Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 530
Filter
1.
Angew Chem Int Ed Engl ; : e202414524, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384539

ABSTRACT

Solid-state lithium metal batteries (SSLMBs) with solid polymer electrolyte (SPE) are highly promising for next-generation energy storage due to their enhanced safety and energy density. However, the stability of the solid electrolyte interphase (SEI) on the lithium metal/SPE interface is a major challenge, as continuous SEI degradation and regeneration during cycling lead to capacity fading. This article investigates the SEI formation on lithium anodes (l-SEI) and composite lithium anodes (c-SEI) in solid-state lithium metal batteries. The composite anodes form a uniform Li2S-rich inorganic SEI layer and a thinner organic SEI layer, effectively passivating the interface for enhanced cycling stability. Specifically, the full cells with c-SEI anodes sustain over 400 cycles at 0.5 C under a high areal capacity of 2.0 mAh cm-2. Moreover, the reversible high-loading solid-state pouch cells exhibit exceptional safety even after curling and cutting. These findings offer valuable insights into developing composite electrodes with robust SEI for solid-state polymer-based lithium metal batteries.

2.
Nat Mater ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375480

ABSTRACT

PtM (M = S, Se, Te) dichalcogenides are promising two-dimensional materials for electronics, optoelectronics and gas sensors due to their high air stability, tunable bandgap and high carrier mobility. However, their potential as electrocatalysts for the oxygen reduction reaction (ORR) is often underestimated due to their semiconducting properties and limited surface area from van der Waals stacking. Here we show an approach for synthesizing a highly efficient and stable ORR catalyst by restructuring defective platinum diselenide (DEF-PtSe2) through electrochemical cycling in an O2-saturated electrolyte. After 42,000 cycles, DEF-PtSe2 exhibited 1.3 times higher specific activity and 2.6 times higher mass activity compared with a commercial Pt/C electrocatalyst. Even after 126,000 cycles, it maintained superior ORR performance with minimal decay. Quantum mechanical calculations using hybrid density functional theory reveal that the improved performance is due to the synergistic contributions from Pt nanoparticles and the apical active sites on the DEF-PtSe2 surface. This work highlights the potential of DEF-PtSe2 as a durable electrocatalyst for ORR, offering insights into PtM dichalcogenide electrochemistry and the design of advanced catalysts.

3.
Oncoscience ; 11: 69-91, 2024.
Article in English | MEDLINE | ID: mdl-39318358

ABSTRACT

Poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi) are the first-approved anticancer drug designed to exploit synthetic lethality. PARPi selectively kill cancer cells with homologous recombination repair deficiency (HRD), as a result, PARPi are widely employed to treated BRCA1/2-mutant ovarian, breast, pancreatic and prostate cancers. Currently, four PARPi including Olaparib, Rucaparib, Niraparib, and Talazoparib have been developed and greatly improved clinical outcomes in cancer patients. However, accumulating evidences suggest that required or de novo resistance emerged. In this review, we discuss the molecular mechanisms leading to PARPi resistances and review the potential strategies to overcome PARPi resistance.

4.
Adv Mater ; : e2409489, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210646

ABSTRACT

Solid-state polymer lithium metal batteries are an important strategy for achieving high safety and high energy density. However, the issue of Li dendrites and inherent inferior interface greatly restricts practical application. Herein, this study introduces tris(2,2,2-trifluoroethyl)phosphate solvent with moderate solvation ability, which can not only complex with Li+ to promote the in-situ ring-opening polymerization of 1,3-dioxolane (DOL), but also build solvated structure models to explore the effect of different solvation structures in the polymer electrolyte. Thereinto, it is dominated by the contact ion pair solvated structure with pDOL chain segments forming less lithium bonds, exhibiting faster kinetic process and constructing a robust anion-derived inorganic-rich interphase, which significantly improves the utilization rate of active Li and the high-voltage resistance of pDOL. As a result, it exhibits stable cycling at ultra-high areal capacity of 20 mAh cm-2 in half cells, and an ultra-long lifetime of over 2000 h in symmetric cells can be realized. Furthermore, matched with LiNi0.9Co0.05Mn0.05O2 cathode, the capacity retention after 60 cycles is as high as 96.8% at N/P value of 3.33. Remarkably, 0.7 Ah Li||LiNi0.9Co0.05Mn0.05O2 pouch cell with an energy density of 461 Wh kg-1 can be stably cycled for five cycles at 100% depth of discharge.

