Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
Clin Res Hepatol Gastroenterol ; 48(7): 102419, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992425

ABSTRACT

BACKGROUND AND AIMS: Primary biliary cholangitis (PBC) is an autoimmune disease often accompanied by multisystem damage. This study aimed to explore the causal association between genetically predicted PBC and diabetes, as well as multiple cardiovascular diseases (CVDs). METHODS: Genome-wide association studies (GWAS) summary data of PBC in 24,510 individuals of European ancestry from the European Association for the Study of the Liver was used to identify genetically predicted PBC. We conducted 2-sample single-variable Mendelian randomization (SVMR) and multivariable Mendelian randomization (MVMR) to estimate the impacts of PBC on diabetes (N = 17,685 to 318,014) and 20 CVDs from the genetic consortium (N = 171,875 to 1,030,836). RESULTS: SVMR provided evidence that genetically predicted PBC is associated with an increased risk of type 1 diabetes (T1D), type 2 diabetes (T2D), myocardial infarction (MI), heart failure (HF), hypertension, atrial fibrillation (AF), stroke, ischemic stroke, and small-vessel ischemic stroke. Additionally, there was no evidence of a causal association between PBC and coronary atherosclerosis. In the MVMR analysis, PBC maintained independent effects on T1D, HF, MI, and small-vessel ischemic stroke in most models. CONCLUSION: Our findings revealed the causal effects of PBC on diabetes and 7 CVDs, and no causal relationship was detected between PBC and coronary atherosclerosis.

2.
J Am Chem Soc ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080509

ABSTRACT

Iron-nitrogen-carbon (Fe-N-C) catalysts, although the most active platinum-free option for the cathodic oxygen reduction reaction (ORR), suffer from poor durability due to the Fe leaching and consequent Fenton effect, limiting their practical application in low-temperature fuel cells. This work demonstrates an integrated catalyst of a platinum-iron (PtFe) alloy planted in an Fe-N-C matrix (PtFe/Fe-N-C) to address this challenge. This novel catalyst exhibits both high-efficiency activity and stability, as evidenced by its impressive half-wave potential (E1/2) of 0.93 V versus reversible hydrogen electrode (vs RHE) and minimal 7 mV decay even after 50,000 potential cycles. Remarkably, it exhibits a very low hydrogen peroxide (H2O2) yield (0.07%) at 0.6 V and maintains this performance with negligible change after 10,000 potential cycles. Fuel cells assembled with this cathode PtFe/Fe-N-C catalyst show exceptional durability, with only 8 mV voltage loss at 0.8 A cm-2 after 30,000 cycles and ignorable current degradation at a voltage of 0.6 V over 85 h. Comprehensive in situ experiments and theoretical calculations reveal that oxygen species spillover from Fe-N-C to PtFe alloy not only inhibits H2O2 production but also eliminates harmful oxygenated radicals. This work paves the way for the design of highly efficient and stable ORR catalysts and has significant implications for the development of next-generation fuel cells.

3.
J Am Chem Soc ; 146(29): 20530-20538, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38991189

ABSTRACT

The electrochemical reduction reaction of carbon dioxide (CO2RR) into valuable products offers notable economic benefits and contributes to environmental sustainability. However, precisely controlling the reaction pathways and selectively converting key intermediates pose considerable challenges. In this study, our theoretical calculations reveal that the active sites with different states of copper atoms (1-3-5-7-9) play a pivotal role in the adsorption behavior of the *CHO critical intermediate. This behavior dictates the subsequent hydrogenation and coupling steps, ultimately influencing the formation of the desired products. Consequently, we designed two model electrocatalysts comprising Cu single atoms and particles supported on CeO2. This design enables controlled *CHO intermediate transformation through either hydrogenation with *H or coupling with *CO, leading to a highly selective CO2RR. Notably, our selective control strategy tunes the Faradaic efficiency from 61.1% for ethylene (C2H4) to 61.2% for methane (CH4). Additionally, the catalyst demonstrated a high current density and remarkable stability, exceeding 500 h of operation. This work not only provides efficient catalysts for selective CO2RR but also offers valuable insights into tailoring surface chemistry and designing catalysts for precise control over catalytic processes to achieve targeted product generation in CO2RR technology.

