Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Environ Pollut ; 359: 124566, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025292

ABSTRACT

Pharmaceuticals are widespread in aquatic environments and might contribute to the prevalence of antibiotic resistance. However, the co-effect of antibiotics and non-antibiotic pharmaceuticals on the gut microbiome of fish is poorly understood. In this study, we characterized the variation of the zebrafish gut microbiome and resistome after exposure to sulfamethoxazole (SMX) and aspirin under different treatments. SMX contributed to the significant increase in the antibiotic resistance genes (ARGs) richness and abundance with 46 unique ARGs and five mobile genetic elements (MGEs) detected. Combined exposure to SMX and aspirin enriched total ARGs abundance and rearranged microbiota under short-term exposure. Exposure time was more responsible for resistome and the gut microbiome than exposure concentrations. Perturbation of the gut microbiome contributed to the functional variation related to RNA processing and modification, cell motility, signal transduction mechanisms, and defense mechanisms. A strong significant positive correlation (R = 0.8955, p < 0.001) was observed between total ARGs and MGEs regardless of different treatments revealing the key role of MGEs in ARGs transmission. Network analysis indicated most of the potential ARGs host bacteria belonged to Proteobacteria. Our study suggested that co-occurrence of non-antibiotics and antibiotics could accelerate the spread of ARGs in gut microbial communities and MGEs played a key role.

2.
Sci Total Environ ; 946: 174422, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38964400

ABSTRACT

Nitrogen oxides and sulfur oxides, as the dominant toxic gases in the atmosphere, can induce severe human health problems under the composite pollutant conditions. Currently the effect of nitrogen or sulfur oxides in atmospheric environment to the degradation and cytotoxicity of triphenyl phosphate (TPhP) on atmospheric particle surfaces still remain poorly understood. Hence, laboratory simulation methods were used in this study to investigate the effect and related mechanism. First, particle samples were prepared with the TPhP coated on MnSO4, CuSO4, FeSO4 and Fe2(SO4)3 surface. The results showed that, when nitrogen or sulfur oxides were present, more significant TPhP degradation on all samples can be observed under both light and dark conditions. The results proved nitrogen oxides and sulfur oxides were the vital influence factors to the degradation of TPhP, which mainly promoted the OH generation in the polluted atmosphere. The mechanism study indicated that diphenyl hydrogen phosphate (DPhP) and OH-DPhP were two main stable degradation products. These degradation products originated from the phenoxy bond cleavage and hydroxylation of TPhP caused by hydroxyl radicals. In addition, no TPhP related organosulfates (OSs) or organic nitrates (ON) formation were observed. Regarding the cytotoxicity, all the particles can induce more significant cellular injury and apoptosis of A549 cells, which may be relevant to the adsorbed nitrogen oxides or sulfur oxides on particles surfaces. The superfluous reactive oxygen species (ROS) generation was the possible reason of cytotoxicity. This research can supply a comprehensive understanding of the promoting effect of nitrogen and sulfur oxides to TPhP degradation and the composite cytotoxicity of atmospheric particles.


Subject(s)
Air Pollutants , Nitrogen Oxides , Organophosphates , Sulfur Oxides , Air Pollutants/toxicity , Humans , Sulfur Oxides/chemistry , Sulfur Oxides/toxicity , Organophosphates/toxicity , Organophosphates/chemistry , Nitrogen Oxides/toxicity , Transition Elements/chemistry , Transition Elements/toxicity , A549 Cells
3.
Environ Sci Pollut Res Int ; 31(29): 41939-41952, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856849

ABSTRACT

The widespread application of organophosphate flame retardants has led to pervasive exposure to organophosphate esters (OPEs), prompting considerable concerns regarding their potential health risk to humans. Despite hints from previous research about OPEs' association with breast cancer, their specific effects and underlying mechanisms of triple-negative breast cancer (TNBC) remain unclear. In this study, we investigated the effects of four representative OPEs on cell proliferation, cell cycle regulation, migration, and the expression of genes and proteins associated with the epidermal growth factor receptor (EGFR) and Hippo signaling pathways in TNBC (MDA-MB-231) cells. Our findings revealed that treatment with 1-25 µM triphenyl phosphate (TPHP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) induced TNBC cell proliferation and accelerated cell cycle progression, with upregulation in MYC, CCND1, and BRCA1 mRNA. Moreover, exposure to 1-25 µM TPHP, 10-25 µM TDCIPP, and 1-10 µM tris (2-chloroethyl) phosphate (TCEP) induced MMP2/9 mRNA expression and enhanced migratory capacity, except for 2-ethylhexyl diphenyl phosphate (EHDPP). Mechanistically, four OPEs treatments activated the EGFR-ERK1/2 and EGFR-PI3K/AKT signaling pathways by increasing the transcript of EGFR, ERK1/2, PI3K, and AKT mRNA. OPEs treatment also suppressed the Hippo signaling pathway by inhibiting the expression of MST1 mRNA and phosphorylation of LATS1, leading to the overactivation of YAP1 protein, thereby promoting TNBC cell proliferation and migration. In summary, our study elucidated that activation of the EGFR signaling pathway and suppression of the Hippo signaling pathway contributed to the proliferation, cell cycle dysregulation, and migration of TNBC cells following exposure to OPEs.