5.
J Med Chem ; 67(17): 15311-15327, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39167391

ABSTRACT

Developing a dual-efficiency agent with antiresorptive and anabolic applications is a promising strategy for treating osteoporosis. This study reports the discovery of dual antiosteoporosis agents via a chemotype-assembly approach. Chemotype analysis identified 12 antiresorptive and 12 anabolic chemotypes and 7 dual-function chemotype-assembly rules. Based on these assembly rules, a dual-functional compound S24 was discovered. S24 exhibits osteoclastogenesis inhibition with an IC50 value of 10.28 µM and osteoblast differentiation stimulation at 10 µM. S24 derivatives were designed and synthesized based on the activity relationship of the chemotypes. This yielded a more active compound, S24-14, with an osteoclastogenesis inhibition IC50 value of 0.40 µM and osteoblast differentiation stimulation at 1.0 µM; compound S24-14 also suppressed bone loss in vivo. These results prove that S24-14 can be a potential lead for antiosteoporosis drug development.


Subject(s)
Anabolic Agents , Bone Resorption , Osteoblasts , Osteogenesis , Osteoporosis , Animals , Osteoporosis/drug therapy , Mice , Bone Resorption/drug therapy , Anabolic Agents/pharmacology , Anabolic Agents/chemistry , Anabolic Agents/therapeutic use , Anabolic Agents/chemical synthesis , Structure-Activity Relationship , Osteogenesis/drug effects , Osteoblasts/drug effects , Cell Differentiation/drug effects , Osteoclasts/drug effects , Osteoclasts/metabolism , Drug Discovery , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/chemical synthesis , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/chemistry , Humans , Molecular Structure , Male
6.
Nanoscale Horiz ; 9(10): 1766-1773, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39092853

ABSTRACT

Magnetic two-dimensional (2D) materials are a unique class of quantum materials that can exhibit interesting magnetic phenomena, such as layer-dependent magnetism. The most significant barrier to 2D magnet discovery and study lies in our ability to exfoliate materials down to the monolayer limit. Therefore designing exfoliation methods that produce clean, monolayer sheets is crucial for the growth of 2D material research. In this work, we develop a facile chemical exfoliation method using lithium naphthalenide for obtaining 2D nanosheets of magnetic van der Waals material CrOCl. Using our optimized method, we obtain freestanding monolayers of CrOCl, with the thinnest measured height to date. We also provide magnetic characterization of bulk, intercalated intermediate, and nanosheet pellet CrOCl, showing that exfoliated nanosheets of CrOCl exhibit magnetic order. The results of this study highlight the tunability of the chemical exfoliation method, along with providing a simple method for obtaining 2D CrOCl.

7.
Adv Mater ; 36(41): e2411197, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39149771

ABSTRACT

Lithium-sulfur (Li-S) batteries are widely regarded as one of the most promising next-generation high-energy-density energy storage devices. However, soluble lithium polysulfides (LiPSs) corrode Li metal and deteriorate the cycling stability of Li-S batteries. Understanding the reaction mechanism between LiPSs and Li metal anode is imperative. Herein, the reaction rate and products of LiPSs with Li metal anode, the composition and structure of the as-generated solid electrolyte interphase (SEI), and the mechanism of lithium nitrate (LiNO3) additives for inhibiting the corrosion reactions are systematically unveiled. Concretely, LiPSs react with Li metal anode more rapidly than Li salt and generate a Li2S-rich SEI. The Li2S-rich SEI is highly reactive with LiPSs, which exacerbates the formation of dendritic Li and the continuous corrosion of active Li. LiNO3 functions dominantly by modulating the solvation structure of LiPSs and inherently reducing the reactivity of LiPSs, rather than the conventional understanding of LiNO3 participating in the formation of SEI. This work reveals the reaction mechanism between LiPSs and Li metal anode and inspires rational regulating of the solvation structure of LiPSs for stabilizing Li metal anode in Li-S batteries.

8.
BMC Cancer ; 24(1): 953, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103758

ABSTRACT

BACKGROUND AND PURPOSE: In the context of the widespread availability of magnetic resonance imaging (MRI) and aggressive salvage irradiation techniques, there has been controversy surrounding the use of prophylactic cranial irradiation (PCI) for small-cell lung cancer (SCLC) patients. This study aimed to explore whether regular brain MRI plus salvage brain irradiation (SBI) is not inferior to PCI in patients with limited-stage SCLC (LS-SCLC). METHODS: This real-world multicenter study, which was conducted between January 2014 and September 2020 at three general hospitals, involved patients with LS-SCLC who had a good response to initial chemoradiotherapy and no brain metastasis confirmed by MRI. Overall survival (OS) was compared between patients who did not receive PCI for various reasons but chose regular MRI surveillance and followed salvage brain irradiation (SBI) when brain metastasis was detected and patients who received PCI. RESULTS: 120 patients met the inclusion criteria. 55 patients received regular brain MRI plus SBI (SBI group) and 65 patients received PCI (PCI group). There was no statistically significant difference in median OS between the two groups (27.14 versus 33.00 months; P = 0.18). In the SBI group, 32 patients underwent whole brain radiotherapy and 23 patients underwent whole brain radiotherapy + simultaneous integrated boost. On multivariate analysis, only extracranial metastasis was independently associated with poor OS in the SBI group. CONCLUSION: The results of this real-world study showed that MRI surveillance plus SBI is not inferior to PCI in OS for LS-SCLC patients who had a good response to initial chemoradiotherapy.


Subject(s)
Brain Neoplasms , Cranial Irradiation , Lung Neoplasms , Magnetic Resonance Imaging , Salvage Therapy , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/radiotherapy , Small Cell Lung Carcinoma/diagnostic imaging , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/pathology , Male , Female , Magnetic Resonance Imaging/methods , Lung Neoplasms/radiotherapy , Lung Neoplasms/mortality , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Middle Aged , Aged , Cranial Irradiation/methods , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Retrospective Studies , Neoplasm Staging , Adult , Chemoradiotherapy/methods
9.
Macromol Rapid Commun ; : e2400493, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150331

ABSTRACT

Recently, renewable bio-based materials have received more and more attention due to environmental issues such as global warming and ecosystem destruction. In the present work, a series of isosorbide-based bioelastomers poly(isosorbide carbonate-co-butanediol aliphatic esters)s (PICBAs) are synthesized by a facile and economical two-step melt polycondensation. Due to the slightly self-crosslinking reaction of isosorbide, PICBAs exhibit excellent tensile strength and self-healing ability, the mechanical properties of PICBAs can recover over 95% after 48 h under room temperature. In addition, PICBAs can stick different substances, such as glass, rubber, plastic, and stones, and show better adhesive performance than 3M commercially available double-sided tape. Consequently, isosorbide-based bioelastomers PICBAs are of great potential to be used as environmentally friendly pressure-sensitive adhesives (PSA) in the future.

10.
J Craniofac Surg ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949256

ABSTRACT

OBJECTIVE: To compare the clinical application effect and safety of polyetheretherketone (PEEK) and titanium mesh (TM) in cranioplasty. METHODS: Four-year retrospective comparison of patients (96 cases) undergoing synthetic cranioplasty with PEEK or TM. The patients were divided into the PEEK group (24 cases) and the TM group (72 cases) according to the implants, and the patient demographics, general conditions before the operation, postoperative complications, length of postoperative hospital stay, total costs, satisfaction with shaping and long-term complications were compared between the 2 groups. RESULTS: Patients in the PEEK group were younger than those in the TM group (P=0.019). Hospitalization costs were significantly higher in the PEEK group than in the TM group (P<0.001). The incidence of postoperative subcutaneous effusion was 33% in the PEEK group and 6.9% in the TM group, which suggests that patients in the PEEK group had a higher risk of postoperative subcutaneous effusion (P=0.001). There was no significant difference in the incidence of long-term complications and cosmetic satisfaction between the 2 groups at 4 years postoperatively. CONCLUSIONS: In this study, both titanium mesh and PEEK are reliable implants for cranioplasty. Titanium mesh is widely used in cranioplasty due to its cost-effective performance. PEEK has gradually gained recognition due to the characteristics of the material and surgical procedure, but the price needs to be further reduced, and attention should be paid to the occurrence and treatment of early postoperative subcutaneous effusion.

12.
Front Plant Sci ; 15: 1385164, 2024.
Article in English | MEDLINE | ID: mdl-38895612

ABSTRACT

Biotic stresses caused by bacterial and fungal pathogens damage crops; identifying treatments that enhance disease resistance provides important information for understanding plant defenses and sustainable agriculture. Salt stress affects crop yields worldwide; however, studies have focused on the toxic sodium ion, leaving the effects of the chloride ion unclear. In this study, we found that irrigation with a combination of chloride salts (MgCl2, CaCl2, and KCl) suppressed the cell death phenotype of the ceramide kinase mutant acd5. Chloride salt pre-irrigation also significantly limited the cell death caused by Pseudomonas syringae pv maculicola infection and inhibited the multiplication of this bacterial pathogen in a mechanism partially dependent on the salicylic acid pathway. Moreover, chloride salt pre-irrigation improved plant defenses against the fungal pathogen challenge, confining the lesion area caused by Botrytis cinerea infection. Furthermore, the growth of herbivorous larvae of Spodoptera exigua was retarded by feeding on chloride salt irrigated plants. Thus, our data suggest that treatment with Cl- increases broad spectrum resistance to biotic challenges.

13.
Adv Mater ; 36(35): e2405086, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38940367

ABSTRACT

In situ polymerized solid-state electrolytes have attracted much attention due to high Li-ion conductivity, conformal interface contact, and low interface resistance, but are plagued by lithium dendrite, interface degradation, and inferior thermal stability, which thereby leads to limited lifespan and severe safety hazards for high-energy lithium metal batteries (LMBs). Herein, an in situ polymerized electrolyte is proposed by copolymerization of 1,3-dioxolane with 1,3,5-tri glycidyl isocyanurate (TGIC) as a cross-linking agent, which realizes a synergy of battery thermal safety and interface compatibility with Li anode. Functional TGIC enhances the electrolyte polymeric level. The unique carbon-formation mechanism facilitates flame retardancy and eliminates the battery fire risk. In the meantime, TGIC-derived inorganic-rich interphase inhibits interface side reactions and promotes uniform Li plating. Intrinsically safe LMBs with nonflammability and outstanding electrochemical performances under extreme temperatures (130 °C) are achieved. This functional polymer design shows a promising prospect for the development of safe LMBs.

14.
J Pain ; 25(10): 104618, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38945381

ABSTRACT

The human brain is a dynamic system that shows frequency-specific features. Neuroimaging studies have shown that both healthy individuals and those with chronic pain disorders experience pain influenced by various processes that fluctuate over time. Primary dysmenorrhea (PDM) is a chronic visceral pain that disrupts the coordinated activity of brain's functional network. However, it remains unclear whether the dynamic interactions across the whole-brain network over time and their associations with neurobehavioral symptoms are dependent on the frequency bands in patients with PDM during the pain-free periovulation phase. In this study, we used an energy landscape analysis to examine the interactions over time across the large-scale network in a sample of 59 patients with PDM and 57 healthy controls (HCs) at different frequency bands. Compared with HCs, patients with PDM exhibit aberrant brain dynamics, with more significant differences in the slow-4 frequency band. Patients with PDM show more indirect neural transition counts due to an unstable intermediate state, whereas neurotypical brain activity frequently transitions between 2 major states. This data-driven approach further revealed that the brains of individuals with PDM have more abnormal brain dynamics than HCs. Our results suggested that unstable brain dynamics were associated with the strength of brain functional segregation and the Pain Catastrophizing Scale score. Our findings provide preliminary evidence that atypical dynamics in the functional network may serve as a potential key feature and biological marker of patients with PDM during the pain-free phase. PERSPECTIVE: We applied energy landscape analysis on brain-imaging data to identify relatively stable and dominant brain activity patterns for patients with PDM. More atypical brain dynamics were found in the slow-4 band and were related to the strength of functional segregation, providing new insights into the dysfunction brain dynamics.


Subject(s)
Brain , Dysmenorrhea , Nerve Net , Humans , Female , Dysmenorrhea/physiopathology , Adult , Young Adult , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Magnetic Resonance Imaging
15.
J Hazard Mater ; 476: 135007, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38944994

ABSTRACT

Accumulation of cadmium (Cd) in rice is not only harmful to the growth of plants but also poses a threat to human health. Exposure to Cd triggers unfolded protein response (UPR) within cells, a process that is still not completely understood. The study demonstrated that the lack of OsbZIP39, an essential endoplasmic reticulum (ER)-resident regulator of the UPR, resulted in decreased Cd intake and reduced Cd levels in the roots, stems, and grains of rice. Upon exposure to Cd stress, GFP-OsbZIP39 translocated from ER to nucleus, initiating UPR. Further investigation revealed that Cd treatment caused changes in sphingolipid levels in the membrane, influencing the localization and activation of OsbZIP39. Yeast one-hybrid and dual-LUC assays were conducted to validate the interaction between activated OsbZIP39 and the promoter of the defensin-like gene OsCAL2, resulting in an increase in its expression. Different variations were identified in the coding region of OsbZIP39, which may explain the varying levels of Cd accumulation observed in the indica and japonica subspecies. Under Cd treatment, OsbZIP39ind exhibited a more significant enhancement in the transcription of OsCAL2 compared to OsbZIP39jap. Our data suggest that OsbZIP39 positively regulates Cd uptake in rice, offering an encouraging objective for the cultivation of low-Cd rice.


Subject(s)
Cadmium , Endoplasmic Reticulum Stress , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/metabolism , Oryza/genetics , Oryza/drug effects , Cadmium/toxicity , Cadmium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation, Plant/drug effects , Defensins/genetics , Defensins/metabolism , Unfolded Protein Response/drug effects , Plant Roots/metabolism , Plant Roots/drug effects
16.
Angew Chem Int Ed Engl ; 63(37): e202408902, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38934230

ABSTRACT

Operating a lithium-ion battery (LIB) in a wide temperature range is essential for ensuring a stable electricity supply amidst fluctuating temperatures caused by climate or terrain changes. Electrolyte plays a pivotal role in determining the temperature durability of batteries. However, specialized electrolytes designed for either low or high temperatures typically possess distinct features. Therefore, wide-temperature electrolytes (WTEs) are necessary as they encompass a combination of diverse properties, which complicates the clear instruction of WTE design. Here we represent an artificial intelligence (Al)-assisted workflow of WTE design through stepwise parameterizations and calculations. Linear mono-nitriles are identified as ideal wide-liquidus-range solvents that can "softly" solvate lithium ions by weak interactions. In addition, the explainable modules revealed the halogenoid similarity of cyanide as fluorine on the electrolyte properties (e.g. boiling point and dielectric constant). With the further introduction of an ether bond, 3-methoxypropionitrile (MPN) has been eventually determined as a main electrolyte solvent, enabling the battery operation from -60 to 120 °C. Particularly, a LiCoO2/Li cell using the proposed WTE can realize stable cycling with capacity retention reaching 72.3 % after 50 cycles under a high temperature of 100 °C.

17.
Cell Rep ; 43(6): 114261, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38776224

ABSTRACT

Thymocyte development requires precise control of PI3K-Akt signaling to promote proliferation and prevent leukemia and autoimmune disorders. Here, we show that ablating individual clusters of the miR-17∼92 family has a negligible effect on thymocyte development, while deleting the entire family severely impairs thymocyte proliferation and reduces thymic cellularity, phenocopying genetic deletion of Dicer. Mechanistically, miR-17∼92 expression is induced by Myc-mediated pre-T cell receptor (TCR) signaling, and miR-17∼92 promotes thymocyte proliferation by suppressing the translation of Pten. Retroviral expression of miR-17∼92 restores the proliferation and differentiation of Myc-deficient thymocytes. Conversely, partial deletion of the miR-17∼92 family significantly delays Myc-driven leukemogenesis. Intriguingly, thymocyte-specific transgenic miR-17∼92 expression does not cause leukemia or lymphoma but instead aggravates skin inflammation, while ablation of the miR-17∼92 family ameliorates skin inflammation. This study reveals intricate roles of the miR-17∼92 family in balancing thymocyte development, leukemogenesis, and autoimmunity and identifies those microRNAs (miRNAs) as potential therapeutic targets for leukemia and autoimmune diseases.


Subject(s)
Autoimmunity , Leukemia , MicroRNAs , Thymocytes , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Thymocytes/metabolism , Thymocytes/pathology , Autoimmunity/genetics , Mice , Leukemia/pathology , Leukemia/genetics , Cell Proliferation , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Cell Differentiation/genetics , Signal Transduction , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism
18.
Clin Immunol ; 263: 110219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631594

ABSTRACT

Bullous pemphigoid (BP) and pemphigus vulgaris (PV) are two common subtypes of autoimmune bullous disease (AIBD). The key role of circulating autoreactive immune cells contributing to skin damage of AIBD has been widely recognized. Nevertheless, the immune characteristics in cutaneous lesions remain unclear. Here, we performed single-cell RNA sequencing (scRNA-seq) and single-cell VDJ sequencing (scRNA-seq) to generate transcriptional profiles for cells and T/B cell clonetype in skin lesions of BP and PV. We found that the proportions of NK&T, macrophages/ dendritic cells, B cells, and mast cells increased in BP and PV lesions. Then, BP and PV cells constituted over 75% of all myeloid cell subtypes, CD4+ T cell subtypes and CD8+ T cell subtypes. Strikingly, CD8+ Trm was identified to be expanded in PV, and located in the intermediate state of the pseudotime trajectory from CD8+ Tm to CD8+ Tem. Interestingly, CD8+ Tem and CD4+ Treg highly expressed exhaustion-related genes, especially in BP lesions. Moreover, the enhanced cell communication between stromal cells and immune cells like B cells and macrophages/ dendritic cells was also identified in BP and PV lesions. Finally, clone expansion was observed in T cells of BP and PV compared with HC, while CD8+ Trm represented the highest ratio of hyperexpanded TCR clones among all T cell subtypes. Our study generally depicts a large and comprehensive single-cell landscape of cutaneous lesions and highlights immune cell features in BP and PV. This offers potential research targets for further investigation.


Subject(s)
Pemphigoid, Bullous , Pemphigus , Single-Cell Analysis , Humans , Pemphigoid, Bullous/immunology , Pemphigoid, Bullous/genetics , Pemphigoid, Bullous/pathology , Pemphigus/immunology , Pemphigus/genetics , Pemphigus/pathology , Single-Cell Analysis/methods , Skin/immunology , Skin/pathology , CD8-Positive T-Lymphocytes/immunology , Female , Male , Sequence Analysis, RNA , CD4-Positive T-Lymphocytes/immunology , Macrophages/immunology , B-Lymphocytes/immunology , Aged , Dendritic Cells/immunology , Middle Aged
19.
Food Funct ; 15(9): 5041-5049, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38651948

ABSTRACT

Background: Frailty has been one of the most serious global public health challenges we will ever face. Oxidative stress is associated with the pathogenesis of frailty, and may be accurately reflected by the oxidative balance score (OBS). However, there have been no studies examining the effect of OBS on frailty. Therefore, we aimed to explore the association between OBS and frailty and whether there was an interaction between the outcomes. Methods: 22 914 participants aged over 20 years taking part in the National Health and Nutrition Examination Survey (NHANES) in 2007-2018 were involved in the study. Sixteen dietary factors and four lifestyle factors were selected to score the OBS. A modified 36-item deficit cumulative frailty index (FI) was used to assess the degree of frailty. The association between OBS and frailty was analyzed using binary logistic regression. Subgroup analysis and interaction tests were used to investigate whether this association was stable across populations. Results: A negative association between OBS and the prevalence of frailty was found in this study. There was also an interaction between OBS and age in their association with frailty. High OBS was significantly and negatively associated with the prevalence of frailty in the 20-39 and 40-64 age groups. In addition, higher OBS combined with a population in the 20-39 age group resulted in a stronger negative association with frailty. Conclusion: High OBS was significantly associated with lower odds of frailty. An interaction existed between OBS and age. Individuals, especially in relatively young populations, are advised to increase OBS through greater intake of antioxidant nutrients and healthier lifestyles, thereby reducing the adverse effects of frailty.


Subject(s)
Frailty , Nutrition Surveys , Oxidative Stress , Humans , Frailty/epidemiology , Middle Aged , Female , Male , Adult , Aged , Young Adult , Cross-Sectional Studies , Life Style , Aged, 80 and over , Prevalence
20.
Eur Arch Otorhinolaryngol ; 281(6): 3071-3082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584217

ABSTRACT

PURPOSE: To establish two nomograms to quantify the risk of lung metastasis (LM) in laryngeal carcinoma (LC) and predict the overall survival of LC patients with LM. METHODS: Totally 9515 LC patients diagnosed histologically from 2000 to 2019 were collected from the Surveillance, Epidemiology, and End Results database. The independent diagnostic factors for LM in LC patients and prognostic factors for LC patients with LM were identified by logistic and Cox regression analysis, respectively. Nomograms were established based on regression coefficients and evaluated by receiver operating characteristic curve, calibration curves, and decision curve analysis. RESULTS: Patients with supraglottis, higher pathological grade, higher N stage, and distant metastasis (bone, brain, or liver) were more likely to have LM (P < 0.05). Chemotherapy, surgery and radiotherapy were independent factors of the overall survival of LC patients with LM (P < 0.05). The area under curve of diagnostic nomogram were 0.834 and 0.816 in the training and validation cohort respectively. For the prognostic nomogram, the area under curves of 1-, 2-, and 3-years were 0.735, 0.734, and 0.709 in the training cohort and 0.705, 0.803, and 0.809 in the validation cohort. The calibration curves and decision curve analysis indicated good performance of the nomograms. CONCLUSION: Distant metastasis (bone, brain, or liver) and N stage should be considered for prediction of LM in LC patients. Chemotherapy is the most significant influencing prognostic factor improving the survival of LC patients with LM. Two nomograms may benefit for providing better precautionary measures and treatment decision.


Subject(s)
Laryngeal Neoplasms , Lung Neoplasms , Nomograms , SEER Program , Humans , Laryngeal Neoplasms/pathology , Laryngeal Neoplasms/therapy , Laryngeal Neoplasms/mortality , Laryngeal Neoplasms/diagnosis , Male , Female , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Lung Neoplasms/diagnosis , Middle Aged , Prognosis , Aged , Neoplasm Staging , ROC Curve , Adult , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL