Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nucleic Acids Res ; 51(12): 5901-5910, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37224533

ABSTRACT

Although targeting TfR1 to deliver oligonucleotides to skeletal muscle has been demonstrated in rodents, effectiveness and pharmacokinetic/pharmacodynamic (PKPD) properties remained unknown in higher species. We developed antibody-oligonucleotide conjugates (AOCs) towards mice or monkeys utilizing anti-TfR1 monoclonal antibodies (αTfR1) conjugated to various classes of oligonucleotides (siRNA, ASOs and PMOs). αTfR1 AOCs delivered oligonucleotides to muscle tissue in both species. In mice, αTfR1 AOCs achieved a > 15-fold higher concentration to muscle tissue than unconjugated siRNA. A single dose of an αTfR1 conjugated to an siRNA against Ssb mRNA produced > 75% Ssb mRNA reduction in mice and monkeys, and mRNA silencing was greatest in skeletal and cardiac (striated) muscle with minimal to no activity in other major organs. In mice the EC50 for Ssb mRNA reduction in skeletal muscle was >75-fold less than in systemic tissues. Oligonucleotides conjugated to control antibodies or cholesterol produced no mRNA reduction or were 10-fold less potent, respectively. Tissue PKPD of AOCs demonstrated mRNA silencing activity primarily driven by receptor-mediated delivery in striated muscle for siRNA oligonucleotides. In mice, we show that AOC-mediated delivery is operable across various oligonucleotide modalities. AOC PKPD properties translated to higher species, providing promise for a new class of oligonucleotide therapeutics.


Subject(s)
Oligonucleotides, Antisense , Oligonucleotides , Mice , Animals , Antibodies/therapeutic use , RNA, Small Interfering/genetics , RNA, Messenger/genetics , Muscle, Skeletal
2.
Nucleic Acid Ther ; 32(6): 457-472, 2022 12.
Article in English | MEDLINE | ID: mdl-35976085

ABSTRACT

A human peripheral blood mononuclear cell (PBMC)-based assay was developed to identify antisense oligonucleotide (ASO) with the potential to activate a cellular innate immune response outside of an acceptable level. The development of this assay was initiated when ISIS 353512 targeting the messenger ribonucleic acid for human C-reactive protein (CRP) was tested in a phase I clinical trial, in which healthy human volunteers unexpectedly experienced increases in interleukin-6 (IL-6) and CRP. This level of immune stimulation was not anticipated following rodent and nonhuman primate safety studies in which no evidence of exaggerated proinflammatory effects were observed. The IL-6 increase induced by ISIS 353512 was caused by activation of B cells. The IL-6 induction was inhibited by chloroquine pretreatment of PBMCs and the nature of ASOs suggested that the response is mediated by a Toll-like receptor (TLR), in all likelihood TLR9. While assessing the inter PBMC donor variability, two classes of human PBMC responders to ISIS 353512 were identified (discriminator and nondiscriminators). The discriminator donor PBMCs were shown to produce low level of IL-6 after 24 h in culture, in the absence of ASO treatment. The PBMC assay using discriminator donors was shown to be reproducible, allowing to assess reliably the immune potential of ASOs by comparison to known benchmark ASO controls that were previously shown to be either safe or inflammatory in clinical trials. Clinical Trial registration numbers: NCT00048321 NCT00330330 NCT00519727.


Subject(s)
Leukocytes, Mononuclear , Oligonucleotides, Antisense , Humans , Oligonucleotides, Antisense/genetics , Healthy Volunteers , Interleukin-6/genetics
3.
Cell Rep ; 39(9): 110872, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649369