Subject(s)
Cell Movement , Cell Proliferation , ErbB Receptors , Hippo Signaling Pathway , Signal Transduction , Triple Negative Breast Neoplasms , Humans , ErbB Receptors/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Hippo Signaling Pathway/drug effects , Organophosphates/pharmacology , Esters , Female , Protein Serine-Threonine Kinases/metabolism , Flame Retardants/toxicity
4.
Sci Total Environ ; 937: 173462, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38797399

ABSTRACT

Triphenyl phosphate (TPhP) and transition metal elements have been ubiquitously detected in the atmosphere, which can participate in atmospheric chemical reactions and induce damage to human health. Currently the understanding of TPhP degradation, transformation and cytotoxicity on atmospheric particles surface are still limited. Therefore, this study used laboratory simulation methods to investigate the influence of irradiation time, transition metal salts, relative humidity (RH) to TPhP degradation, transformation and relative cytotoxicity. TPhP was coated on particle surfaces of four transition metal salts (MnSO4, CuSO4, FeSO4 and Fe2(SO4)3) in the experiment. Within 12 h irradiation, the significant TPhP photodegradation can be observed on all particles surface. Among these influence factors, the irradiation and RH were the crucial aspects to TPhP degradation, which primarily affect the OH concentration in the atmosphere. The transition metal elements only exhibited slightly catalytic effect to TPhP degradation. The mechanism study indicated that the major degradation products of TPhP are diphenyl hydrogen phosphate (DPhP) and OH-DPhP, which originated from the phenoxy bond cleavage and hydroxylation of TPhP induced by OH. As for the cytotoxicity to A549 cells, all the transition metal particles coated with TPhP can cause cellular injury, which was chiefly induced by the transition metal salt. The possible cytotoxicity mechanism of these particles to A549 cells can be attributed to the excessive reactive oxygen species (ROS) production. This study may provide a further understanding of TPhP degradation and related cytotoxicity with the coexistent transition metal salts in the atmosphere.


Subject(s)
Air Pollutants , Atmosphere , Organophosphates , Transition Elements , Air Pollutants/toxicity , Air Pollutants/chemistry , Transition Elements/chemistry , Humans , Organophosphates/toxicity , Organophosphates/chemistry , Atmosphere/chemistry , A549 Cells , Salts/chemistry
5.
J Environ Sci (China) ; 143: 138-147, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644012

ABSTRACT

Tetramethylammonium hydroxide (TMAH) is an important compound that utilized and released by the rapidly expanding semiconductor industry, which could hardly be removed by the conventional wastewater treatment techniques. As a cholinergic agonist, the tetramethylammonium ion (TMA+) has been reported to induce toxicity to muscular and respiratory systems of mammals and human, however the toxicity on aquatic biota remains poorly known. We investigated the neurotoxic effects of TMA+ exposure on zebrafish, based on neurobehavior tests and a series of biomarkers. Significant inhibitions on the swimming distance of zebrafish larvae were observed when the exposure level exceeded 50 mg/L, and significant alterations on swimming path angles (straight and deflective movements) occurred even at 10 mg/L. The tested neurobehavioral endpoints of zebrafish larvae were significantly positively correlated with reactive oxygen species (ROS) and malondialdehyde (MDA), significantly negatively related with the activities of antioxidant enzymes, but not significantly correlated with the level of acetylcholinesterase (AChE). Such relationship indicates that the observed neurotoxic effects on swimming behavior of zebrafish larvae is mainly driven by oxidative stress, rather than the alterations of neurotransmitter. At the highest exposure concentration (200 mg/L), TMA+ evoked more severe toxicity on zebrafish juveniles, showing significantly stronger elevation on the MDA activity, and greater inhibitions on the activities of antioxidant enzymes and AChE, suggesting juveniles were more susceptible to TMA+ exposure than larval zebrafish.


Subject(s)
Biomarkers , Larva , Quaternary Ammonium Compounds , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/physiology , Water Pollutants, Chemical/toxicity , Biomarkers/metabolism , Quaternary Ammonium Compounds/toxicity , Larva/drug effects , Acetylcholinesterase/metabolism , Oxidative Stress/drug effects , Swimming , Behavior, Animal/drug effects , Reactive Oxygen Species/metabolism
6.
Sci Total Environ ; 929: 172541, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642747

ABSTRACT

Volatile methylsiloxanes (VMSs) earned serious concerns due to their detection and toxicities after their release to the environments. They were also detected in rivers around the globe, but their distribution remained to be explored in larger rivers with longer length, higher water volume and wider watershed. In the present study, 8 cyclic VMSs (cVMSs) and 7 linear ones (lVMSs) were investigated in 42 water samples (27 surface water (including 7 drinking source water) and 15 wastewater) from the Yangtze River Basin, China. Results showed that VMSs were detected in all sampling sites. In surface water, the concentrations of total cVMSs ranged from 17.3 to 4.57 × 103 ng/L, while those of lVMSs ranged from 1.72 to 81.6 ng/L. In wastewater, the total concentrations of cVMSs and lVMSs showed ranges of 17.6-1.66 × 103 ng/L and 2.59-252 ng/L, respectively. Apparently, cVMSs showed significantly higher concentrations than lVMSs. The concentrations of cVMSs followed an order of lower > upper > middle reaches, while those of lVMSs did not show clear distribution patterns. Among cVMSs, those with less Si numbers were dominant, while those with more Si numbers were dominant in lVMSs. Notably, the VMSs were also detected in 7 surface waters that served as drinking source waters, which earned them further concerns. In addition, the VMSs in surface water showed positive correlation with those in wastewater, which led to necessity in management on industrial emissions in the future.

7.
Sci Total Environ ; 929: 172637, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663604

ABSTRACT

The interaction between pharmaceuticals and personal care products (PPCPs) with dissolved organic matter (DOM) can alter their bioavailability and toxicity. Nevertheless, little is known about how pH and DOM work together to affect the availability of PPCPs. This study investigated the impact of pH and DOM on the availability of seven PPCPs, namely Carbamazepine, Estrone, Bisphenol A, Testosterone Propionate, Triclocarban, 4-tert-Octylphenol and 4-n-Nonylphenol, using negligible depletion solid-phase microextraction (nd-SPME). The uptake kinetics of PPCPs by the nd-SPME fibers increased proportionally with DOM concentrations, likely due to enhanced diffusive conductivity in the unstirred water layer. At neutral pH, the partitioning coefficients of PPCPs for Humic Acid (log KDOC 3.87-5.25) were marginally higher than those for Fulvic Acid (log KDOC 3.64-5.11). Also, the log KDOC values correlated linearly with the log DOW (pH 7.0) values of PPCPs, indicating a predominant role for hydrophobic interactions in the binding of DOM and PPCPs. Additionally, specific interactions like hydrogen bonding, π-π, and electrostatic interactions occur for certain compounds, influenced by the polarity and spatial conformation of the compounds. For these ionizable PPCPs, the log DDOC values exhibit a strong dependence on pH due to the dual influence of pH on both DOM and PPCPs. The log DDOC values rose from pH 1.0 to 3.0, peaked at pH 5.0 to 9.0, and then (sharply) declined from 11.0 to 13.0. The reasons are that in strong acidic circumstances, the coiled and compressed shape of DOM inhibits the hydrophobic interaction, whereas in strong alkaline conditions, significant electrostatic repulsion reduces the sorption. This study reveals that the effects of DOM on the bioavailability of PPCPs are dependent on both pH and the specific compound involved.


Subject(s)
Cosmetics , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Cosmetics/analysis , Hydrogen-Ion Concentration , Humic Substances/analysis , Solid Phase Microextraction
8.
Environ Sci Technol ; 58(11): 4914-4925, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38436231

ABSTRACT

Particulate matter, especially PM2.5, can invade the central nervous system (CNS) via the olfactory pathway to induce neurotoxicity. The olfactory bulb (OB) is the key component integrating immunoprotection and olfaction processing and is necessarily involved in the relevant CNS health outcomes. Here we show that a microglial chemokine receptor, CCR5, is the target of environmentally relevant PM2.5 in the OB to trigger neuroinflammation and then neuropathological injuries. Mechanistically, PM2.5-induced CCR5 upregulation results in the pro-inflammatory paradigm of microglial activation, which subsequently activates TLR4-NF-κB neuroinflammation signaling and induces neuropathological changes that are closely related to neurodegenerative disorders (e.g., Aß deposition and disruption of the blood-brain barrier). We specifically highlight that manganese and lead in PM2.5 are the main contributors to CCR5-mediated microglial activation and neuroinflammation in synergy with aluminum. Our results uncover a possible pathway of PM2.5-induced neuroinflammation and identify the principal neurotoxic components, which can provide new insight into efficiently diminishing the adverse health effects of PM2.5.


Subject(s)
Neuroinflammatory Diseases , Olfactory Bulb , Mice , Animals , Olfactory Bulb/metabolism , Particulate Matter/toxicity , Signal Transduction , Receptors, Chemokine/metabolism , NF-kappa B/metabolism , NF-kappa B/pharmacology
9.
Environ Int ; 185: 108458, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368716

ABSTRACT

As emerging pollutants, antibiotics were widely detected in water bodies and dietary sources. Recently, their obesogenic effects raised serious concerns. So far, it remained unclear whether their obesogenic effects would be influenced by water- and diet-borne exposure routes. In present study, Caenorhabditis elegans, nematodes free-living in air-water interface and feeding on bacteria, were exposed to water- and diet-borne erythromycin antibiotic (ERY). The statuses of the bacterial food, inactivated or alive, were also considered to explore their influences on the effects. Results showed that both water- and diet-borne ERY significantly stimulated body width and triglyceride contents. Moreover, diet-borne ERY's stimulation on the triglyceride levels was greater with alive bacteria than with inactivated bacteria. Biochemical analysis showed that water-borne ERY inhibited the activities of enzymes like adipose triglyceride lipase (ATGL) in fatty acid ß-oxidation. Meanwhile, diet-borne ERY inhibited the activities of acyl-CoA synthetase (ACS) and carnitine palmitoyl transferase (CPT) in lipolysis, while it stimulated the activities of fatty acid synthase (FAS) in lipogenesis. Gene expression analysis demonstrated that water-borne ERY with alive bacteria significantly upregulated the expressions of daf-2, daf-16 and nhr-49, without significant influences in other settings. Further investigation demonstrated that ERY interfered with bacterial colonization in the intestine and the permeability of the intestinal barrier. Moreover, ERY decreased total long-chained fatty acids (LCFAs) in bacteria and nematodes, while it decreased total short-chained fatty acids (SCFAs) in bacteria but increased them in nematodes. Collectively, the present study demonstrated the differences between water- and diet-borne ERY's obesogenic effects, and highlighted the involvement of insulin and nhr-49 signaling pathways, SCFAs metabolism and also the interaction between intestinal bacteria and the host.


Subject(s)
Anti-Bacterial Agents , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Anti-Bacterial Agents/pharmacology , Erythromycin/metabolism , Erythromycin/pharmacology , Fatty Acids , Triglycerides/metabolism , Triglycerides/pharmacology , Water
10.
Sci Total Environ ; 919: 170755, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340820

ABSTRACT

Artificial sweeteners (ASs) entered the environments after application and emissions. Recent studies showed that some ASs had obesogenic risks. However, it remained unclear whether such risks are common and how they provoke such effects. Presently, the effects of 8 widely used ASs on lipid accumulation were measured in Caenorhabditis elegans. Potential mechanisms were explored with feeding and locomotion behavior, lipid metabolism and neural regulation. Results showed that acesulfame (ACE), aspartame (ASP), saccharin sodium (SOD), sucralose (SUC) and cyclamate (CYC) stimulated lipid accumulation at µg/L levels, showing obesogenic potentials. Behavior investigation showed that ACE, ASP, SOD, SUC and CYC biased more feeding in the energy intake aspect against the locomotion in the energy consumption one. Neotame (NEO), saccharin (SAC) and alitame (ALT) reduced the lipid accumulation without significant obesogenic potentials in the present study. However, all 8 ASs commonly disturbed enzymes (e.g., acetyl-CoA carboxylase) in lipogenesis and those (e.g., carnitine palmitoyl transferase) in lipolysis. In addition, ASs disturbed PPARγ (via expressions of nhr-49), TGF-ß/DAF-7 (daf-7) and SREBP (sbp-1) pathways. Moreover, they also interfered neurotransmitters including serotonin (5-HT), dopamine (DA) and acetylcholine (ACh), with influences in Gsα (e.g., via expressions of gsα-1, ser-7), glutamate (e.g., mgl-1), and cGMP-dependent signaling pathways (e.g., egl-4). In summary, environmental ASs commonly disturbed neural regulation connecting behavior and lipid metabolism, and 5 out of 8 showed clear obesogenic potentials. ENVIRONMENTAL IMPLICATION: Artificial sweeteners (ASs) are become emerging pollutants after wide application and continuous emission. Recent studies showed that some environmental ASs had obesogenic risks. The present study employed Caenorhabditis elegans to explore the influences of 8 commonly used ASs on lipid metabolisms and also the underlying mechanisms. Five out of 8 ASs stimulated lipid accumulation at µg/L levels, and they biased energy intake against energy consumption. The other three ASs reduced the lipid accumulation. ASs commonly disturbed lipogenesis and lipolysis via PPARγ, TGF-ß and SREBP pathways, and also influenced neurotransmitters with Gsα, glutamate and cGMP-dependent signaling pathways.


