Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.360
1.
Sci Rep ; 14(1): 10433, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714696

Toxoplasma gondii (T. gondii) is a protozoan parasite that infects approximately one-third of the global human population, often leading to chronic infection. While acute T. gondii infection can cause neural damage in the central nervous system and result in toxoplasmic encephalitis, the consequences of T. gondii chronic infection (TCI) are generally asymptomatic. However, emerging evidence suggests that TCI may be linked to behavioral changes or mental disorders in hosts. Astrocyte polarization, particularly the A1 subtype associated with neuronal apoptosis, has been identified in various neurodegenerative diseases. Nevertheless, the role of astrocyte polarization in TCI still needs to be better understood. This study aimed to establish a mouse model of chronic TCI and examine the transcription and expression levels of glial fibrillary acidic protein (GFAP), C3, C1q, IL-1α, and TNF-α in the brain tissues of the mice. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay, and Western blotting were employed to assess these levels. Additionally, the expression level of the A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA). In mice with TCI, the transcriptional and expression levels of the inflammatory factors C1q, IL-1α, and TNF-α followed an up-down-up pattern, although they remained elevated compared to the control group. These findings suggest a potential association between astrocyte polarization towards the A1 subtype and synchronized changes in these three inflammatory mediators. Furthermore, immunofluorescence assay (IFA) revealed a significant increase in the A1 astrocytes (GFAP+C3+) proportion in TCI mice. This study provides evidence that TCI can induce astrocyte polarization, a biological process that may be influenced by changes in the levels of three inflammatory factors: C1q, IL-1α, and TNF-α. Additionally, the release of neurotoxic substances by A1 astrocytes may be associated with the development of TCI.


Astrocytes , Brain , Toxoplasma , Animals , Astrocytes/metabolism , Astrocytes/parasitology , Astrocytes/pathology , Mice , Toxoplasma/pathogenicity , Toxoplasma/physiology , Brain/parasitology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Female , Chronic Disease , Cell Polarity , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology , Toxoplasmosis/pathology , Tumor Necrosis Factor-alpha/metabolism , Toxoplasmosis, Cerebral/parasitology , Toxoplasmosis, Cerebral/pathology , Toxoplasmosis, Cerebral/metabolism
2.
J Adv Res ; 2024 May 11.
Article En | MEDLINE | ID: mdl-38740259

BACKGROUND: Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW: We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW: We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.

3.
Article En | MEDLINE | ID: mdl-38691659

OBJECTIVE: Somatic variants in the ubiquitin-specific protease 8 (USP8) gene are the most common genetic cause of Cushing disease. We aimed to explore the relationship between clinical outcomes and USP8 status in a single centre. DESIGN, PATIENTS AND MEASUREMENTS: We investigated the USP8 status in 48 patients with pituitary corticotroph tumours. A median of 62 months of follow-up was conducted after surgery from November 2013 to January 2015. The clinical, biochemical and imaging features were collected and analysed. RESULTS: Seven USP8 variants (p.Ser718Pro, p.Ser719del, p.Pro720Arg, p.Pro720Gln, p.Ser718del, p.Ser718Phe, p.Lys713Arg) were identified in 24 patients (50%). USP8 variants showed a female predominance (100% vs. 75% in wild type [WT], p = .022). Patients with p.Ser719del showed an older age at surgery compared to patients with the p.Pro720Arg variant (47- vs. 24-year-olds, p = .033). Patients with p.Pro720Arg showed a higher rate of macroadenoma compared to patients harbouring the p.Ser718Pro variant (60% vs. 0%, p = .037). No significant differences were observed in serum and urinary cortisol and adrenocorticotropin hormone (ACTH) levels. Immediate surgical remission (79% vs. 75%) and long-term hormone remission (79% vs. 67%) were not significantly different between the two groups. The recurrence rate was 21% (4/19) in patients harbouring USP8 variants and 13% (2/16) in WT patients. Recurrence-free survival presented a tendency to be shorter in USP8-mutated individuals (76.7 vs. 109.2 months, p = .068). CONCLUSIONS: Somatic USP8 variants accounted for 50% of the genetic causes in this cohort with a significant female frequency. A long-term follow-up revealed a tendency toward shorter recurrence-free survival in USP8-mutant patients.

4.
Cancer Med ; 13(9): e7218, 2024 May.
Article En | MEDLINE | ID: mdl-38733169

BACKGROUND: Immune checkpoint inhibitors (ICIs) are a promising immunotherapy approach, but glioblastoma clinical trials have not yielded satisfactory results. OBJECTIVE: To screen glioblastoma patients who may benefit from immunotherapy. METHODS: Eighty-one patients receiving anti-PD1/PD-L1 treatment from a large-scale clinical trial and 364 patients without immunotherapy from The Cancer Genome Atlas (TCGA) were included. Patients in the ICI-treated cohort were divided into responders and nonresponders according to overall survival (OS), and the most critical responder-relevant features were screened using random forest (RF). We constructed an artificial neural network (ANN) model and verified its predictive value with immunotherapy response and OS. RESULTS: We defined two groups of ICI-treated glioblastoma patients with large differences in survival benefits as nonresponders (OS ≤6 months, n = 18) and responders (OS ≥17 months, n = 8). No differentially mutated genes were observed between responders and nonresponders. We performed RF analysis to select the most critical responder-relevant features and developed an ANN with 20 input variables, five hidden neurons and one output neuron. Receiver operating characteristic analysis and the DeLong test demonstrated that the ANN had the best performance in predicting responders, with an AUC of 0.97. Survival analysis indicated that ANN-predicted responders had significantly better OS rates than nonresponders. CONCLUSION: The 20-gene panel developed by the ANN could be a promising biomarker for predicting immunotherapy response and prognostic benefits in ICI-treated GBM patients and may guide oncologists to accurately select potential responders for the preferential use of ICIs.


B7-H1 Antigen , Glioblastoma , Immune Checkpoint Inhibitors , Immunotherapy , Neural Networks, Computer , Programmed Cell Death 1 Receptor , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/mortality , Glioblastoma/immunology , Glioblastoma/therapy , Immune Checkpoint Inhibitors/therapeutic use , Male , Female , Immunotherapy/methods , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/immunology , Aged , Adult , Prognosis , Treatment Outcome
5.
Chem Commun (Camb) ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38753179

A novel H2O2-responsive carbon monoxide nanogenerator was designed by effectively encapsulating a manganese carbonyl prodrug into porphyrinic covalent organic polymers for realizing the combined CO gas and photodynamic therapy under near infrared light irradiation.

6.
Mil Med Res ; 11(1): 22, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622688

BACKGROUND: Liver ischemia/reperfusion (I/R) injury is usually caused by hepatic inflow occlusion during liver surgery, and is frequently observed during war wounds and trauma. Hepatocyte ferroptosis plays a critical role in liver I/R injury, however, it remains unclear whether this process is controlled or regulated by members of the DEAD/DExH-box helicase (DDX/DHX) family. METHODS: The expression of DDX/DHX family members during liver I/R injury was screened using transcriptome analysis. Hepatocyte-specific Dhx58 knockout mice were constructed, and a partial liver I/R operation was performed. Single-cell RNA sequencing (scRNA-seq) in the liver post I/R suggested enhanced ferroptosis by Dhx58hep-/-. The mRNAs and proteins associated with DExH-box helicase 58 (DHX58) were screened using RNA immunoprecipitation-sequencing (RIP-seq) and IP-mass spectrometry (IP-MS). RESULTS: Excessive production of reactive oxygen species (ROS) decreased the expression of the IFN-stimulated gene Dhx58 in hepatocytes and promoted hepatic ferroptosis, while treatment using IFN-α increased DHX58 expression and prevented ferroptosis during liver I/R injury. Mechanistically, DHX58 with RNA-binding activity constitutively associates with the mRNA of glutathione peroxidase 4 (GPX4), a central ferroptosis suppressor, and recruits the m6A reader YT521-B homology domain containing 2 (YTHDC2) to promote the translation of Gpx4 mRNA in an m6A-dependent manner, thus enhancing GPX4 protein levels and preventing hepatic ferroptosis. CONCLUSIONS: This study provides mechanistic evidence that IFN-α stimulates DHX58 to promote the translation of m6A-modified Gpx4 mRNA, suggesting the potential clinical application of IFN-α in the prevention of hepatic ferroptosis during liver I/R injury.


Ferroptosis , Reperfusion Injury , Animals , Mice , Dichlorodiphenyl Dichloroethylene , Hepatocytes , Interferon-alpha , RNA , RNA, Messenger
7.
Mikrochim Acta ; 191(5): 266, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38625578

A photoelectrochemical sensor for target detection of hydrogen peroxide was designed based on a new heterojunction nanocomposite which was sulfhydryl-borate ester-modified A1/B1-type pillar[5]arene (BP5)-functionalized Au NPs and multi-walled carbon nanotubes hybridized with bismuth bromide oxide (Au@BP5/MWNTs-BiOBr). The specific sensor was based on the direct induction of oxidation by hydrogen peroxide of the borate ester group of pillar[5]arene. Additionally, the local surface plasmon resonance (LSPR) of Au NPs enhanced visible light capture, the host-guest complexation of BP5 with H2O2 enhanced photocurrent response, the layer-by-layer stacked nanoflower structure of BiOBr provided large specific surface area with more active sites, and the conductivity of MWNTs enhanced the charge separation efficiency and significantly improves the stability of PEC. Their synthesis effect significantly increased the photocurrent signal and further enhanced the detection result. Under the optimal conditions, the linear concentration range of H2O2 detected by the Au@BP5/MWNTs-BiOBr sensor was from 1 to 60 pmol/L. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were 0.333 pmol/L and 1 pmol/L, respectively, and the sensitivity was 6.471 pmol/L. Importantly, the PEC sensor has good stability, reproducibility, and interference resistance and can be used for the detection of hydrogen peroxide in real cells.

8.
Front Endocrinol (Lausanne) ; 15: 1373869, 2024.
Article En | MEDLINE | ID: mdl-38628582

Objective: Double pituitary adenomas (DPA) are a rare clinical condition, and our knowledge of them is limited. Missing the second lesion leading to incomplete biochemical remission after surgery is an important challenge in DPA management. This study aims to analyze independent prognostic factors in DPA patients and summarize clinical experiences to prevent surgical failure. Methods: Two cases of DPA patients with Cushing's disease diagnosed and surgically treated at Peking Union Medical College Hospital are reported. A literature review was performed on the online database Pubmed, and 57 DPA patients from 22 retrieved articles were included. Demographic characteristics, endocrine manifestations, diagnostic methods, tumor size, and immunohistochemical features of 59 patients were analyzed. Binary logistic regression models were used to identify independent prognostic factors affecting postoperative biochemical remission. Results: Among 59 DPA patients, the mean ± SD age was 43.64 ± 14.42 years, with 61.02% being female (n = 36). The most common endocrine manifestations were Cushing's syndrome (23/59, 38.98%) and acromegaly (20/59, 33.90%). The most prevalent immunohistochemical types were ACTH-immunopositive (31/118, 26.27%) and GH-immunopositive (31/118, 26.27%) tumors. Microadenomas (<1cm) were the most frequent in terms of tumor size (62/92, 67.39%). The detection rate for double lesions on 3.0T MRI was 50.00% (14/28), which significantly higher than 1.5T MRI (P = 0.034). Univariate analysis revealed that female, Cushing's syndrome and only single lesion detected by surgical exploration were associated with significantly worse prognosis (P<0.05). Multivariate analysis identified double lesion detected by surgical exploration (OR = 0.08, P = 0.003) and contiguous type tumor (OR = 0.06, P = 0.017) as independent protective factors for DPA patients. Conclusions: The double lesion detected by surgical exploration is independently associated with a better prognosis for DPA patients. Comprehensive intraoperative exploration are crucial measures to avoid missing causative lesions.


Acromegaly , Adenoma , Cushing Syndrome , Pituitary ACTH Hypersecretion , Pituitary Neoplasms , Adult , Female , Humans , Male , Middle Aged , Acromegaly/complications , Adenoma/diagnosis , Cushing Syndrome/diagnosis , Pituitary ACTH Hypersecretion/complications , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/surgery , Pituitary Neoplasms/complications
9.
Cell Death Dis ; 15(4): 299, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678018

Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.


Cell Death , Metals , Mitochondria , Humans , Mitochondria/metabolism , Metals/metabolism , Animals , Mitophagy , Ferroptosis , Mitochondrial Dynamics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology
10.
Biosens Bioelectron ; 255: 116265, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38569251

Immunosensors capable of ultralow-concentration and single-molecule detection of biomarkers are garnering attention for the early diagnosis of cancer. Herein, a fiber-optic Fabry-Perot interferometer (FPI)-based immunosensor was used for the first time for single-molecule detection of progastrin-releasing peptide (ProGRP). The cascaded FPI structure of the immunosensor introduces a high-order harmonic Vernier effect (HVE). A piece of a side-polished D-shaped hollow-core photonic crystal fiber (HCPCF) was used as a sensing FPI, on which the biomarker was deposited to detect ProGRP. Compared with traditional FPIs with open-cavity structures, this structure provided a larger contact area and improved the sensitivity of the immunosensor. The polished side surface of the D-shaped HCPCF was modified using a gold nanoparticle-graphene oxide (AuNP@GO) nanointerface to enhance refractive index (RI) modulation via antigen-antibody binding and achieve selective energy enhancement of the binding site. The antigen binding changes the RI of the D-shaped HCPCF and the effective RI of the transmitted light in the sensing FPI, thereby changing the spectrum of the immunosensor. Experimental results showed that the high-order HVE and AuNP@GO nanointerface considerably improved the immunosensor sensitivity, exhibiting a liquid RI sensitivity of 583,000 nm/RIU. After functionalization with an anti-ProGRP antibody, the limit of detection of the immunosensor for ProGRP reached 17.1 ag/mL; moreover, the immunosensor could perform detection at the single-molecule level. The proposed novel immunosensor overcomes the sensitivity limitations of optical devices and achieves single-molecule detection of a protein.


Biosensing Techniques , Metal Nanoparticles , Gold , Immunoassay , Biomarkers
11.
Nat Commun ; 15(1): 2883, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570487

Deuterium/Tritium (D/T) handling in defined proportions are pivotal to maintain steady-state operation for fusion reactors. However, the hydrogen isotope effect in metal-hydrogen systems always disturbs precise D/T ratio control. Here, we reveal the dominance of kinetic isotope effect during desorption. To reconcile the thermodynamic stability and isotope effect, we demonstrate a quantitative indicator of Tgap and further a local coordination design strategy that comprises thermodynamic destabilization with vibration enhancement of interstitial isotopes for isotope engineering. Based on theoretical screening analysis, an optimized Ti-Pd co-doped Zr0.8Ti0.2Co0.8Pd0.2 alloy is designed and prepared. Compared to ZrCo alloy, the optimal alloy enables consistent isotope delivery together with a three-fold lower Tgap, a five-fold lower energy barrier difference, a one-third lower isotopic composition deviation during desorption and an over two-fold higher cycling capacity. This work provides insights into the interaction between alloy and hydrogen isotopes, thus opening up feasible approaches to support high-performance fusion reactors.

12.
Opt Lett ; 49(8): 2157-2160, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38621100

Significantly increased interests have been witnessed for the 2 µm waveband which is considered to be a promising alternative window for fiber and free-space optical communications. However, the less mature device technology at this wavelength range is one of the primary obstacles toward practical applications. In this work, we demonstrate an efficient and high-speed silicon modulator based on carrier depletion in a coupling tunable resonator. A benchmark high modulation efficiency of 0.75 V·cm is achieved. The 3-dB electro-optic bandwidth is measured to be 26 GHz allowing for up to 34 Gbit/s on-off keying modulation with a low energy consumption of ∼0.24 pJ/bit. It provides a solution for the silicon modulator with high-speed and low power consumption in the 2-µm waveband.

13.
Cell Mol Immunol ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570588

Hyperactivation of the NLRP3 inflammasome has been implicated in the pathogenesis of numerous diseases. However, the precise molecular mechanisms that modulate the transcriptional regulation of NLRP3 remain largely unknown. In this study, we demonstrated that S-nitrosoglutathione reductase (GSNOR) deficiency in macrophages leads to significant increases in the Nlrp3 and Il-1ß expression levels and interleukin-1ß (IL-1ß) secretion in response to NLRP3 inflammasome stimulation. Furthermore, in vivo experiments utilizing Gsnor-/- mice revealed increased disease severity in both lipopolysaccharide (LPS)-induced septic shock and dextran sodium sulfate (DSS)-induced colitis models. Additionally, we showed that both LPS-induced septic shock and DSS-induced colitis were ameliorated in Gsnor-/- Nlrp3-/- double-knockout (DKO) mice. Mechanistically, GSNOR deficiency increases the S-nitrosation of mitogen-activated protein kinase 14 (MAPK14) at the Cys211 residue and augments MAPK14 kinase activity, thereby promoting Nlrp3 and Il-1ß transcription and stimulating NLRP3 inflammasome activity. Our findings suggested that GSNOR is a regulator of the NLRP3 inflammasome and that reducing the level of S-nitrosylated MAPK14 may constitute an effective strategy for alleviating diseases associated with NLRP3-mediated inflammation.

