Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
2.
Animals (Basel) ; 14(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338054

Intestinal bacteria, synchronized with diet and feeding time, exhibit circadian rhythms and anticipate host gut function; however the effect of dietary probiotics on gut bacterial diurnal rhythms remains obscure. In this study, bacteria were sequenced at 6 Zeitgeber times (ZT) from a pig model of ileal T-shaped fistula to test ileal bacterial composition and circadian rhythms after Lactobacillus delbrueckii administration. The results showed that dietary L. delbrueckii enhanced ileal bacterial α-diversity at Zeitgeber time (ZT) 16, evidenced by an increased Simpson index compared with control pigs. At the phylum level, Firmicutes was identified as the largest phyla represented in pigs, but dietary L. delbrueckii only increased the abundance of Tenericutes at ZT16. At the genus level, 11/100 genera (i.e., Lactobacillus, Enterococcus, Leptotrichia, Pediococcus, Bifidobacte, Cellulosilyticum, Desulfomicrobium, Sharpea, Eubacterium, Propionivibrio, and Aerococcus) were markedly differentiated in L. delbrueckii-fed pigs and the effect was rhythmicity-dependent. Meanwhile, dietary L. delbrueckii affected six pathways of bacterial functions, such as membrane transport, metabolism of cofactors and vitamins, cell motility, the endocrine system, signaling molecules and interaction, and the nervous system. Cosinor analysis was conducted to test bacterial circadian rhythm in pigs, while no significant circadian rhythm in bacterial α-diversity and phyla composition was observed. Lactobacillus, Terrisporobacter, and Weissella exhibited significant rhythmic fluctuation in the control pigs, which was disturbed by probiotic exposure. In addition, dietary L. delbrueckii affected circadian rhythms in ileal Romboutsia, Erysipelatoclostridium, Cellulosilyticum, and Eubacterium abundances. Dietary L. delbrueckii affected both ileal bacterial composition and circadian rhythms, which might further regulate gut function and host metabolism in pigs.

3.
Animals (Basel) ; 14(3)2024 Feb 02.
Article En | MEDLINE | ID: mdl-38338136

Probiotic intervention is a well-established approach for replacing antibiotics in the management of weaning piglet diarrhea, which involves a large number of complex systems interacting with the gut microbiota, including the endocannabinoid system; nevertheless, the specific role of the endocannabinoid system mediated by probiotics in the piglet intestine has rarely been studied. In this study, we used antibiotics (ampicillin) to perturb the intestinal microbiota of piglets. This resulted in that the gene expression of the intestinal endocannabinoid system was reprogrammed and the abundance of probiotic Lactobacillus johnsonii in the colon was lowered. Moreover, the abundance of Lactobacillus johnsonii was positively correlated with colonic endocannabinoid system components (chiefly diacylglycerol lipase beta) via correlation analysis. Subsequently, we administered another batch of piglets with Lactobacillus johnsonii. Interestingly, dietary Lactobacillus johnsonii effectively alleviated the diarrhea ratio in weaning piglets, accompanied by improvements in intestinal development and motility. Notably, Lactobacillus johnsonii administration enhanced the intestinal barrier function of piglets as evidenced by a higher expression of tight junction protein ZO-1, which might be associated with the increased level in colonic diacylglycerol lipase beta. Taken together, the dietary Lactobacillus johnsonii-mediated reprogramming of the endocannabinoid system might function as a promising target for improving the intestinal health of piglets.

4.
Front Nutr ; 9: 1024722, 2022.
Article En | MEDLINE | ID: mdl-36407543

Artemisia argyi leaf is a well-known species in traditional Chinese medicine, and its essential oil (AAEO) has been identified to exert various physiological activities. The aim of this study was to investigate the effects of AAEO on lipid metabolism and the potential microbial role in high-fat diet (HFD)-fed mice. A total of 50 male mice were assigned to five groups for feeding with a control diet (Con), a high-fat diet (HFD), and the HFD plus the low (LEO), medium (MEO), and high (HEO) doses of AAEO. The results demonstrated that dietary HFD markedly increased the body weight gain compared with the control mice (p < 0.05), while mice in the HEO group showed a lower body weight compared to the HFD group (p < 0.05). The weight of fatty tissues and serum lipid indexes (TBA, HDL, and LDL levels) were increased in response to dietary HFD, while there was no significant difference in AAEO-treated mice (p < 0.05). The jejunal villus height was dramatically decreased in HFD-fed mice compared with the control mice, while HEO resulted in a dramatically higher villus height than that in the HFD group (p < 0.05). Microbial α-diversity was not changed in this study, but ß-diversity indicated that microbial compositions differed in control, HFD, and EO subjects. At the genus level, the relative abundance of Bacteroides was greater (p < 0.05) in the feces of the Con group when compared to the HFD and EO groups. On the contrary, the abundance of Muribaculum was lower in the Con group compared to the HFD and EO groups (p < 0.05). Although the Muribaculum in the EO group was lower than that in the HFD group, there was no statistically notable difference between the HFD and EO groups (p > 0.05). Simultaneously, the relative abundance of Alistipes (p < 0.05) and Rikenella (p < 0.05) was also dramatically higher in the Con group than in the HFD and EO groups. The abundance of norank_f__norank_o__Clostridia_UCG-014 was lower in the HFD or EO group than in the Con group (p < 0.05). In conclusion, the results suggested that HEO could affect body weight and lipid metabolism without gut microbes in ICR mice, and it was beneficial for the structure of the jejunal epithelial tissue.

...