ABSTRACT

Type 1 diabetes mellitus (T1D) is a chronic disease with potentially severe complications, and ß-cell deficiency underlies this disease. Despite active research, no therapy to date has been able to induce ß-cell regeneration in humans. Here, we discover the ß-cell regenerative effects of glucagon receptor antibody (anti-GcgR). Treatment with anti-GcgR in mouse models of ß-cell deficiency leads to reversal of hyperglycemia, increase in plasma insulin levels, and restoration of ß-cell mass. We demonstrate that both ß-cell proliferation and α- to ß-cell transdifferentiation contribute to anti-GcgR-induced ß-cell regeneration. Interestingly, anti-GcgR-induced α-cell hyperplasia can be uncoupled from ß-cell regeneration after antibody clearance from the body. Importantly, we are able to show that anti-GcgR-induced ß-cell regeneration is also observed in non-human primates. Furthermore, anti-GcgR and anti-CD3 combination therapy reverses diabetes and increases ß-cell mass in a mouse model of autoimmune diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Glucagon-Secreting Cells , Hyperglycemia , Insulin-Secreting Cells , Animals , Disease Models, Animal , Glucagon , Hyperglycemia/drug therapy , Mice , Receptors, Glucagon
4.
Am J Ophthalmol ; 235: 131-142, 2022 03.
Article in English | MEDLINE | ID: mdl-34509438

ABSTRACT

PURPOSE: To evaluate the safety and tolerability of single and multiple intravitreal injections of NGM621 in patients with geographic atrophy (GA) and to characterize the pharmacokinetics and immunogenic potential. DESIGN: Multicenter, open-label, single- and multiple-dose phase 1 study. METHODS: Fifteen patients enrolled at 4 sites in the United States. Participants had GA secondary to age-related macular degeneration, lesion size ≥2.5 mm2, best-corrected visual acuity of 4 to 54 letters (20/80 to 20/800 Snellen equivalent) in the study eye, and no history of choroidal neovascularization in either eye. Patients who met eligibility criteria were treated in a single ascending-dose phase (2 mg, 7.5 mg, and 15 mg) or received 2 doses of NGM621 (15 mg) 4 weeks apart in the multidose phase and were monitored for 12 weeks (85 days). Assessments included adverse events, best-corrected visual acuity, low-luminance visual acuity, vital signs, clinical laboratory evaluations, GA lesion area as measured by fundus autofluorescence, spectral domain optical coherence tomography, and pharmacokinetic, immunogenicity, and pharmacodynamic assessments. RESULTS: All 15 participants completed the 12-week study. There were no serious adverse events, no drug-related adverse events, and no choroidal neovascularization developed in either eye. Mean visual acuity and GA lesion area appeared stable through week 12 for all cohorts. Pharmacokinetic analyses indicated that NGM621 serum exposures appeared to be dose proportional, and no antidrug antibodies were identified at any of the evaluated time points. CONCLUSIONS: In this small, open-labeled, 12-week phase 1 study, NGM621 was safe and tolerable when administered intravitreally up to 15 mg..


Subject(s)
Choroidal Neovascularization , Geographic Atrophy , Macular Degeneration , Choroidal Neovascularization/complications , Choroidal Neovascularization/diagnosis , Choroidal Neovascularization/drug therapy , Complement C3 , Fluorescein Angiography/methods , Geographic Atrophy/diagnosis , Geographic Atrophy/drug therapy , Humans , Intravitreal Injections , Macular Degeneration/diagnosis , Tomography, Optical Coherence , Treatment Outcome
5.
Pharm Res ; 35(9): 173, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29987391

