Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 39: 392-405, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38855060

ABSTRACT

Retinal neovascularization (RNV), a typical pathological manifestation involved in most neovascular diseases, causes retinal detachment, vision loss, and ultimately irreversible blindness. Repeated intravitreal injections of anti-VEGF drugs were developed against RNV, with limitations of incomplete responses and adverse effects. Therefore, a new treatment with a better curative effect and more prolonged dosage is demanding. Here, we induced macrophage polarization to anti-inflammatory M2 phenotype by inhibiting cGAS-STING signaling with an antagonist C176, appreciating the role of cGAS-STING signaling in the retina in pro-inflammatory M1 polarization. C176-loaded and phosphatidylserine-modified dendritic mesoporous silica nanoparticles were constructed and examined by a single intravitreal injection. The biosafe nanoparticles were phagocytosed by retinal macrophages through a phosphatidylserine-mediated "eat me" signal, which persistently release C176 to suppress STING signaling and thereby promote macrophage M2 polarization specifically. A single dosage can effectively alleviate pathological angiogenesis phenotypes in murine oxygen-induced retinopathy models. In conclusion, these C176-loaded nanoparticles with enhanced cell uptake and long-lasting STING inhibition effects might serve as a promising way for treating RNV.

2.
ACS Nano ; 18(24): 15864-15877, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38829727

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly aggressive malignancy that lacks effective targeted therapies. Inducing immunogenic cell death (ICD) in tumor cells represents a promising strategy to enhance therapeutic efficacy by promoting antitumor immunity. Paclitaxel (PTX), a commonly used chemotherapy drug for TNBC, can induce ICD; however, the resulting immunogenicity is limited. Thus, there is an urgent need to explore strategies that improve the effectiveness of ICD in TNBC by incorporating immunoregulatory agents. This study investigated the potential of celecoxib (CXB) to enhance PTX-induced ICD by blocking the biosynthesis of PGE2 in the tumor cells. We observed that the combination of CXB and PTX promoted the maturation of dendritic cells and primed a T cell-dependent immune response, leading to enhanced tumor rejection in a vaccination assay. To further optimize drug delivery in vivo, we developed cRGD-modified liposomes for the targeted codelivery of CXB and PTX. This delivery system significantly improved drug accumulation and triggered robust antitumor immunity in an orthotopic mouse model of TNBC. Moreover, it served as an in situ vaccine to inhibit tumor recurrence and lung metastasis. Overall, our findings provide in-depth insights into the therapeutic mechanism underlying the combination of CXB and PTX, highlighting their potential as effective immune-based therapies for TNBC.


Subject(s)
Celecoxib , Immunogenic Cell Death , Paclitaxel , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Celecoxib/pharmacology , Celecoxib/chemistry , Celecoxib/administration & dosage , Paclitaxel/pharmacology , Paclitaxel/chemistry , Animals , Mice , Immunogenic Cell Death/drug effects , Humans , Female , Cell Line, Tumor , Mice, Inbred BALB C , Liposomes/chemistry
3.
Adv Mater ; 36(5): e2304257, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37788635

ABSTRACT

Probiotics have the potential as biotherapeutic agents for cancer management in preclinical models and human trials by secreting antineoplastic or immunoregulatory agents in the tumor microenvironment (TME). However, current probiotics lack the ability to dynamically respond to unique TME characteristics, leading to limited therapeutic accuracy and efficacy. Although progress has been made in customizing controllable probiotics through synthetic biology, the engineering process is complex and the predictability of production is relatively low. To address this, here, for the first time, this work adopts pH-dependent peroxidase-like (POD-like) artificial enzymes as both an inducible "nano-promoter" and "nano-effector" to engineer clinically relevant probiotics to achieve switchable control of probiotic therapy. The nanozyme initially serves as an inducible "nano-promoter," generating trace amounts of nonlethal reactive oxygen species (ROS) stress to upregulate acidic metabolites in probiotics. Once metabolites acidify the TME to a threshold, the nanozyme switches to a "nano-effector," producing a great deal of lethal ROS to fight cancer. This approach shows promise in subcutaneous, orthotopic, and colitis-associated colorectal cancer tumors, offering a new methodology for modulating probiotic metabolism in a pathological environment.


Subject(s)
Antineoplastic Agents , Neoplasms , Probiotics , Humans , Reactive Oxygen Species , Probiotics/therapeutic use , Neoplasms/therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Microenvironment
4.
Phys Eng Sci Med ; 47(1): 99-108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37878092

ABSTRACT

Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a serious chronic sleep disorder. Snoring is a common and easily observable symptom of OSAHS patients. The purpose of this work is to identify OSAHS patients by analyzing the acoustic characteristics of snoring sounds throughout the entire night. Ten types of acoustic features, such as Mel-frequency cepstral coefficients (MFCC), linear prediction coefficients (LPC) and spectral entropy among others, were extracted from the snoring sounds. A fused feature selection algorithm based on ReliefF and Max-Relevance and Min-Redundancy (mRMR) was proposed for optimal feature set selection. Four types of machine learning models were then applied to validate the effectiveness of OSAHS patient identification. The results show that the proposed feature selection algorithm can effectively select features with high contribution, including MFCC and LPC. Based on the selected top-20 features and using a support vector machine model, the accuracies in identifying OSAHS patients under the thresholds of AHI = 5,15, and 30, were 100%, 100%, and 98.94%, respectively. This indicates that the proposed model can effectively identify OSAHS patients.


Subject(s)
Sleep Apnea, Obstructive , Snoring , Humans , Snoring/diagnosis , Polysomnography , Sleep Apnea, Obstructive/diagnostic imaging , Sleep , Syndrome
5.
Acta Biomater ; 167: 551-563, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37302731

ABSTRACT

Mild-temperature photothermal therapy (mild PTT) is a safe and efficient antitumor therapy. However, mild PTT alone usually fails to activate the immune response and prevent tumor metastasis. Herein, a photothermal agent, copper sulfide@ovalbumin (CuS@OVA), with an effective PTT effect in the second near-infrared (NIR-II) window, is developed. CuS@OVA can optimize the tumor microenvironment (TME) and evoke an adaptive immune response. Copper ions are released in the acidic TME to promote the M1 polarization of tumor-associated macrophages. The model antigen OVA not only acts as a scaffold for nanoparticle growth but also promotes the maturation of dendritic cells, which primes naive T cells to stimulate adaptive immunity. CuS@OVA augments the antitumor efficiency of the immune checkpoint blockade (ICB) in vivo, which suppresses tumor growth and metastasis in a mouse melanoma model. The proposed therapeutic platform, CuS@OVA nanoparticles, may be a potential adjuvant for optimizing the TME and improving the efficiency of ICB as well as other antitumor immunotherapies. STATEMENT OF SIGNIFICANCE: Mild-temperature photothermal therapy (mild PTT) is a safe and efficient antitumor therapy, but usually fails to activate the immune response and prevent tumor metastasis. Herein, we develop a photothermal agent, copper sulfide@ovalbumin (CuS@OVA), with an excellent PTT effect in the second near-infrared (NIR-II) window. CuS@OVA can optimize the tumor microenvironment (TME) and evoke an adaptive immune response by promoting the M1 polarization of tumor-associated macrophages and the maturation of dendritic cells. CuS@OVA augments the antitumor efficiency of the immune checkpoint blockade (ICB) in vivo, suppressing tumor growth and metastasis. The platform may be a potential adjuvant for optimizing the TME and improving the efficiency of ICB as well as other antitumor immunotherapies.


Subject(s)
Hyperthermia, Induced , Multifunctional Nanoparticles , Nanoparticles , Neoplasms , Animals , Mice , Photothermal Therapy , Copper/pharmacology , Phototherapy , Ovalbumin , Immune Checkpoint Inhibitors , Tumor Microenvironment , Neoplasms/drug therapy , Nanoparticles/therapeutic use , Immunotherapy , Sulfides/pharmacology , Cell Line, Tumor
6.
Bioact Mater ; 24: 37-53, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36582350

ABSTRACT

Rheumatoid arthritis (RA) is a common autoimmune disease leading to pain, disability, and even death. Although studies have revealed that aberrant activation of STING was implicated in various autoimmune diseases, the role of STING in RA remains unclear. In the current study, we demonstrated that STING activation was pivotal in RA pathogenesis. As the accumulation of dsDNA, a specific stimulus for STING, is a feature of RA, we developed a spherical polyethyleneimine-coated mesoporous polydopamine nanoparticles loaded with STING antagonist C-176 (PEI-PDA@C-176 NPs) for treating RA. The fabricated NPs with biocompatibility had high DNA adsorption ability and could effectively inhibit the STING pathway and inflammation in macrophages. Intra-articular administration of PEI-PDA@C-176 NPs could effectively reduce joint damage in mice models of dsDNA-induced arthritis and collagen-induced arthritis by inhibiting STING pathway. We concluded that materials with synergistic effects of STING inhibition might be an efficacious strategy to treat RA.

7.
Food Funct ; 13(19): 10034-10045, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36069516

ABSTRACT

Polysaccharides are a major functional component of seaweeds with various biological activities. Porphyra haitanensis is usually harvested in different growth periods, but how the harvest periods influence the Porphyra haitanensis polysaccharide (PHP) activity is unclear. This work aimed to evaluate the anti-allergic activity of PHP from different harvest periods and investigate the potential structure-activity relationship. The water-soluble polysaccharide of P. haitanensis from three different harvest periods was purified and administered to an ovalbumin-sensitized food allergy mouse model. Results showed that PHPs significantly alleviated the allergic symptoms and reduced the production of histamine and allergen-specific IgE. Further experiments elucidated that PHPs suppressed the allergic activity of intestinal epithelial cells, dendritic cells, and Th2 cells and downregulated the proportion of Th2 cells. Noticeably, the molecular weight and sulfate content gradually decreased as the harvest period was delayed; simultaneously, the anti-allergic activity gradually increased, implying a relationship between the harvest period, structure, and anti-allergic activity of PHPs. This work elucidated the anti-allergic activity of PHPs from different harvest periods, facilitated the deep-processing and efficient application of Porphyra haitanensis, and shed light on the development of novel anti-allergic functional foods.


Subject(s)
Anti-Allergic Agents , Porphyra , Rhodophyta , Allergens , Animals , Anti-Allergic Agents/pharmacology , Histamine , Immunoglobulin E , Mice , Ovalbumin , Polysaccharides/chemistry , Polysaccharides/pharmacology , Porphyra/chemistry , Sulfates , Water
8.
J Mater Chem B ; 10(33): 6351-6359, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35942619

ABSTRACT

Spinal cord injury (SCI) is an intractable condition with complex pathological processes and poor prognosis. Reactive oxygen species (ROS) generation induced by the mammalian target of the rapamycin (mTOR) protein is one of the causes of secondary inflammation of SCI. Rapamycin (Rapa) is a pharmacological inhibitor of mTOR, which can inhibit ROS overproduction mediated by abnormal activation of the mTOR protein. Polydopamine, as a nanocarrier with excellent biological safety, has been reported to possess satisfactory ROS scavenging ability. Therefore, we designed a mesoporous polydopamine nanoparticle loaded with Rapa (mPDA@Rapa) for combination therapy, which simultaneously inhibited abnormally activated mTOR-mediated ROS production and eliminated already generated ROS. The synthesized mPDA nanoparticles could realize the effective encapsulation and sustained release of Rapa due to their mesoporous cavities and a hydrophobic benzene ring structure. In vitro experiments proved that mPDA@Rapa nanoparticles had a good ROS scavenging ability towards hydrogen peroxide and hydroxyl radicals. Furthermore, mPDA@Rapa also showed a good therapeutic effect in SCI model rats, which was evidenced by a smaller injury cavity, more coordinated hind limb movements, and a higher degree of neurogenesis and tissue regeneration. Our work provides a combined strategy to inhibit ROS overproduction and eliminate excess ROS, with potential applications not only in SCI, but also in other ROS-induced inflammations.


Subject(s)
Nanoparticles , Neurogenesis , Sirolimus , Spinal Cord Injuries , Animals , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacology , Indoles , Nanoparticles/chemistry , Neurogenesis/drug effects , Polymers , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sirolimus/administration & dosage , Sirolimus/pharmacology , Spinal Cord Injuries/drug therapy , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...