Subject(s)
Caenorhabditis elegans , Lipid Metabolism , Animals , PPAR gamma/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sweetening Agents/analysis , Saccharin , Cyclamates , Glutamates , Neurotransmitter Agents , Transforming Growth Factor beta/metabolism , Lipids
11.
J Hazard Mater ; 465: 133499, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38219595

ABSTRACT

Perfluoroalkyl substances (PFASs) are a category of high-concerned emerging contaminants which are suspected to correlate with various human adverse health outcomes including tumors. It is also a question whether short-chain PFASs are qualified alternatives under the regulation of long-chain PFASs. In this study, a three-dimensional (3D) culture system based on Gelatin methacrylate (GelMA) hydrogel matrix was used to investigate the impacts of 120-h perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) exposure of MDA-MB-231 cells. The results showed that PFOA exposure promoted the proliferation, migration, and invasion of MDA-MB-231 cells in an environmentally relevant concentration range (0.1 to 10 µM), exhibiting a clear malignant-promoting risk. In contrast, PFBA only showed a trend to induce non-invasive cell migration. Hippo/YAP signaling pathway was identified as the contributor to the differences between the two PFASs. PFOA but PFBA reduced YAP phosphorylation and increased the nuclear content of YAP, which further facilitated abundant key factors of epithelial-mesenchymal transition (EMT) process. Our results provided a new idea for the carcinogenicity of PFOA using a 3D-based paradigm. Although the effects by PFBA were much milder than PFOA in the current test duration, the cell model suitable for longer exposure is still necessary to better assess the safety of alternative short-chain PFASs.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Humans , MDA-MB-231 Cells , Caprylates , Fluorocarbons/toxicity
12.
Sci Total Environ ; 912: 169305, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38103603

ABSTRACT

Perfluorooctanoic acid (PFOA) exposure correlated with various cancers and their mortality. Its persistence in the environment made its long-term multigenerational influences of significant concerns. However, it remained unanswered whether its multigenerational exposure could influence metastasis which contributes ~90 % to cancer mortality. In the present study, long-term effects of PFOA were measured in Drosophila melanogaster over 3 consecutive generations. In the morning-eclosed (AM) adult flies, PFOA significantly promoted tumor invasion rates and distances which increased over generations. Regarding metabolic reprogramming, PFOA disturbed the expressions of Glut1 and Pdk1, activities and contents of FASN1 (fatty acid synthase), ACC (acetyl-CoA carboxylase) and SREBP1 (sterol regulatory element binding protein). Regarding antioxidant responses, PFOA exposure generated provoked oxidative stress via H2O2 and stimulated antioxidants including glutathione (GSH), catalase (CAT), melatonin, serotonin and cortisol, with downregulations on PI3K/AKT pathways and upregulations on MAPK ones. The biochemical and molecular effects altered over generations. In the afternoon-eclosed (PM) adult flies, the metastasis of PFOA was more deteriorated than in AM adults. The significant influences of dysrhythmia were also observed in the multigenerational effects of PFOA on the metabolism reprogramming and antioxidant responses. The effects on rhythm-regulating gene expressions and protein levels explained the dysrhythmia and also indicated close interactions among metabolism reprogramming, antioxidant responses and rhythm regulation. ENVIRONMENTAL IMPLICATION: Numerous emerging per- and polyfluoroalkyl substances (PFASs) are being detected. Meanwhile, the toxicities of the emerging PFASs still depend on the progress of legacy PFASs for the continuity of scientific studies. As one legacy PFAS, perfluorooctanoic acid (PFOA) exposure correlated with various cancers and their mortality. Its persistence in the environment made its long-term multigenerational influences of significant concerns. However, it remained unanswered whether its multigenerational exposure could influence metastasis which contributes ~90 % to cancer mortality. The present study performed PFOA exposure for 3 consecutive generations. Results showed that the metastasis by PFOA increased over generations, and it was further deteriorated by dysrhythmia. Further analysis demonstrated the interactive involvement of metabolism reprogramming, antioxidant responses and rhythm regulation. The findings of the present study would highlight considerate points for studying the toxicities of emerging PFASs.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Neoplasms , Animals , Drosophila melanogaster , Antioxidants , Metabolic Reprogramming , Hydrogen Peroxide , Phosphatidylinositol 3-Kinases , Fluorocarbons/toxicity , Fluorocarbons/analysis , Caprylates/toxicity , Alkanesulfonic Acids/toxicity
13.
Environ Sci Technol ; 57(38): 14330-14339, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37710968

ABSTRACT

The ubiquitous occurrence of per- and polyfluoroalkyl substances (PFAS) and the detection of unexplained extractable organofluorine (EOF) in drinking water have raised growing concerns. A recent study reported the detection of inorganic fluorinated anions in German river systems, and therefore, in some samples, EOF may include some inorganic fluorinated anions. Thus, it might be more appropriate to use the term "extractable fluorine (EF) analysis" instead of the term EOF analysis. In this study, tap water samples (n = 39) from Shanghai were collected to assess the levels of EF/EOF, 35 target PFAS, two inorganic fluorinated anions (tetrafluoroborate (BF4-) and hexafluorophosphate (PF6-)), and novel PFAS through suspect screening and potential oxidizable precursors through oxidative conversion. The results showed that ultra-short PFAS were the largest contributors to target PFAS, accounting for up to 97% of ΣPFAS. To the best of our knowledge, this was the first time that bis(trifluoromethanesulfonyl)imide (NTf2) was reported in drinking water from China, and p-perfluorous nonenoxybenzenesulfonate (OBS) was also identified through suspect screening. Small amounts of precursors that can be oxidatively converted to PFCAs were noted after oxidative conversion. EF mass balance analysis revealed that target PFAS could only explain less than 36% of EF. However, the amounts of unexplained extractable fluorine were greatly reduced when BF4- and PF6- were included. These compounds further explained more than 44% of the EF, indicating the role of inorganic fluorinated anions in the mass balance analysis.


Subject(s)
Drinking Water , Fluorocarbons , Fluorine , China , Imides
14.
iScience ; 26(10): 107688, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37701572

ABSTRACT

The fish plasma model (FPM) facilitated the environmental risk assessment of human drugs by using existing data on human therapeutic plasma concentrations (HTPCs) and predicted fish plasma concentrations (FPCs). However, studies on carbamazepine (CMZ) with both the mode of action (MOA) based biological effects at molecular level (such as neurotransmitter and gene level) and measured FPCs are lacking. Bioconcentration of CMZ in adult zebrafish demonstrated that the FPM underestimated the bioconcentration factors (BCFs) in plasma at environmental CMZ exposure concentrations (1-100 µg/L). CMZ significantly increased Glu and GABA, decreased ACh and AChE as well as inhibited the transcription levels of gabra1, grin1b, grin2b, gad1b, and abat when the actual FPCs were in the ranges of 1/1000 HTPC to HTPC. It is the first read-across study of CMZ integrating MOA-based biological effects at molecular level and FPCs. This study facilitates model performance against a range of different drug classes.

15.
Environ Sci Pollut Res Int ; 30(44): 99735-99747, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37620695

ABSTRACT

Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.0% and 26.7%, respectively. In order to maintain homeostasis of the gastrointestinal tract, 0.4 g Tenax was added in CE-PEBT, which increased BFRs bioaccessibility by up to a factor of 1.4-1.9. The highest bioaccessibility of legacy PBDEs was tri-BDEs (73.3%), while 2-ethylhexyl-tetrabromo-benzoate (EHTBB), one of penta-BDE alternatives, showed the highest (62.2%) among NBFRs. The influence of food nutrients, liquid to solid (L/S) ratio, and octanol-water partition coefficient (Kow) on bioaccessibility was assessed. The oral bioaccessibility of BFRs increased with existence of protein or carbohydrate while lipid did the opposite. The bioaccessibilities of PBDEs and NBFRs were relatively higher with 200:1 L/S ratio. PBDEs bioaccessibility generally decreased with increasing LogKow. No significant correlation was observed between NBFRs bioaccessibility and LogKow. This study comprehensively evaluated the bioaccessibilities of legacy and emerging BFRs via dust ingestion using Tenax-assisted CE-PBET, and highlighted the significance to fully consider potential influencing factors on BFRs bioaccessibility in further human exposure estimation.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Humans , Dust/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Air Pollution, Indoor/analysis , Gastrointestinal Tract/metabolism , Environmental Monitoring
16.
Anal Chem ; 95(29): 11052-11060, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37437140

ABSTRACT

The cooperation of biocatalysis and chemocatalysis in a catalytic cascade reaction has received extensive attention in recent years, whereas its practical applications are still hampered due to the fragility of the enzymes, poor compatibility between the carriers and enzymes, and limited catalytic efficiency. Herein, a biomimetic cascade nanoreactor (GOx@COFs@Os) was presented by integrating glucose oxidase (GOx) and Os nanozyme with covalent organic framework (COF) capsule using metal-organic framework (ZIF-90) as a template. The obtained GOx@COFs@Os capsule provided a capacious microenvironment to retain the conformational freedom of GOx for maintaining its activity, wherein the enzyme activity of GOx in COF capsules was equal to 92.9% of the free enzyme and was 1.88-folds higher than that encapsulated in ZIF-90. Meanwhile, the COF capsule could protect the GOx against incompatible environments (high temperature, acid, and organic solvents), resulting in improved stability of the packaged enzymes. Moreover, the COF capsule with great pore structure significantly improved the affinity to substrates and facilitated efficient mass transfer, which achieved 2.19-folds improvement in catalytic efficiency than the free cascade system, displaying the great catalytic performance in the cascade reaction. More importantly, the biomimetic cascade capsule was successfully employed for glucose monitoring, glutathione sensing, and bisphenol S detection in the immunoassay as a proof-of-concept. Our strategy provided a new avenue in the improvement of biocatalytic cascade performance to encourage its wide applications in various fields.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Blood Glucose , Biomimetics/methods , Blood Glucose Self-Monitoring , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Nanotechnology
17.
Sci Total Environ ; 897: 165382, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37422226

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are organic pollutants widely detected in various environmental media due to their high persistence and bioaccumulation. PBDE-induced visual impairment and neurotoxicity were previously demonstrated using zebrafish (Danio rerio) models, and recent research reported the phenotypic depigmentation effect of PBDEs at high concentrations on zebrafish, but whether those effects are still present at environment-relevant levels is still unclear. Herein, we performed both phenotypic examination and mechanism investigation in zebrafish embryos (48 hpf) and larvae (5 dpf) about their pigmentation status when exposing to PBDE congener BDE-47 (2,2',4,4'-tetrabrominated diphenyl ether) at levels from 0.25 to 25 µg/L. Results showed that low-level BDE-47 can restrain the relative melanin abundance of zebrafish larvae to 70.47% (p < 0.05) and 61.54% (p < 0.01) respectively under 2.5 and 25 µg/L BDE-47 compared with control, and the thickness of retinal pigment epithelium (RPE) remarkably reduced from 571.4 nm to 350.3 nm (p < 0.001) under 25 µg/L BDE-47 exposure. We also observed disrupted expressions of melanin synthesis genes and disorganized mitfa differentiation patterns based on Tg(mifta:EGFP), as well as visual impairment resulting from thinner RPE. Considering both processes of visual development and melanin synthesis are highly sensitive to ambient light conditions, we prolonged the light regime of maintaining zebrafish larvae from 14 hours light versus 10 hours dark (14L:10D) to 18 hours light versus 6 hours dark (18L:6D). Lengthening photoperiod successfully rescued the fluorescent level of mitfa in zebrafish epidermis and most gene expressions associated with melanin synthesis under 25 µg/L BDE-47 exposure to the normal level. In conclusion, our work reported the effects of low-level PBDEs on melanin production using zebrafish embryos and larvae, and identified the potential role of a light-mediated pathway in the neurotoxic mechanism of PBDEs.


Subject(s)
Halogenated Diphenyl Ethers , Zebrafish , Animals , Halogenated Diphenyl Ethers/toxicity , Halogenated Diphenyl Ethers/metabolism , Zebrafish/metabolism , Ether/metabolism , Ether/pharmacology , Larva , Melanins/metabolism , Vision Disorders
18.
J Hazard Mater ; 458: 131999, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37459762

ABSTRACT

Nanoplastics (NPs) and microplastics (MPs) could act as potential carriers for pharmaceuticals and personal care products (PPCPs) and alter the bioavailability in the aquatic environment. The effects of NPs and MPs of polystyrene (PS) and polyethylene (PE) on the availability of five PPCPs including carbamazepine, bisphenol A, estrone, triclocarban and 4-tert-octylphenol were investigated by negligible depletion solid- phase microextraction (nd-SPME). The freely dissolved concentrations of PPCPs decreased with the increasing concentrations of NPs/MPs. The overall order of the sorption coefficients (logKNP / logKMP) of PPCPs was as follows: 100 nm PS > 50 nm PS > 1 µm PS > 100 µm PS > 100 µm PE. Sorption of PPCPs by NPs was generally 1-2 orders of magnitude stronger than to MPs. The log KNP / log KMP values (3.16-5.21) increased with the log KOW (2.45-5.28) of PPCPs, however, linear correlation was only observed between log KMP and log KOW. The particle size, specific surface area, aggregation state as well as hydrophobicity played an important role in the sorption. Coexistence of fulic acid (FA) with NPs inhibited the sorption due to the fouling of FA on NPs. This study suggests that sorption of PPCPs to MPs/NPs could reduce bioavailability of PPCPs in the aquatic environment.


Subject(s)
Cosmetics , Water Pollutants, Chemical , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Polystyrenes , Polyethylene , Pharmaceutical Preparations
19.
Sci Total Environ ; 900: 165787, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37499828

ABSTRACT

Emamectin benzoate (EMB) is an efficient insecticide which widely used as an anthelmintic drug additive in aquaculture fish. However, its extensive use has resulted in widespread pollution in the aquatic environment. Previous studies have identified the potential developmental and neurotoxic effects of EMB, however, systematic studies pertaining to the cardiovascular toxic effects of EMB on fish are scarce. In this study, zebrafish embryos were exposed to EMB at concentrations of 0, 0.1, 0.25, 0.5, 1, 2, 4, and 8 mg/L for 3 days, aiming to investigate the cardiovascular toxic effects of EMB via examining morphology, cardiac function, and vascular development phenotypes. It revealed that EMB exposure led to marked deteriorated effects, including adverse effects on mortality, hatching rate, and general morphological traits, such as malformation, heart rate, body length, and eye area, in zebrafish embryos/larvae. Furthermore, EMB exposure resulted in abnormal cardiac function and vascular development, triggering neutrophil migration and aggregation toward the pericardial and dorsal vascular regions, and finalized apoptosis in the zebrafish heart region, these phenomena were further deciperred by the transcriptome analysis that the Toll-like receptor pathway, P53 pathway, and apoptotic pathway were significantly affected by EMB exposure. Moreover, the molecular docking and aspirin anti-inflammatory rescue assays indicated that TLR2 and TLR4 might be the potential targets of EMB. Taken together, our study provides preliminary evidence that EMB may induce apoptosis by affecting inflammatory signaling pathways and eventually lead to abnormal cardiovascular development in zebrafish. This study provides a simple toxicological AOP framework for safe pesticide use and management strategies.


Subject(s)
Adverse Outcome Pathways , Water Pollutants, Chemical , Animals , Zebrafish/physiology , Larva , Molecular Docking Simulation , Embryo, Nonmammalian , Water Pollutants, Chemical/metabolism
20.
Sci Total Environ ; 892: 164737, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37301398

ABSTRACT

A comprehensive investigation was conducted to explore the distributions of total mercury (THg) and methylmercury (MeHg) in sediments and porewater along a typical transect from the Yangtze River Estuary (YRE) to the East China Sea (ECS) open shelf. THg concentrations in the surface sediments exhibited large variations across sites, higher in the estuary mixing region, especially within the turbidity maximum zone (TMZ). The spatial and vertical distributions (0-20 cm) of THg in sediments were highly controlled by sediment grain size and total organic carbon (TOC), due to the strong binding between Hg and fine-grained sediments that enriched with organic matter. In contrast, MeHg concentrations in surface sediments were higher in the estuary mixing region and the ECS open shelf than in the river channel, with remarkably higher MeHg/THg ratios in sediments and porewater at the open shelf sites, identified as the regional hotspots of the net in situ MeHg production. Considering the large gradients of physiochemical properties of sediments, porewater and the overlying water, the results of this study suggested that the higher net Hg methylation potential in the open shelf region was largely attributed to the lower acid volatile sulfide, lower TOC and higher salinity, which facilitated the partitioning of inorganic Hg into porewater that highly bioavailable for Hg-methylation bacteria. Moreover, the estimated diffusive fluxes of MeHg at the sediment-water interface were positive at all the tested sites, and pronouncedly higher within the TMZ (driven by the higher THg loading and higher porosity) that requires special attention.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Mercury/analysis , Methylmercury Compounds/analysis , Rivers/chemistry , Estuaries , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Environmental Monitoring/methods , Water , China
SELECTION OF CITATIONS
SEARCH DETAIL