4.
Quant Imaging Med Surg ; 14(6): 3997-4014, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846272

ABSTRACT

Background: The cognitive decline induced by Alzheimer's disease (AD) is closely related to changes in hippocampal structure captured by magnetic resonance imaging (MRI). To accurately analyze the morphological changes of the hippocampus induced by AD, it is necessary to establish a one-to-one surface correspondence to compare the morphological measurements across different hippocampal surfaces. However, most existing landmark-based registration methods cannot satisfy both landmark matching and diffeomorphism under large deformations. To address these challenges, we propose a landmark-based spherical registration method via quasi-conformal mapping to establish a one-to-one correspondence between different hippocampal surfaces. Methods: In our approach, we use the eigen-graph of the hippocampal surface to extract the intrinsic and unified landmarks of all the hippocampal surfaces and then realize the parameterization process from the hippocampal surface to a unit sphere according to the barycentric coordinate theory and the triangular mesh optimization algorithm. Finally, through the local stereographic projection, the alignment of the landmarks is achieved based on the quasi-conformal mapping on a two-dimensional (2D) plane under the constraints of Beltrami coefficients which can effectively control the topology distortion. Results: We verified the proposed registration method on real hippocampus data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and created AD and normal control (NC) groups. Our registration algorithm achieved an area distortion index (ADI) of 0.4362e-4±0.7800e-5 in the AD group and 0.5671e-4±0.602e-5 in the NC group, and it achieved an angle distortion index (Eangle) of 0.6407±0.0258 in the AD group and 0.6271±0.0194 in the NC group. The accuracy of support vector machine (SVM) classification for the AD vs. NC groups based on the morphological features extracted from the registered hippocampal surfaces reached 94.2%. Conclusions: This landmark-based spherical quasi-conformal mapping for hippocampal surface registration algorithm can maintain precise alignment of the landmarks and bijectivity in the presence of large deformation.

5.
Front Oncol ; 14: 1407795, 2024.
Article in English | MEDLINE | ID: mdl-38887235

ABSTRACT

Background: Breast cancer (BC) exhibits a high incidence rate, imposing a substantial burden on healthcare systems. Novel drug targets are urgently needed for BC. Mendelian randomization (MR) has gained widespread application for identifying fresh therapeutic targets. Our endeavor was to pinpoint circulatory proteins causally linked to BC risk and proffer potential treatment targets for BC. Methods: Through amalgamating protein quantitative trait loci from 2,004 circulating proteins and comprehensive genome-wide association study data from the Breast Cancer Association Consortium, we conducted MR analyses. Employing Steiger filtering, bidirectional MR, Bayesian colocalization, phenotype scanning, and replication analyses, we further solidified MR study outcomes. Additionally, protein-protein interaction (PPI) network was harnessed to unveil latent associations between proteins and prevailing breast cancer medications. The phenome-wide MR (Phe-MR) was employed to assess potential side effects and indications for the druggable proteins of BC. Finally, we further affirmed the drugability of potential drug targets through mRNA expression analysis and molecular docking. Results: Through comprehensive analysis, we identified five potential drug targets, comprising four (TLR1, A4GALT, SNUPN, and CTSF) for BC and one (TLR1) for BC_estrogen receptor positive. None of these five potential drug targets displayed reverse causation. Bayesian colocalization suggested that these five latent drug targets shared variability with breast cancer. All drug targets were replicated within the deCODE cohort. TLR1 exhibited PPI with current breast cancer therapeutic targets. Furthermore, Phe-MR unveiled certain adverse effects solely for TLR1 and SNUPN. Conclusion: Our study uncovers five prospective drug targets for BC and its subtypes, warranting further clinical exploration.

6.
Angew Chem Int Ed Engl ; : e202410545, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940407

ABSTRACT

Rational design of efficient methanol oxidation reaction (MOR) catalyst that undergo non-CO pathway is essential to resolve the long-standing poisoning issue. However, it remains a huge challenge due to the rather difficulty in maximizing the non-CO pathway by the selective coupling between the key *CHO and *OH intermediates. Here, we report a high-performance electrocatalyst of patchy atomic-layer Pt epitaxial growth on CeO2 nanocube (Pt ALs/CeO2) with maximum electron-metal support interactions for enhancing the coupling selectively. The small-size monolayer material achieves an optimal geometrical distance between edge Pt-O-Ce sites and *OH absorbed on CeO2, which well restrains the dehydrogenation of *CHO, resulting in the non-CO pathway. Meanwhile, the *CHO/*CO intermediate generated at inner Pt-O-Ce sites can migrate to edge, inducing the subsequent coupling reaction, thus avoiding poisoning while promoting reaction efficiency. Consequently, Pt ALs/CeO2 exhibits exceptionally catalytic stability with negligible degradation even under 1000 s pure CO poisoning operation and high mass activity (14.87 A/mgPt), enabling it one of the best-performing alkali-stable MOR catalysts.

7.
J Am Chem Soc ; 146(22): 15356-15365, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38773696

ABSTRACT

Electrosynthesis has emerged as an enticing solution for hydrogen peroxide (H2O2) production. However, efficient H2O2 generation encounters challenges related to the robust gas-liquid-solid interface within electrochemical reactors. In this work, we introduce an effective hydrophobic coating modified by iron (Fe) sites to optimize the reaction microenvironment. This modification aims to mitigate radical corrosion through Fe(II)/Fe(III) redox chemistry, reinforcing the reaction microenvironment at the three-phase interface. Consequently, we achieved a remarkable yield of up to 336.1 mmol h-1 with sustained catalyst operation for an extensive duration of 230 h at 200 mA cm-2 without causing damage to the reaction interface. Additionally, the Faradaic efficiency of H2O2 exceeded 90% across a broad range of test current densities. This surface redox chemistry approach for manipulating the reaction microenvironment not only advances long-term H2O2 electrosynthesis but also holds promise for other gas-starvation electrochemical reactions.

8.
J Transl Med ; 22(1): 457, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745204

ABSTRACT

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Subject(s)
Arthritis, Rheumatoid , Fibrosis , Inflammation , Lung Diseases, Interstitial , Potassium Channels , Proto-Oncogene Proteins c-akt , Resveratrol , Signal Transduction , Animals , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Autophagy/drug effects , Cell Line , Inflammation/pathology , Inflammation/drug therapy , Lung/pathology , Lung/drug effects , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Membrane Proteins/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Mice , Potassium Channels/drug effects , Potassium Channels/metabolism
9.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38695876

ABSTRACT

Platinum-based chemotherapy drugs can lead to the development of anorexia, a detrimental effect on the overall health of cancer patients. However, managing chemotherapy-induced anorexia and subsequent weight loss remains challenging due to limited effective therapeutic strategies. Growth differentiation factor 15 (GDF15) has recently gained significant attention in the context of chemotherapy-induced anorexia. Here, we report that hepatic GDF15 plays a crucial role in regulating body weight in response to chemo drugs cisplatin and doxorubicin. Cisplatin and doxorubicin treatments induce hepatic Gdf15 expression and elevate circulating GDF15 levels, leading to hunger suppression and subsequent weight loss. Mechanistically, selective activation by chemotherapy of hepatic IRE1α-XBP1 pathway of the unfolded protein response (UPR) upregulates Gdf15 expression. Genetic and pharmacological inactivation of IRE1α is sufficient to ameliorate chemotherapy-induced anorexia and body weight loss. These results identify hepatic IRE1α as a molecular driver of GDF15-mediated anorexia and suggest that blocking IRE1α RNase activity offers a therapeutic strategy to alleviate the adverse anorexia effects in chemotherapy.


Subject(s)
Anorexia , Doxorubicin , Endoribonucleases , Growth Differentiation Factor 15 , Liver , Protein Serine-Threonine Kinases , Weight Loss , X-Box Binding Protein 1 , Animals , Humans , Mice , Anorexia/chemically induced , Anorexia/metabolism , Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Doxorubicin/adverse effects , Endoribonucleases/metabolism , Endoribonucleases/genetics , Growth Differentiation Factor 15/adverse effects , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Unfolded Protein Response/drug effects , Weight Loss/drug effects , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics
10.
Nat Commun ; 15(1): 3416, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649713

ABSTRACT

In-depth comprehension and modulation of the electronic structure of the active metal sites is crucial to enhance their intrinsic activity of electrocatalytic oxygen evolution reaction (OER) toward anion exchange membrane water electrolyzers (AEMWEs). Here, we elaborate a series of amorphous metal oxide catalysts (FeCrOx, CoCrOx and NiCrOx) with high performance AEMWEs by high-valent chromium dopant. We discover that the positive effect of the transition from low to high valence of the Co site on the adsorption energy of the intermediate and the lower oxidation barrier is the key factor for its increased activity by synchrotron radiation in-situ techniques. Particularly, the CoCrOx anode catalyst achieves the high current density of 1.5 A cm-2 at 2.1 V and maintains for over 120 h with attenuation less than 4.9 mV h-1 in AEMWE testing. Such exceptional performance demonstrates a promising prospect for industrial application and providing general guidelines for the design of high-efficiency AEMWEs systems.

11.
Front Cell Infect Microbiol ; 14: 1327083, 2024.
Article in English | MEDLINE | ID: mdl-38562964

ABSTRACT

Background: Gut microbiota has been associated with dermatological problems in earlier observational studies. However, it is unclear whether gut microbiota has a causal function in dermatological diseases. Methods: Thirteen dermatological diseases were the subject of bidirectional Mendelian randomization (MR) research aimed at identifying potential causal links between gut microbiota and these diseases. Summary statistics for the Genome-Wide Association Study (GWAS) of gut microbiota and dermatological diseases were obtained from public datasets. With the goal of evaluating the causal estimates, five acknowledged MR approaches were utilized along with multiple testing corrections, with inverse variance weighted (IVW) regression serving as the main methodology. Regarding the taxa that were causally linked with dermatological diseases in the forward MR analysis, reverse MR was performed. A series of sensitivity analyses were conducted to test the robustness of the causal estimates. Results: The combined results of the five MR methods and sensitivity analysis showed 94 suggestive and five significant causal relationships. In particular, the genus Eubacterium_fissicatena_group increased the risk of developing psoriasis vulgaris (odds ratio [OR] = 1.32, pFDR = 4.36 × 10-3), family Bacteroidaceae (OR = 2.25, pFDR = 4.39 × 10-3), genus Allisonella (OR = 1.42, pFDR = 1.29 × 10-2), and genus Bacteroides (OR = 2.25, pFDR = 1.29 × 10-2) increased the risk of developing acne; and the genus Intestinibacter increased the risk of urticaria (OR = 1.30, pFDR = 9.13 × 10-3). A reverse MR study revealed insufficient evidence for a significant causal relationship. In addition, there was no discernible horizontal pleiotropy or heterogeneity. Conclusion: This study provides novel insights into the causality of gut microbiota in dermatological diseases and therapeutic or preventive paradigms for cutaneous conditions.


Subject(s)
Acne Vulgaris , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Bacteroides/genetics
12.
Adv Mater ; 36(31): e2404672, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38634272

ABSTRACT

The performance of single-atom catalysts is greatly influenced by the chemical environment surrounding the central atom. Here, a salt-assisted method is employed to transform the tetrahedral coordination structure of zeolitic imidazolate frameworks - 8 (ZIF-8) into a planar square coordination structure without altering the ligands. During the subsequent carbonization process, concurrent with the evaporation of zinc atoms, the structure of the nitrogen and carbon carriers (NC carriers) undergoes a transition from five-membered rings to six-membered rings to preserve the 2D structure. This transition results in the generation of additional defect sites on the 2D-NC substrates. Hence, the Pt single-atom catalysts with planar square coordination symmetries can be precisely prepared via electrodeposition (denoted as 2D-Pt SAC). The Pt loading of 2D-Pt SAC is 0.49 ± 0.03 µg cm-2, higher than that of 3D-Pt SAC (0.37 ± 0.04 µg cm-2). In the context of the hydrogen oxidation reaction electrocatalysis, under an overpotential of 50 mV, these single-atom catalysts with 2D coordination exhibit mass activities of 2396 A gPt -1 (32 times higher than commercial Pt/C catalyst, 2 times higher than 3D-PtNC).

