F6P) and glucose-6-phosphate (G6P) promoted the ChREBP-mediated lipid deposition. We further identified that F6P alone was sufficient to activate ChREBP-mediated lipid deposition by a SREBP-1c-independent manner. Moreover, we clarified the suppressed hepatic phosphofructokinase/glucose-6-phosphatase functions and the normal glucokinase function preserved by glucose transporter 2 (GLUT2) manipulated the increased F6P/G6P content in ZIR. In conclusion, the present study revealed that insulin resistance promoted hepatic lipid deposition via the F6P/G6P-mediated ChREBP activation. Our findings deciphered the main regulation pathway for the liver lipid deposition in the insulin-resistant state and identified F6P as a new potential regulator for ChREBP.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Mice , Animals , Insulin Resistance/physiology , Zebrafish/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Phosphates/metabolism , Liver/metabolism , Proteins/metabolism , Insulin/metabolism , Lipogenesis , Lipids , Carbohydrates , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
13.
Aquac Nutr ; 2023: 7981183, 2023.
Article in English | MEDLINE | ID: mdl-37547823

ABSTRACT

To assess the effect of dietary selenium (Se) sources on the meat quality and antioxidant capacity of yellow catfish (Pelteobagrus fulvidraco), sodium selenite (Na2SeO3), Se yeast, and selenium-enriched Spirulina platensis (Se-SP) were supplemented in the control diet at 0.30 mg Se/kg feed to formulate four diets. The experimental period lasted 50 days. The results showed that Se levels in the plasma, liver, muscle, and whole body were significantly increased by dietary Se yeast supplementation (P < 0.05) but showed no change in response to Na2SeO3 (P > 0.05). The three types of Se all increased the firmness and decreased the fracturability of the muscles (P < 0.05), but only Na2SeO3 resulted in higher springiness, flexibility, stringiness, and stickiness (P < 0.05). In addition, the muscle n-3 polyunsaturated fatty acid (PUFA) content was increased by Se yeast (P < 0.05). Regarding antioxidant capacity, dietary Se yeast and Se-SP supplementation improved hepatic glutathione peroxidase activity but decreased hepatic malondialdehyde content (P < 0.05). Given these results, Se yeast was found to be the optimal source of Se for yellow catfish for higher tissue retention, antioxidant capacity, and PUFA levels. Dietary Se is an effective way to regulate the meat quality and antioxidant capacity of yellow catfish.

14.
Int J Biol Macromol ; 250: 126143, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37544564

ABSTRACT

Natural polysaccharides are natural biomaterials that have become candidate materials for nano-drug delivery systems due to their excellent biodegradability and biocompatibility. Platinum (Pt) drugs have been widely used in the clinical therapy for various solid tumors. However, their extensive systemic toxicity and the drug resistance acquired by cancer cells limit the applications of platinum drugs. Modern nanobiotechnology provides the possibility for targeted delivery of platinum drugs to the tumor site, thereby minimizing toxicity and optimizing the efficacies of the drugs. In recent years, numerous natural polysaccharide-platinum nanomedicine delivery carriers have been developed, such as nanomicelles, nanospheres, nanogels, etc. Herein, we provide an overview on the construction and drug release of natural polysaccharide-Pt nanomedicines in recent years. Current challenges and future prospectives in this field are also put forward. In general, combining with irradiation and tumor microenvironment provides a significant research direction for the construction of natural polysaccharide-platinum nanomedicines and the release of responsive drugs in the future.

15.
Aquac Nutr ; 2023: 6672985, 2023.
Article in English | MEDLINE | ID: mdl-37520290

ABSTRACT

The present study investigated the sequential regulation signals of high-carbohydrate diet (HCD)-induced hepatic lipid deposition in gibel carp (Carassius gibelio). Two isonitrogenous and isolipidic diets, containing 25% (normal carbohydrate diet, NCD) and 45% (HCD) corn starch, were formulated to feed gibel carp (14.82 ± 0.04 g) for 8 weeks. The experimental fish were sampled at 2nd, 4th, 6th, and 8th week. In HCD group, the hyperlipidemia and significant hepatic lipid deposition (oil red O area and triglyceride content) was found at 4th, 6th, and 8th week, while the significant hyperglycemia was found at 2nd, 4th, and 8th week, compared to NCD group (P < 0.05). HCD induced hepatic lipid deposition via increased hepatic lipogenesis (acc, fasn, and acly) but not decreased hepatic lipolysis (hsl and cpt1a). When compared with NCD group, HCD significantly elevated the hepatic sterol regulatory element binding proteins 1 (SREBP1) signals (positive hepatocytes and fluorescence intensity) at 4th, 6th, and 8th week (P < 0.05). The hepatic SREBP1 signals increased from 2nd to 6th week, but decreased at 8th week due to substantiated insulin resistance (plasma insulin levels, plasma glucose levels, and P-AKTSer473 levels) in HCD group. Importantly, the hepatic carbohydrate response element binding protein (ChREBP) signals (positive hepatocytes, fluorescence intensity, and expression levels) were all significantly elevated by HCD-induced glucose-6-phosphate (G6P) accumulation at 2nd, 4th, 6th, and 8th week (P < 0.05). Compared to 2nd and 4th week, the hepatic ChREBP signals and G6P contents was significantly increased by HCD at 6th and 8th week (P < 0.05). The HCD-induced G6P accumulation was caused by the significantly increased expression of hepatic gck, pklr, and glut2 (P < 0.05) but not 6pfk at 4th, 6th, and 8th week, compared to NCD group. These results suggested that the HCD-induced hepatic lipid deposition was mainly promoted by SREBP1 in earlier stage and by ChREBP in later stage for gibel carp. This study revealed the sequential regulation pathways of the conversion from feed carbohydrate to body lipid in fish.

16.
Aquac Nutr ; 2023: 6240803, 2023.
Article in English | MEDLINE | ID: mdl-37124881

ABSTRACT

To investigate the effects of different dietary protein sources on the reproductive performance of female broodstock, yellow catfish (Pelteobagrus fulvidraco) were fed with three experimental diets using fishmeal (FM), soybean meal (SBM), and rapeseed meal (RSM) as main protein sources, respectively. Females (initial weight: 64.56 ± 0.45 g) were distributed into 9 net cages for feeding trial. Results indicated that 30% dietary SBM improved the reproductive performance for higher gonadosomatic index (GSI), relative fecundity, total egg production, egg diameter, and hatching rate. In addition, SBM and RSM diets resulted in higher estradiol (E2), vitellogenin (VTG), luteinizing hormones (LH), and lower follicle-stimulating hormone (FSH) and testosterone (T) in plasma (P < 0.05) of female broodstock. Dietary SBM and RSM also resulted in lower mesenteric fat index (MFI), plasma total cholesterol (TC), plasma total bilirubin (T-Bil) contents, and gonadal cortisol concentrations, while dietary SBM downregulated the transcription levels of steroidogenesis-related proteins by negative feedback (P < 0.05). The results demonstrated that dietary SBM and RSM could promote sex steroid hormone and VTG biosynthesis and showed hypocholesterolemic effects. Besides, 30% dietary SBM inclusion could improve the reproductive performance of female yellow catfish broodstock.

17.
Front Immunol ; 14: 1177140, 2023.
Article in English | MEDLINE | ID: mdl-37168854

ABSTRACT

Introduction: Resveratrol (RES) is a polyphenol organic compound with antioxidant and anti-inflammatory properties. This study aimed to determine whether and how RES can alleviate liver injury in lipopolysaccharide (LPS)-induced gibel carp. Methods: Gibel carp were fed a diet with or without RES and were cultured for 8 weeks, followed by LPS injection. Results and discussion: The results suggested that RES attenuated the resulting oxidative stress and inflammation by activating the Nrf2/Keap1 pathway and inhibiting the NF-κB pathway, as confirmed by changes in oxidative stress, inflammation-related gene expression, and antioxidant enzyme activity. Furthermore, RES cleared damaged mitochondria and enhanced mitochondrial biogenesis to mitigate reactive oxygen species (ROS) accumulation by upregulating the SIRT1/PGC-1α and PINK1/Parkin pathways and reducing p62 expression. Overall, RES alleviated LPS-induced oxidative stress and inflammation in gibel carp through mitochondria-related mechanisms.


Subject(s)
Carps , Chemical and Drug Induced Liver Injury, Chronic , Cyprinidae , Animals , Resveratrol/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Lipopolysaccharides/toxicity , Kelch-Like ECH-Associated Protein 1/metabolism , Mitophagy , Sirtuin 1/metabolism , NF-E2-Related Factor 2/metabolism , Cyprinidae/metabolism , Carps/metabolism , Inflammation/chemically induced , Inflammation/drug therapy
18.
Front Immunol ; 14: 1164087, 2023.
Article in English | MEDLINE | ID: mdl-37256124