14.
Burns Trauma ; 12: tkad025, 2024.
Article En | MEDLINE | ID: mdl-38425412

Background: Tolerogenic dendritic cells (DCs) are associated with poor prognosis of sepsis. Matrix metalloproteinases (MMPs) have been shown to have immunomodulatory effects. However, whether MMPs are involved in the functional reprogramming of DCs is unknown. The study aims to investigate the role of MMPs in sepsis-induced DCs tolerance and the potential mechanisms. Methods: A murine model of late sepsis was induced by cecal ligation and puncture (CLP). The expression levels of members of the MMP family were detected in sepsis-induced tolerogenic DCs by using microarray assessment. The potential roles and mechanisms underlying MMP8 in the differentiation, maturation and functional reprogramming of DCs during late sepsis were assessed both in vitro and in vivo. Results: DCs from late septic mice expressed higher levels of MMP8, MMP9, MMP14, MMP19, MMP25 and MMP27, and MMP8 levels were the highest. MMP8 deficiency significantly alleviated sepsis-induced immune tolerance of DCs both in vivo and in vitro. Adoptive transfer of MMP8 knockdown post-septic bone marrow-derived DCs protected mice against sepsis-associated lethality and organ dysfunction, inhibited regulatory T-cell expansion and enhanced Th1 response. Furthermore, the effect of MMP8 on DC tolerance was found to be associated with the nuclear factor kappa-B p65/ß-catenin pathway. Conclusions: Increased MMP8 levels in septic DCs might serve as a negative feedback loop, thereby suppressing the proinflammatory response and inducing DC tolerance.

15.
Am J Cancer Res ; 14(2): 832-853, 2024.
Article En | MEDLINE | ID: mdl-38455420

The inflammation-related tumor microenvironment (TME) is one of the major driving forces of hepatocarcinogenesis. We aimed to investigate cell-to-cell communication among Hepatocellular Carcinoma (HCC) through re-analyzing HCC single-cell RNA-seq data, and to confirm such cellular interaction through in vitro and in vivo study. We found a subset of Regulatory B cells with PD-L1 expression (PD-L1+ Bregs), mainly located in adjacent HCC tissues. In co-localization with PD-L1+ Bregs, a subset of Tumor Associated Macrophages with high expression of CXCL12 (CXCL12+ TAMs) was also mainly located in adjacent HCC tissues. Moreover, CXCL12+ TAMs can be stimulated in vitro using an HCC conditional medium. Using CellChat analysis and Multiplex Immunohistochemistry staining (mIHC), CXCL12+ TAMs were found to be first recruited by Cancer-Associated Fibroblasts (CAFs) through a CD74/macrophage migration inhibitory factor (MIF) pattern, and further differentiated into TGF-ß-enriched tissues. Furthermore, CXCL12+ TAMs recruited PD-L1+ Bregs via the CXCL12/CXCR4 axis, and CXCR4 expression was significantly positively correlated to PD-L1 expression in PD-L1+ Bregs. At last, we confirmed the communications among CAFs, Macrophages and B cells and their tumor-promoting effects by using an orthotopic mouse model of HCC. Immunosuppressive HCC TME involving cell-to-cell communications comprised MIF-secreting CAFs, CXCL12-secreting TAMs, and PD-L1-producing Bregs, and their regulation could be promising therapeutic targets in future immunotherapy for human HCC.

16.
Opt Lett ; 49(6): 1612-1615, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38489464

We propose and demonstrate a novel, to the best of our knowledge, fiber-optic multipoint acoustic detection system based on a multiwavelength erbium-doped fiber (EDF) laser (MWEDFL) using the polarization-hole-burning effect with Fabry-Perot interferometers as the acoustic cavity-loss modulator. A polarization-wavelength-related filter is designed to assign a distinct polarization state to each laser wavelength. By adjusting the polarization state, the polarization-dependent loss and gain of each laser line are tuned to be equal, effectively suppressing the mode competition of EDF and enabling a stable MWEDFL. Each laser line serves as a separate channel for acoustic detection. Theoretical and experimental analyses are conducted to study the transient-response-amplification effect on the acoustic perturbation of the MWEDFL. The results show that the proposed MWEDFL exhibits an amplification effect on the sound-induced cavity-loss modulation, effectively enhancing the sensitivity by 13 dB compared to that obtained using an external-light-source demodulation method. In addition, the MWEDFL based on the PHB effect avoids cross talk between laser channels and can achieve high sensitivity and simultaneous multichannel acoustic detection.

18.
Inorg Chem ; 63(11): 5269-5280, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38427948

Artificial photosynthesis provides a sustainable strategy for producing usable fuels and fine chemicals and attracts broad research interest. However, conventional approaches suffer from low reactivity or low selectivity. Herein, we demonstrate that photocatalytic reduction of CO2 coupled with selective oxidation of aromatic alcohol into corresponding syngas and aromatic aldehydes can be processed efficiently and fantastically over the designed S-scheme ZnIn2S4@CdS core-shell hollow nanocage under visible light. In the ZnIn2S4@CdS heterostructure, the photoexcited electrons and holes with weak redox capacities are eliminated, while the photoexcited electrons and holes with powder redox capacities are separated spatially and preserved on the desired active sites. Therefore, even if there are no cocatalysts and no vacancies, ZnIn2S4@CdS exhibits high reactivity. For instance, the CO production of ZnIn2S4@CdS is about 3.2 and 3.4 times higher than that of pure CdS and ZnIn2S4, respectively. More importantly, ZnIn2S4@CdS exhibits general applicability and high photocatalytic stability. Trapping agent experiments, 13CO2 isotopic tracing, in situ characterizations, and theoretical calculations reveal the photocatalytic mechanism. This study provides a new strategy to design efficient and selective photocatalysts for dual-function redox reactions by tailoring the active sites and regulating vector separation of photoexcited charge carriers.

19.
Sensors (Basel) ; 24(5)2024 Feb 25.
Article En | MEDLINE | ID: mdl-38475027

This study proposes a novel multipoint transducer system by utilizing the single-mode-multimode-thin-cladding fiber (SMTC) structure. This structure leverages the disparity in mode field diameter between the multimode fiber (MMF) and thin-cladding fiber (TCF) to generate high-amplitude ultrasonic signals safely and efficiently. The fabricated transducer exhibits signal amplitudes 2-3-fold higher compared to conventional laser-ultrasonic transducers. Simulation analysis investigates the impact of the length of the MMF and the diameter of the TCF on coupling efficiency. The coupling efficiency of individual transducer units can be accurately controlled by adjusting the length of the MMF. A three-point energy-balanced laser-ultrasonic transducer system was achieved, with improved energy conversion efficiencies, and the optimal thickness of candle soot nanoparticles (CSNPs) is experimentally determined. Additionally, we carried out experiments to compare the performance of the proposed SMTC-based transducer system under different material conditions using two different photoacoustic materials: graphite-epoxy resin and candle soot nanoparticle-polydimethylsiloxane (CSNP-PDMS) composite. CSNPs, as a cost-effective and easy-to-prepare composite material, exhibit higher photoacoustic conversion efficiency compared to graphite-epoxy resin. The proposed system demonstrates the potential for applications in non-destructive testing techniques.

20.
Nano Lett ; 24(13): 3906-3913, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38506264

The intriguing and anomalous optical characteristics of exceptional points (EPs) in optical resonators have attracted significant attention. While EP-related phenomena have been observed by perturbing resonators with off-chip components, implementing EPs fully on-chip remains challenging due to their extreme susceptibility to fabrication errors. In this Letter, we propose a succinct and compact approach to reach EP in an on-chip integrated silicon microring resonator by manipulating the evolution of backscatterings with two nanocylinders of disparate diameters. The theoretical analysis unveils that the fabrication constraints could be significantly relieved by increasing the difference in diameters of the nanocylinders. The evolution from non-EP to EP is traced experimentally through the step-by-step tuning of the angular and radial positions of nanocylinders. The proposed method opens a pathway toward the on-chip high-density integration of non-Hermitian devices.

...