Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 165
1.
Front Immunol ; 15: 1368572, 2024.
Article En | MEDLINE | ID: mdl-38698852

Introduction: Interferon-gamma (IFN-γ) is pivotal in orchestrating immune responses during healthy pregnancy. However, its dysregulation, often due to autoimmunity, infections, or chronic inflammatory conditions, is implicated in adverse reproductive outcomes such as pregnancy failure or infertility. Additionally, the underlying immunological mechanisms remain elusive. Methods: Here, we explore the impact of systemic IFN-γ elevation on cytotoxic T cell responses in female reproduction utilizing a systemic lupus-prone mouse model with impaired IFN-γ degradation. Results: Our findings reveal that heightened IFN-γ levels triggered the infiltration of CD8+T cells in the pituitary gland and female reproductive tract (FRT), resulting in prolactin deficiency and subsequent infertility. Furthermore, we demonstrate that chronic IFN-γ elevation increases effector memory CD8+T cells in the murine ovary and uterus. Discussion: These insights broaden our understanding of the role of elevated IFN-γ in female reproductive dysfunction and suggest CD8+T cells as potential immunotherapeutic targets in female reproductive disorders associated with chronic systemic IFN-γ elevation.


CD8-Positive T-Lymphocytes , Interferon-gamma , Animals , Female , Mice , Pregnancy , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Infertility, Female/immunology , Interferon-gamma/metabolism , Lupus Erythematosus, Systemic/immunology , Mice, Inbred C57BL , Ovary/immunology , Pituitary Gland/immunology , Pituitary Gland/metabolism , Prolactin/metabolism , Uterus/immunology
2.
Microbes Infect ; : 105337, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38615883

The thymus plays a crucial role in T cell differentiation, a complex process influenced by various factors such as antigens, the microenvironment and thymic architecture. The way the thymus resolves infections is critical, as chronic persistence of microbes or inflammatory mediators can obstruct the differentiation. Here, we illustrate that following inflammatory T helper 1 infectious processes like those caused by Candida albicans or Trypanosoma cruzi, single positive thymocytes adopt a mature phenotype. Further investigations focused on T. cruzi infection, reveal a substantial existence of CD44+ cells in both the cortical and medullary areas of the thymus at the onset of infection. This disturbance coincides with heightened interferon gamma (IFNγ) production by thymocytes and an increased cytotoxic capacity against T. cruzi-infected macrophages. Additionally, we observe a reduced exportation capacity in T. cruzi-infected mice. Some alterations can be reversed in IFNγ knockout mice (KO). Notably, the majority of these effects can be replicated by systemic expression of interleukin (IL)-12+IL-18, underlining the predominantly inflammatory rather than pathogen-specific nature of these phenomena. Understanding the mechanisms through which systemic inflammation disrupts normal T cell development, as well as subsequent T cell exportation to secondary lymphoid organs (SLO) is pivotal for comprehending susceptibility to diseases in different pathological scenarios.

3.
STAR Protoc ; 4(4): 102710, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37963022

Here, we present a validated workflow to isolate sufficient viable single ovary cells from a single mouse without the need to pool from several mice. We provide steps essential for estrous staging, ovary harvesting and dissociation, ovary cell staining, data collection, and analysis. Our approach allows the use of these single-cell suspensions for flow sorting, flow cytometry analysis, or functional in vitro assays. Importantly, our protocol is designed to maximize the isolation of immune cells, including T cell subsets.


Ovary , T-Lymphocyte Subsets , Female , Animals , Mice , Flow Cytometry/methods
4.
Nutrients ; 15(19)2023 Sep 29.
Article En | MEDLINE | ID: mdl-37836502

D-allulose, a rare sugar, has been proposed to have potential benefits in addressing metabolic disorders such as obesity and type 2 diabetes (T2D). However, the precise mechanisms underlying these effects remain poorly understood. We aimed to elucidate the mechanisms by which D-allulose influences obesity-induced insulin resistance. We conducted gene set enrichment analysis on the liver and white adipose tissue of mice exposed to a high-fat diet (HFD) along with the white adipose tissue of individuals with obesity. Our study revealed that D-allulose effectively suppressed IFN-γ, restored chemokine signaling, and enhanced macrophage function in the livers of HFD-fed mice. This implies that D-allulose curtails liver inflammation, alleviating insulin resistance and subsequently impacting adipose tissue. Furthermore, D-allulose supplementation improved mitochondrial NADH homeostasis and translation in both the liver and white adipose tissue of HFD-fed mice. Notably, we observed decreased NADH homeostasis and mitochondrial translation in the omental tissue of insulin-resistant obese subjects compared to their insulin-sensitive counterparts. Taken together, these results suggest that supplementation with allulose improves obesity-induced insulin resistance by mitigating the disruptions in macrophage and mitochondrial function. Furthermore, our data reinforce the crucial role that mitochondrial energy expenditure plays in the development of insulin resistance triggered by obesity.


Diabetes Mellitus, Type 2 , Insulin Resistance , Insulins , Humans , Animals , Mice , NAD/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Macrophages/metabolism , Homeostasis , Mitochondria/metabolism , Insulins/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Inflammation/metabolism
5.
J Immunol ; 211(10): 1481-1493, 2023 11 15.
Article En | MEDLINE | ID: mdl-37747317

NK effector functions can be triggered by inflammatory cytokines and engagement of activating receptors. NK cell production of IFN-γ, an important immunoregulatory cytokine, exhibits activation-specific IFN-γ regulation. Resting murine NK cells exhibit activation-specific metabolic requirements for IFN-γ production, which are reversed for activating receptor-mediated stimulation following IL-15 priming. Although both cytokine and activating receptor stimulation leads to similar IFN-γ protein production, only cytokine stimulation upregulates Ifng transcript, suggesting that protein production is translationally regulated after receptor stimulation. Based on these differences in IFN-γ regulation, we hypothesized that ex vivo IL-15 priming of murine NK cells allows a switch to IFN-γ transcription upon activating receptor engagement. Transcriptional analysis of primed NK cells compared with naive cells or cells cultured with low-dose IL-15 demonstrated that primed cells strongly upregulated Ifng transcript following activating receptor stimulation. This was not due to chromatin accessibility changes in the Ifng locus or changes in ITAM signaling, but was associated with a distinct transcriptional signature induced by ITAM stimulation of primed compared with naive NK cells. Transcriptional analyses identified a common signature of c-Myc (Myc) targets associated with Ifng transcription. Although Myc marked NK cells capable of Ifng transcription, Myc itself was not required for Ifng transcription using a genetic model of Myc deletion. This work highlights altered regulatory networks in IL-15-primed cells, resulting in distinct gene expression patterns and IFN-γ regulation in response to activating receptor stimulation.


Interleukin-15 , Killer Cells, Natural , Animals , Mice , Cytokines/metabolism , Interferon-gamma/metabolism , Interleukin-15/metabolism , Killer Cells, Natural/metabolism , Signal Transduction
6.
J Autoimmun ; 139: 103091, 2023 09.
Article En | MEDLINE | ID: mdl-37595410

Obesity-induced chronic inflammation has been linked to several autoimmune diseases, including rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. The underlying mechanisms are not yet fully understood, but it is believed that chronic inflammation in adipose tissue can lead to the production of pro-inflammatory cytokines and chemokines, which can trigger immune responses and contribute to the development of autoimmune diseases. However, the underlying mechanisms that lead to the infiltration of immune cells into adipose tissue are not fully understood. In this study, we observed a time-dependent response to a high-fat diet in the liver and epididymal white adipose tissue using gene set enrichment analysis. Our findings revealed a correlation between early abnormal innate immune responses in the liver and late inflammatory response in the adipose tissue, that eventually leads to systemic inflammation. Specifically, our data suggest that the dysregulated NADH homeostasis in the mitochondrial matrix, interacting with the mitochondrial translation process, could serve as a sign marking the transition from liver inflammation to adipose tissue inflammation. Taken together, our study provides valuable insights into the molecular mechanisms underlying the development of chronic inflammation and associated autoimmune diseases in obesity.


Autoimmune Diseases , Diet, High-Fat , Animals , Mice , Diet, High-Fat/adverse effects , Liver , Inflammation , Adipose Tissue , Obesity
7.
Front Immunol ; 14: 1021824, 2023.
Article En | MEDLINE | ID: mdl-37153622

Mucosal delivery of IL-27 has been shown to have a therapeutic benefit in murine models of inflammatory bowel disease (IBD). The IL-27 effect was associated with phosphorylated STAT1 (pSTAT1), a product of IL27 receptor signaling, in bowel tissue. To determine whether IL-27 acted directly on colonic epithelium, murine colonoids and primary intact colonic crypts were shown to be unresponsive to IL-27 in vitro and to lack detectable IL-27 receptors. On the other hand, macrophages, which are present in inflamed colon tissue, were responsive to IL-27 in vitro. IL-27 induced pSTAT1 in macrophages, the transcriptome indicated an IFN-like signature, and supernatants induced pSTAT1 in colonoids. IL-27 induced anti-viral activity in macrophages and MHC Class II induction. We conclude that the effects of mucosal delivery of IL-27 in murine IBD are in part based on the known effects of IL27 inducing immunosuppression of T cells mediated by IL-10. We also conclude that IL-27 has potent effects on macrophages in inflamed colon tissue, generating mediators that in turn act on colonic epithelium.


Inflammatory Bowel Diseases , Interleukin-27 , Mice , Animals , Interleukin-27/therapeutic use , Colon , Inflammatory Bowel Diseases/drug therapy , Macrophages , Epithelium
8.
Front Immunol ; 14: 1167924, 2023.
Article En | MEDLINE | ID: mdl-37207205

Myeloid-derived suppressor cells (MDSCs) are aberrantly expanded in cancer patients and under other pathological conditions. These cells orchestrate the immunosuppressive and inflammatory network to facilitate cancer metastasis and mediate patient resistance to therapies, and thus are recognized as a prime therapeutic target of human cancers. Here we report the identification of the adaptor protein TRAF3 as a novel immune checkpoint that critically restrains MDSC expansion. We found that myeloid cell-specific Traf3-deficient (M-Traf3 -/-) mice exhibited MDSC hyperexpansion during chronic inflammation. Interestingly, MDSC hyperexpansion in M-Traf3 -/- mice led to accelerated growth and metastasis of transplanted tumors associated with an altered phenotype of T cells and NK cells. Using mixed bone marrow chimeras, we demonstrated that TRAF3 inhibited MDSC expansion via both cell-intrinsic and cell-extrinsic mechanisms. Furthermore, we elucidated a GM-CSF-STAT3-TRAF3-PTP1B signaling axis in MDSCs and a novel TLR4-TRAF3-CCL22-CCR4-G-CSF axis acting in inflammatory macrophages and monocytes that coordinately control MDSC expansion during chronic inflammation. Taken together, our findings provide novel insights into the complex regulatory mechanisms of MDSC expansion and open up unique perspectives for the design of new therapeutic strategies that aim to target MDSCs in cancer patients.


Myeloid-Derived Suppressor Cells , Neoplasms , TNF Receptor-Associated Factor 3 , Animals , Humans , Mice , Inflammation , Myeloid Cells , Neoplasms/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism
9.
J Pathol ; 260(3): 276-288, 2023 07.
Article En | MEDLINE | ID: mdl-37185821

The effect of cytokines on non-traditional immunological targets under conditions of chronic inflammation is an ongoing subject of study. Fatigue is a symptom often associated with autoimmune diseases. Chronic inflammatory response and activated cell-mediated immunity are associated with cardiovascular myopathies which can be driven by muscle weakness and fatigue. Thus, we hypothesize that immune dysfunction-driven changes in myocyte mitochondria may play a critical role in fatigue-related pathogenesis. We show that persistent low-level expression of IFN-γ in designated IFN-γ AU-Rich Element deletion mice (ARE mice) under androgen exposure resulted in mitochondrial and metabolic deficiencies in myocytes from male or castrated ARE mice. Most notably, echocardiography unveiled that low ejection fraction in the left ventricle post-stress correlated with mitochondrial deficiencies, explaining how heart function decreases under stress. We report that inefficiencies and structural changes in mitochondria, with changes to expression of mitochondrial genes, are linked to male-biased fatigue and acute cardiomyopathy under stress. Our work highlights how male androgen hormone backgrounds and active autoimmunity reduce mitochondrial function and the ability to cope with stress and how pharmacological blockade of stress signal protects heart function. These studies provide new insight into the diverse actions of IFN-γ in fatigue, energy metabolism, and autoimmunity. © 2023 The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Androgens , Interferon-gamma , Animals , Male , Mice , Androgens/metabolism , Cytokines/metabolism , Inflammation/metabolism , Mitochondria/metabolism , Muscle Cells/metabolism
10.
bioRxiv ; 2023 Apr 25.
Article En | MEDLINE | ID: mdl-37163083

Natural killer (NK) effector functions can be triggered by inflammatory cytokines and engagement of activating receptors. NK cell production of IFN-γ, an important immunoregulatory cytokine, exhibits activation-specific IFN-γ regulation. Resting murine NK cells exhibit activation-specific metabolic requirements for IFN-γ production, which are reversed for activating receptor-mediated stimulation following IL-15 priming. While both cytokine and activating receptor stimulation leads to similar IFN-γ protein production, only cytokine stimulation upregulates Ifng transcript, suggesting that protein production is translationally regulated after receptor stimulation. Based on these differences in IFN-γ regulation, we hypothesized that ex vivo IL-15 priming of murine NK cells allows a switch to IFN-γ transcription upon activating receptor engagement. Transcriptional analysis of primed NK cells compared to naïve cells or cells cultured with low-dose IL-15 demonstrated that primed cells strongly upregulated Ifng transcript following activating receptor stimulation. This was not due to chromatin accessibility changes in the Ifng locus or changes in ITAM signaling, but was associated with a distinct transcriptional signature induced by ITAM stimulation of primed compared to naïve NK cells. Transcriptional analyses identified a common signature of c-Myc (Myc) targets associated with Ifng transcription. While Myc marked NK cells capable of Ifng transcription, Myc itself was not required for Ifng transcription using a genetic model of Myc deletion. This work highlights altered regulatory networks in IL-15 primed cells, resulting in distinct gene expression patterns and IFN-γ regulation in response to activating receptor stimulation.

11.
Cytokine ; 164: 156159, 2023 04.
Article En | MEDLINE | ID: mdl-36809715

Interleukin (IL)-4 and IL-13 are related cytokines with well-known specific roles in type 2 immune response. However, their effects on neutrophils are not completely understood. For this, we studied human primary neutrophil responses to IL-4 and IL-13. Neutrophils are dose-dependently responsive to both IL-4 and IL-13 as indicated by signal transducer and activator of transcription 6 (STAT6) phosphorylation upon stimulation, with IL-4 being more potent inducer of STAT6. IL-4-, IL-13- and Interferon (IFN)-γ-stimulated gene expression in highly purified human neutrophils induced both overlapping and unique gene expression in highly purified human neutrophils. IL-4 and IL-13 specifically regulate several immune-related genes, including IL-10, tumor necrosis factor (TNF) and leukemia inhibitory factor (LIF), while type1 immune response-related IFN-γ induced gene expression related for example, to intracellular infections. In analysis of neutrophil metabolic responses, oxygen independent glycolysis was specifically regulated by IL-4, but not by IL-13 or IFN-γ, suggesting specific role for type I IL-4 receptor in this process. Our results provide a comprehensive analysis of IL-4, IL-13 and IFN-γ -induced gene expression in neutrophils while also addressing cytokine-mediated metabolic changes in neutrophils.


Interleukin-13 , Interleukin-4 , Humans , Cytokines/metabolism , Interferon-gamma/metabolism , Interleukin-13/pharmacology , Interleukin-13/metabolism , Interleukin-4/pharmacology , Interleukin-4/metabolism , Neutrophils/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
J Interferon Cytokine Res ; 42(12): 597-600, 2022 12.
Article En | MEDLINE | ID: mdl-36516376
13.
Front Immunol ; 13: 971001, 2022.
Article En | MEDLINE | ID: mdl-36330506

Virtual memory CD8+ T cells (TVM) have been described as cells with a memory-like phenotype but without previous antigen (Ag) exposure. TVM cells have the ability to respond better to innate stimuli rather than by TCR engagement, producing large amounts of interferon gamma (IFNγ) after stimulation with interleukin (IL)-12 plus IL-18. As a result of the phenotypic similarity, TVM cells have been erroneously included in the central memory T cell subset for many years. However, they can now be discriminated via the CD49d receptor, which is up-regulated only on conventional memory T cells (TMEM) and effector T cells (TEFF) after specific cognate Ag recognition by a TCR. In this work we show that systemic expression of IL-12 plus IL-18 induced an alteration in the normal TVM vs TMEM/TEFF distribution in secondary lymphoid organs and a preferential enrichment of TVM cells in the melanoma (B16) and the pancreatic ductal adenocarcinoma (KPC) tumor models. Using our KPC bearing OT-I mouse model, we observed a significant increase in CD8+ T cell infiltrating the tumor islets after IL-12+IL-18 stimulation with a lower average speed when compared to those from control mice. This finding indicates a stronger interaction of T cells with tumor cells after cytokine stimulation. These results correlate with a significant reduction in tumor size in both tumor models in IL-12+IL-18-treated OT-I mice compared to control OT-I mice. Interestingly, the absence of IFNγ completely abolished the high antitumor capacity induced by IL-12+IL-18 expression, indicating an important role for these cytokines in early tumor growth control. Thus, our studies provide significant new information that indicates an important role of TVM cells in the immune response against cancer.


Interferon-gamma , Neoplasms , Mice , Animals , Interferon-gamma/metabolism , CD8-Positive T-Lymphocytes , Interleukin-18 , Immunologic Memory , Interleukin-12/pharmacology , Cytokines/metabolism , Receptors, Antigen, T-Cell
14.
J Autoimmun ; 132: 102897, 2022 10.
Article En | MEDLINE | ID: mdl-36029718

OBJECTIVE: The ability to regulate B cell development has long been recognized to have therapeutic potential in a variety of autoimmune diseases. However, despite the presence of a classic autoantibody in primary biliary cholangitis (PBC), B cell depleting therapy and indeed therapy with other biologic agents has been disappointing. Unsuccessful treatment using Rituximab is associated with elevation of B-cell activating factor (BAFF) level. Indeed, therapies for PBC remain directed at modulating bile salt biology, rather than targeting effector pathways. With these data in mind, we proposed that targeting two major stages of B cell development, namely long-lived memory B cells and short-lived peripheral autoreactive plasma cells would have therapeutic potential. METHODS: To address this thesis, we administrated anti-BAFF and anti-CD20 monoclonal antibody to ARE-Del mice, a well-characterized murine model of human PBC. We evaluated and compared the therapeutic efficacy of the two agents individually and the combination of anti-BAFF and anti-CD20 in female mice with well-established disease. RESULTS: Our data demonstrate that there was an increased level of B cell depletion that resulted in a significantly more effective clinical and serologic response using the combination of agents as compared with the use of the individual agents. The combination of anti-BAFF and anti-CD20 treatment was more effective in reducing serum levels of antimitochondrial antibody (AMA), total IgM and IgG compared to mice treated with the 2 individual agents. Combination treatment efficiently depleted B cells in the peripheral blood, peritoneal cavity and spleen. Importantly, we identified a unique IgM+ FCRL5+ B cell subset which was sensitive to dual B-cell targeting therapy and depletion of this unique population was associated with reduced portal infiltration and bile duct damage. Taken together, our data indicate that dual B cell targeting therapy with anti-BAFF and anti-CD20 not only led to the efficient depletion of B cells both in the peripheral blood and tissues, but also led to significant clinical improvement. These findings highlight the potential application of combination of anti-BAFF and anti-CD20 in treating patients with PBC. However, additional studies in other animal models of PBC should be undertaken before considering human trials in those PBC patients who have incomplete responses to conventional therapy.


Autoimmune Diseases , Cholangitis , Humans , Female , Mice , Animals , Cholangitis/drug therapy , Autoimmune Diseases/drug therapy , Antigens, CD20 , Autoantibodies , Immunoglobulin M
15.
Cell Mol Immunol ; 19(10): 1130-1140, 2022 10.
Article En | MEDLINE | ID: mdl-36042351

The interferon (IFN) signaling pathways are major immunological checkpoints with clinical significance in the pathogenesis of autoimmunity. We have generated a unique murine model named ARE-Del, with chronic overexpression of IFNγ, by altering IFNγ metabolism. Importantly, these mice develop an immunologic and clinical profile similar to patients with primary biliary cholangitis, including high titers of autoantibodies and portal inflammation. We hypothesized that the downregulation of IFN signaling pathways with a JAK1/2 inhibitor would inhibit the development and progression of cholangitis. To study this hypothesis, ARE-Del+/- mice were treated with the JAK1/2 inhibitor ruxolitinib and serially studied. JAK inhibition resulted in a significant reduction in portal inflammation and bile duct damage, associated with a significant reduction in splenic and hepatic CD4+ T cells and CD8+ T cells. Functionally, ruxolitinib inhibited the secretion of the proinflammatory cytokines IFNγ and TNF from splenic CD4+ T cells. Additionally, ruxolitinib treatment also decreased the frequencies of germinal center B (GC B) cells and T follicular helper (Tfh) cells and led to lower serological AMA levels. Of note, liver and peritoneal macrophages were sharply decreased and polarized from M1 to M2 with a higher level of IRF4 expression after ruxolitinib treatment. Mechanistically, ruxolitinib inhibited the secretion of IL-6, TNF and MCP1 and the expression of STAT1 but promoted the expression of STAT6 in macrophages in vitro, indicating that M1 macrophage polarization to M2 occurred through activation of the STAT6-IRF4 pathway. Our data highlight the significance, both immunologically and clinically, of the JAK/STAT signaling pathway in autoimmune cholangitis.


Autoimmune Diseases , Cholangitis , Janus Kinase Inhibitors , Animals , Autoantibodies , Autoimmune Diseases/drug therapy , CD8-Positive T-Lymphocytes , Cholangitis/drug therapy , Inflammation , Interferon-gamma , Interleukin-6 , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Mice , Nitriles , Pyrazoles , Pyrimidines
16.
Front Immunol ; 13: 886645, 2022.
Article En | MEDLINE | ID: mdl-35844500

Immune regulation of female reproductive function plays a crucial role in fertility, as alterations in the relationship between immune and reproductive processes result in autoimmune subfertility or infertility. The breakdown of immune tolerance leads to ovulation dysfunction, implantation failure, and pregnancy loss. In this regard, immune cells with regulatory activities are essential to restore self-tolerance. Apart from regulatory T cells, double negative T regulatory cells (DNTregs) characterized by TCRαß+/γδ+CD3+CD4-CD8- (and negative for natural killer cell markers) are emerging as effector cells capable of mediating immune tolerance in the female reproductive system. DNTregs are present in the female reproductive tract of humans and murine models. However, their full potential as immune regulators is evolving, and studies so far indicate that DNTregs exhibit features that can also maintain tolerance in the female reproductive microenvironment. This review describes recent progress on the presence, role and mechanisms of DNTregs in the female reproductive system immune regulation and tolerance. In addition, we address how DNTregs can potentially provide a paradigm shift from the known roles of conventional regulatory T cells and immune tolerance by maintaining and restoring balance in the reproductive microenvironment of female fertility.


Immune Tolerance , T-Lymphocytes, Regulatory , Animals , Female , Fertility , Humans , Mice , Pregnancy , Reproduction , Self Tolerance
17.
Cancer Res ; 81(23): 5977-5990, 2021 12 01.
Article En | MEDLINE | ID: mdl-34642183

The relationship between cancer and autoimmunity is complex. However, the incidence of solid tumors such as melanoma has increased significantly among patients with previous or newly diagnosed systemic autoimmune disease (AID). At the same time, immune checkpoint blockade (ICB) therapy of cancer induces de novo autoinflammation and exacerbates underlying AID, even without evident antitumor responses. Recently, systemic lupus erythematosus (SLE) activity was found to drive myeloid-derived suppressor cell (MDSC) formation in patients, a known barrier to healthy immune surveillance and successful cancer immunotherapy. Cross-talk between MDSCs and macrophages generally drives immune suppressive activity in the tumor microenvironment. However, it remains unclear how peripheral pregenerated MDSC under chronic inflammatory conditions modulates global macrophage immune functions and the impact it could have on existing tumors and underlying lupus nephritis. Here we show that pathogenic expansion of SLE-generated MDSCs by melanoma drives global macrophage polarization and simultaneously impacts the severity of lupus nephritis and tumor progression in SLE-prone mice. Molecular and functional data showed that MDSCs interact with autoimmune macrophages and inhibit cell surface expression of CD40 and the production of IL27. Moreover, low CD40/IL27 signaling in tumors correlated with high tumor-associated macrophage infiltration and ICB therapy resistance both in murine and human melanoma exhibiting active IFNγ signatures. These results suggest that preventing global macrophage reprogramming induced by MDSC-mediated inhibition of CD40/IL27 signaling provides a precision melanoma immunotherapy strategy, supporting an original and advantageous approach to treat solid tumors within established autoimmune landscapes. SIGNIFICANCE: Myeloid-derived suppressor cells induce macrophage reprogramming by suppressing CD40/IL27 signaling to drive melanoma progression, simultaneously affecting underlying autoimmune disease and facilitating resistance to immunotherapy within preexisting autoimmune landscapes.


Autoimmunity , CD40 Antigens/metabolism , Interleukin-27/metabolism , Lupus Erythematosus, Systemic/physiopathology , Macrophages/pathology , Melanoma/pathology , Myeloid-Derived Suppressor Cells/pathology , Animals , Immunotherapy , Macrophages/immunology , Macrophages/metabolism , Melanoma/immunology , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Tumor Microenvironment
19.
Adv Sci (Weinh) ; 8(15): e2004433, 2021 08.
Article En | MEDLINE | ID: mdl-34114369

Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.


Cytokines/blood , Cytokines/pharmacology , Biomarkers/blood , Cytokines/analysis , Humans
...