ABSTRACT

The active ingredients extracted from yeast are important for regulating animal health. The aim of the current research was to explore the impacts of dietary yeast glycoprotein (YG) on the growth performance, intestinal morphology, antioxidant capacity, immunity and disease resistance of largemouth bass (Micropterus salmoides). A total of 375 juvenile fish (6.00 ± 0.03 g) were allocated into 15 fiberglass tanks. Triplicate tanks were assigned to each diet. The dietary YG inclusion was as follows: the first group was given a high fishmeal diet (40% fishmeal, 0% YG) (FM) and the second group was given a low fishmeal diet (30% fishmeal and 15% soybean meal, 0% YG) (LFM). The fish in the third, fourth and fifth groups were fed the LFM diet supplemented with 0.5% (LFM+YG0.5), 1.0% (LFM+YG1.0) and 2.0% (LFM+YG2.0) YG, respectively. After a 60- day feeding trial, a challenge test using A. hydrophila was carried out. The results showed that the final body weight (FBW) and weight gain rate (WGR) in the LFM+YG2.0 group were significantly higher than those in the LFM group and were no significantly different from those in the FM group. This may be partially related to the activation of the target of rapamycin (TOR) signaling pathway. Dietary YG supplementation enhanced intestinal physical barriers by upregulating the intestinal tight junction protein related genes (claudin1, occludin and zo2) and improving the structural integrity of the gut, which may be partially associated with AMPK signaling pathway. Moreover, dietary YG increased the antioxidant capacity in the gut, upregulated intestinal anti-inflammatory factors (il-10, il1-1ß and tgf-ß) and downregulated proinflammatory factors (il-1ß and il-8), which may be partially related to the Nrf2/Keap1 signaling pathways. The results of the challenge test indicated that dietary supplementation with 0.5 or 1.0% YG can increase the disease tolerance of largemouth bass against A. hydrophila. In conclusion, the present results indicated that dietary supplementation with YG promotes the growth performance, intestinal immunity, physical barriers and antioxidant capacity of largemouth bass. In addition, 1.0% of dietary YG is recommended for largemouth bass based on the present results.


Subject(s)
Bass , Animals , Disease Resistance , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Diet , Dietary Supplements , Glycoproteins/metabolism
19.
Carbohydr Polym ; 315: 120997, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37230639

ABSTRACT

Platinum anticancer drugs have been explored and developed in recent years to reduce systematic toxicities and resist drug resistance. Polysaccharides derived from nature have abundant structures as well as pharmacological activities. The review provides insights on the design, synthesis, characterization and associating therapeutic application of platinum complexes with polysaccharides that are classified by electronic charge. The complexes give birth to multifunctional properties with enhanced drug accumulation, improved tumor selectivity and achieved synergistic antitumor effect in cancer therapy. Several techniques developing polysaccharides-based carriers newly are also discussed. Moreover, the lasted immunoregulatory activities of innate immune reactions triggered by polysaccharides are summarized. Finally, we discuss the current shortcomings and outline potential strategies for improving platinum-based personalized cancer treatment. Using platinum-polysaccharides complexes for improving the immunotherapy efficiency represents a promising framework in future.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Platinum/chemistry , Precision Medicine , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry
20.
J Lipid Res ; 64(6): 100390, 2023 06.
Article in English | MEDLINE | ID: mdl-37209828

ABSTRACT

Several epidemiological studies suggest a correlation between eating time and obesity. Night eating syndrome characterized by a time-delayed eating pattern is positively associated with obesity in humans as well as in experimental animals. Here, we show that oil intake at night significantly makes more fat than that at day in wild-type mice, and circadian Period 1 (Per1) contributes to this day-night difference. Per1-knockout mice are protected from high-fat diet-induced obesity, which is accompanied by a reduction in the size of the bile acid pool, and the oral administration of bile acids restores fat absorption and accumulation. We identify that PER1 directly binds to the major hepatic enzymes involved in bile acid synthesis such as cholesterol 7alpha-hydroxylase and sterol 12alpha-hydroxylase. A biosynthesis rhythm of bile acids is accompanied by the activity and instability of bile acid synthases with PER1/PKA-mediated phosphorylation pathways. Both fasting and high fat stress enhance Per1 expression, increasing the fat absorption and accumulation. Our findings reveal that Per1 is an energy regulator and controls daily fat absorption and accumulation. Circadian Per1 controls daily fat absorption and accumulation, suggesting Per1 is a potential candidate of a key regulator in stress response and the relevant obesity risk.


Subject(s)
Bile Acids and Salts , Ligases , Animals , Mice , Bile Acids and Salts/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism , Ligases/metabolism , Liver/metabolism , Obesity/metabolism , Period Circadian Proteins/metabolism , Phosphorylation , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL