Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(22): eadn2208, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820156

ABSTRACT

PR65 is the HEAT repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem repeat protein. Its conformational mechanics plays a crucial role in PP2A function by opening/closing substrate binding/catalysis interface. Using in silico saturation mutagenesis, we identified PR65 "hinge" residues whose substitutions could alter its conformational adaptability and thereby PP2A function, and selected six mutations that were verified to be expressed and soluble. Molecular simulations and nanoaperture optical tweezers revealed consistent results on the specific effects of the mutations on the structure and dynamics of PR65. Two mutants observed in simulations to stabilize extended/open conformations exhibited higher corner frequencies and lower translational scattering in experiments, indicating a shift toward extended conformations, whereas another displayed the opposite features, confirmed by both simulations and experiments. The study highlights the power of single-molecule nanoaperture-based tweezers integrated with in silico approaches for exploring the effect of mutations on protein structure and dynamics.


Subject(s)
Molecular Dynamics Simulation , Optical Tweezers , Point Mutation , Protein Conformation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/chemistry , Protein Phosphatase 2/metabolism , Humans
2.
J Phys Chem B ; 125(21): 5537-5548, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33979162

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human cells by binding its spike (S) glycoproteins to angiotensin-converting enzyme 2 (ACE2) receptors and causes the coronavirus disease 2019 (COVID-19). Therapeutic approaches to prevent SARS-CoV-2 infection are mostly focused on blocking S-ACE2 binding, but critical residues that stabilize this interaction are not well understood. By performing all-atom molecular dynamics (MD) simulations, we identified an extended network of salt bridges, hydrophobic and electrostatic interactions, and hydrogen bonds between the receptor-binding domain (RBD) of the S protein and ACE2. Mutagenesis of these residues on the RBD was not sufficient to destabilize binding but reduced the average work to unbind the S protein from ACE2. In particular, the hydrophobic end of RBD serves as the main anchor site and is the last to unbind from ACE2 under force. We propose that blocking the hydrophobic surface of RBD via neutralizing antibodies could prove to be an effective strategy to inhibit S-ACE2 interactions.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...