13.
J AOAC Int ; 107(4): 704-713, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38492563

ABSTRACT

BACKGROUND: Arcae concha and Meretricis concha cyclinae concha are two marine shellfish herbs with similar composition and efficacy, which are usually calcined and used clinically. OBJECTIVE: This study investigated variations in the inorganic and organic components of Arcae concha and Meretricis concha cyclinae concha from different production regions, both Arcae concha and Meretricis concha cyclinae concha. The aim was to enhance the understanding of these two types of marine shell traditional Chinese medicine (msTCM) and provide a foundation for their future development and application. METHOD: Spectroscopic techniques, including infrared spectroscopy, X-ray spectroscopy, and X-ray fluorescence spectroscopy, were used to analyze the calcium carbonate (CaCO3) crystal and trace elements. Thermogravimetric analysis was used to investigate the decomposition process during heating. The proteins were quantified using the BCA protein assay kit. Principal component analysis (PCA) was used to classify inorganic elements in the two marine shellfish traditional Chinese medicines. RESULTS: No significant differences were found among the various production regions. The crystal structure of CaCO3 in the raw products was aragonite, but it transformed into calcite after calcination. The contents of Ca, Na, Sr, and other inorganic elements were highest. The protein content was significantly reduced after calcination. Therefore, these factors cannot accurately reflect the internal quality of TCM, rendering qualitative identification challenging. CaCO3 dissolution in the decoction of Arcae concha and Meretricis concha cyclinae concha increased after calcination, aligning with the clinical application of calcined shell TCM. PCA revealed the inorganic elements in them, indicating that the variation in trace element composition among different drugs leads to differences in their therapeutic focus, which should be considered during usage. CONCLUSIONS: This study clarifies the composition and structure changes of corrugated and clam shell before and after calcining, and it lays the foundation for the comprehensive utilization of marine traditional Chinese medicine. HIGHLIGHTS: These technical representations reveal the differences between raw materials and processed products, which will provide support for the quality control of other shellfish TCM.


Subject(s)
Calcium Carbonate , Medicine, Chinese Traditional , Animals , Calcium Carbonate/chemistry , Calcium Carbonate/analysis , Arcidae/chemistry , Animal Shells/chemistry , Principal Component Analysis , Shellfish/analysis , Trace Elements/analysis , Trace Elements/chemistry
14.
Lipids Health Dis ; 23(1): 81, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509584

ABSTRACT

BACKGROUND: Obesity is associated with extensive white adipose tissue (WAT) expansion and remodeling. Healthy WAT expansion contributes to the maintenance of energy balance in the liver, thereby ameliorating obesity-related hepatic steatosis. Tissue-resident mesenchymal stromal cell populations, including PDGFRß + perivascular cells, are increasingly recognized pivotal as determinants of the manner in which WAT expands. However, the full array of regulatory factors controlling WAT stromal cell functions remains to be fully elucidated. Hypoxia-inducible factors (HIFs) are critical regulators in WAT stromal cell populations such as adipocyte precursor cells (APCs). It is revealed that HIF1α activation within PDGFRß + stromal cells results in the suppression of de novo adipogenesis and the promotion of a pro-fibrogenic cellular program in obese animals. However, the role of HIF2α in PDGFRß + cells remains undetermined in vivo. METHODS: New genetic models were employed in which HIF1α (encoded by the Hif1a gene) and HIF2α (encoded by the Epas1 gene) are selectively inactivated in PDGFRß + cells in an inducible manner using tamoxifen (TAM). With these models, both in vitro and in vivo functional analysis of PDGFRß + cells lacking HIF proteins were performed. Additionally, comprehensive metabolic phenotyping in diet-induced mouse models were performed to investigate the roles of PDGFRß + cell HIF proteins in WAT remodeling, liver energy balance and systemic metabolism. RESULTS: Unlike HIF1α inactivation, the new findings in this study suggest that inducible ablation of HIF2α in PDGFRß + cells does not cause apparent effects on WAT expansion induced by obesogenic diet. The adipogenic ability of PDGFRß + APCs is not significantly altered by genetic HIF2α ablation. Moreover, no difference of key parameters associated with healthy WAT remodeling such as improvements of WAT insulin sensitivity, reduction in metabolic inflammation, as well as changes in liver fat accumulation or systemic glucose metabolism, is detected in PDGFRß + cell Epas1-deficient mice. CONCLUSION: The new findings in this study support that, in contrast to HIF1α, PDGFRß + cell HIF2α appears dispensable for WAT metabolic remodeling and the resulting effects on liver metabolic homeostasis in diet-induced obesity, underscoring the isoform-specific roles of HIFα proteins in the regulation of adipose tissue biology.


Subject(s)
Adipose Tissue, White , Basic Helix-Loop-Helix Transcription Factors , Obesity , Animals , Mice , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Lipids , Liver/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
15.
J Hum Genet ; 69(6): 245-253, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38429412

ABSTRACT

Gastroesophageal reflux disease (GERD) is a prevalent chronic ailment, and present therapeutic approaches are not always effective. This study aimed to find new drug targets for GERD and Barrett's esophagus (BE). We obtained genetic instruments for GERD, BE, and 2004 plasma proteins from recently published genome-wide association studies (GWAS), and Mendelian randomization (MR) was employed to explore potential drug targets. We further winnowed down MR-prioritized proteins through replication, reverse causality testing, colocalization analysis, phenotype scanning, and Phenome-wide MR. Furthermore, we constructed a protein-protein interaction network, unveiling potential associations among candidate proteins. Simultaneously, we acquired mRNA expression quantitative trait loci (eQTL) data from another GWAS encompassing four different tissues to identify additional drug targets. Meanwhile, we searched drug databases to evaluate these targets. Under Bonferroni correction (P < 4.8 × 10-5), we identified 11 plasma proteins significantly associated with GERD. Among these, 7 are protective proteins (MSP, GPX1, ERBB3, BT3A3, ANTR2, CCM2, and DECR2), while 4 are detrimental proteins (TMEM106B, DUSP13, C1-INH, and LINGO1). Ultimately, C1-INH and DECR2 successfully passed the screening process and exhibited similar directional causal effects on BE. Further analysis of eQTLs highlighted 4 potential drug targets, including EDEM3, PBX3, MEIS1-AS3, and NME7. The search of drug databases further supported our conclusions. Our study indicated that the plasma proteins C1-INH and DECR2, along with 4 genes (EDEM3, PBX3, MEIS1-AS3, and NME7), may represent potential drug targets for GERD and BE, warranting further investigation.


Subject(s)
Barrett Esophagus , Gastroesophageal Reflux , Genome-Wide Association Study , Mendelian Randomization Analysis , Quantitative Trait Loci , Humans , Barrett Esophagus/genetics , Barrett Esophagus/drug therapy , Barrett Esophagus/pathology , Gastroesophageal Reflux/genetics , Gastroesophageal Reflux/drug therapy , Genetic Predisposition to Disease , Protein Interaction Maps/genetics , Polymorphism, Single Nucleotide
16.
Nano Lett ; 24(10): 3213-3220, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38426819

ABSTRACT

Rational design of well-defined active sites is crucial for promoting sluggish oxygen reduction reactions. Herein, leveraging the surfactant-oriented and solvent-ligand effects, we develop a facile self-assembly strategy to construct a core-shell catalyst comprising a high-index Pt shell encapsulating a PtCu3 intermetallic core with efficient oxygen-reduction performance. Without undergoing a high-temperature route, the ordered PtCu3 is directly fabricated through the accelerated reduction of Cu2+, followed by the deposition of the remaining Pt precursor onto its surface, forming high-index steps oriented by the steric hindrance of surfactant. This approach results in a high half-wave potential of 0.911 V versus reversible hydrogen electrode, with negligible deactivation even after 15000-cycle operation. Operando spectroscopies identify that this core-shell catalyst facilitates the conversion of oxygen-involving intermediates and ensures antidissolution ability. Theoretical investigations rationalize that this improvement is attributed to reinforced electronic interactions around high-index Pt, stabilizing the binding strength of rate-determining OHads species.

17.
J Phys Chem Lett ; 15(11): 3071-3077, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38466813

ABSTRACT

The comprehensive understanding toward the dealloying process is crucial for designing alloy catalysts employed in the oxygen reduction reaction (ORR). However, the specific leaching procedure and subsequent reconstruction of the dealloyed catalyst still remain unclear. Herein, we employ in situ X-ray absorption fine structure spectroscopy to monitor the dealloying process of a two-dimensional PtTe ordered alloy, known for its enhanced ORR activity. Our findings reveal the unsynchronous evolutions of Pt and Te sites, wherein the Pt component undergoes a structural transformation prior to the complete leaching of Te, leading to the formation of a defect-rich Pt catalyst. This dealloyed catalyst exhibits a significant enhancement in ORR activity, featuring a half-wave potential of 0.90 V versus the reversible hydrogen electrode and a mass activity of 0.62 A mgPt-1, outperforming the performance of commercial Pt/C counterpart. This in-depth understanding of the dealloying mechanism enriches our knowledge for the development of high-performance Pt-based alloy catalysts.

19.
Angew Chem Int Ed Engl ; 63(16): e202319936, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38372428

ABSTRACT

Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.

20.
Nature ; 626(7997): 86-91, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297172

ABSTRACT

Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1-6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7-12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13-15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16-18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead-acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm-2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.

SELECTION OF CITATIONS
SEARCH DETAIL