Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
BMC Neurol ; 24(1): 156, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714968

BACKGROUND: Posterior Circulation Syndrome (PCS) presents a diagnostic challenge characterized by its variable and nonspecific symptoms. Timely and accurate diagnosis is crucial for improving patient outcomes. This study aims to enhance the early diagnosis of PCS by employing clinical and demographic data and machine learning. This approach targets a significant research gap in the field of stroke diagnosis and management. METHODS: We collected and analyzed data from a large national Stroke Registry spanning from January 2014 to July 2022. The dataset included 15,859 adult patients admitted with a primary diagnosis of stroke. Five machine learning models were trained: XGBoost, Random Forest, Support Vector Machine, Classification and Regression Trees, and Logistic Regression. Multiple performance metrics, such as accuracy, precision, recall, F1-score, AUC, Matthew's correlation coefficient, log loss, and Brier score, were utilized to evaluate model performance. RESULTS: The XGBoost model emerged as the top performer with an AUC of 0.81, accuracy of 0.79, precision of 0.5, recall of 0.62, and F1-score of 0.55. SHAP (SHapley Additive exPlanations) analysis identified key variables associated with PCS, including Body Mass Index, Random Blood Sugar, ataxia, dysarthria, and diastolic blood pressure and body temperature. These variables played a significant role in facilitating the early diagnosis of PCS, emphasizing their diagnostic value. CONCLUSION: This study pioneers the use of clinical data and machine learning models to facilitate the early diagnosis of PCS, filling a crucial gap in stroke research. Using simple clinical metrics such as BMI, RBS, ataxia, dysarthria, DBP, and body temperature will help clinicians diagnose PCS early. Despite limitations, such as data biases and regional specificity, our research contributes to advancing PCS understanding, potentially enhancing clinical decision-making and patient outcomes early in the patient's clinical journey. Further investigations are warranted to elucidate the underlying physiological mechanisms and validate these findings in broader populations and healthcare settings.


Early Diagnosis , Machine Learning , Stroke , Humans , Male , Female , Middle Aged , Aged , Stroke/diagnosis , Stroke/physiopathology , Registries , Adult
2.
J Pers Med ; 13(11)2023 Oct 30.
Article En | MEDLINE | ID: mdl-38003870

(1) Objective: This study aimed to construct a machine learning model for predicting the prognosis of ischemic stroke patients who underwent thrombolysis, assessed through the modified Rankin Scale (mRS) score 90 days after discharge. (2) Methods: Data were sourced from Qatar's stroke registry covering January 2014 to June 2022. A total of 723 patients with ischemic stroke who had received thrombolysis were included. Clinical variables were examined, encompassing demographics, stroke severity indices, comorbidities, laboratory results, admission vital signs, and hospital-acquired complications. The predictive capabilities of five distinct machine learning models were rigorously evaluated using a comprehensive set of metrics. The SHAP analysis was deployed to uncover the most influential predictors. (3) Results: The Support Vector Machine (SVM) model emerged as the standout performer, achieving an area under the curve (AUC) of 0.72. Key determinants of patient outcomes included stroke severity at admission; admission systolic and diastolic blood pressure; baseline comorbidities, notably hypertension (HTN) and coronary artery disease (CAD); stroke subtype, particularly strokes of undetermined origin (SUO); and hospital-acquired urinary tract infections (UTIs). (4) Conclusions: Machine learning can improve early prognosis prediction in ischemic stroke, especially after thrombolysis. The SVM model is a promising tool for empowering clinicians to create individualized treatment plans. Despite limitations, this study contributes to our knowledge and encourages future research to integrate more comprehensive data. Ultimately, it offers a pathway to improve personalized stroke care and enhance the quality of life for stroke survivors.

...