ABSTRACT

PURPOSE: Evaluate 21 formulation vehicles administered to rabbits after intravitreal injection for tolerability and safety. METHODS: Forty-two Dutch Belted rabbits were anesthetized, and the eyes received a single intravitreal injection of the excipient formulation. Clinical signs and ocular irritation responses were recorded twice daily for 7 days and microscopic evaluation of the eyes, optic nerve, and eyelids was completed at 1-week post treatment. RESULTS: Saline (≥ 300 mOsm and ≤ 592 mOsm at pH 7.0 or 300 mOsm at pH 8.0) and 10 formulation excipients; (10% w/v PEG 3350 at pH 7.4, 1% polysorbate 21 at pH 7.4, PVA at pH 7.0, 0.2% polysorbate 80 at pH 7.2, 0.2% Pluronic F108® at pH 7.3, 2%, 100 mM sodium sulfate at pH 3.2, 2 mM sodium glycocholate at pH 7.4, and 275 mM D-mannitol pH 7.0 in sterile water, and 100 mM sodium phosphate in combination with 0.9% NaCl 300 mOsm and 0.01% or 0.05% polysorbate 80 at pH 7.4) considered as formulation vehicles for intravitreal injectables, were well-tolerated in rabbits. Clinical signs were transient and microscopic changes were not observed. CONCLUSIONS: Of the 21 formulation vehicles evaluated, 10 formulation vehicles were well-tolerated in rabbits and feasible candidates for future investigations.


Subject(s)
Excipients/administration & dosage , Excipients/adverse effects , Posterior Eye Segment/drug effects , Animals , Drug Compounding , Intravitreal Injections , Posterior Eye Segment/pathology , Posterior Eye Segment/ultrastructure , Rabbits , Saline Solution/administration & dosage , Saline Solution/adverse effects
6.
Nucleic Acid Ther ; 27(5): 272-284, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28605247

ABSTRACT

Antisense oligonucleotides (ASOs) are widely accepted therapeutic agents that suppress RNA transcription. While the majority of ASOs are well tolerated in vivo, few sequences trigger inflammatory responses in absence of conventional CpG motifs. In this study, we identified non-CpG oligodeoxy-nucleotide (ODN) capable of triggering an inflammatory response resulting in B cell and macrophage activation in a MyD88- and TLR9-dependent manner. In addition, we found the receptor for advance glycation end product (RAGE) receptor to be involved in the initiation of inflammatory response to suboptimal concentrations of both CpG- and non-CpG-containing ODNs. In contrast, dosing RAGE KO mice with high doses of CpG or non-CpG ODNs lead to a stronger inflammatory response than observed in wild-type mice. Together, our data provide a previously uncharacterized in vivo mechanism contingent on ODN-administered dose, where TLR9 governs the primary response and RAGE plays a distinct and cooperative function in providing a pivotal role in balancing the immune response.


Subject(s)
Immunity, Cellular/immunology , Inflammation/immunology , Oligonucleotides, Antisense/therapeutic use , Receptor for Advanced Glycation End Products/metabolism , Toll-Like Receptor 9/metabolism , Animals , B-Lymphocytes/immunology , Cytokines/blood , Humans , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Differentiation Factor 88/metabolism , Primary Cell Culture , RNA/genetics , RNA/metabolism , Receptor for Advanced Glycation End Products/genetics , Single-Cell Analysis , Toll-Like Receptor 9/genetics , Transcription, Genetic
7.
Nucleic Acid Ther ; 27(4): 197-208, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28541820

ABSTRACT

Decreases in platelet (PLT) counts observed in nonhuman primates (NHPs) given 2'-O-methoxyethyl modified antisense inhibitors (2'-MOE ASOs) have been reported, but the incidence and severity of the change vary considerably between sequences, studies, and animals. This article will broadly illustrate the spectrum of effects on PLT count in NHPs. From queries of an NHP safety database representing over 102 independent 2'-MOE ASOs, from 61 studies and >2200 NHPs, two patterns of PLT changes emerged. The first is a consistent and reproducible decrease in group mean values, observed with about 30% of the compounds, in which PLT count typically remains ≥150K cells/µL. The second is a sporadic decrease in PLTs to <50K cells/µL (2%-4% incidence at doses >5 mg/kg) that is often not reproducible. In both cases, the reduction in PLT count is dose dependent and reversible. The human relevance of PLT change observed in NHPs was investigated using ISIS 404173. In a chronic NHP study (20 mg/kg/wk for 26 weeks), a gradual decrease in group mean PLT count was observed at ≥10 mg/kg/wk, which plateaued by 13 weeks generally within the normal range and was maintained through 26 weeks of treatment. However, PLT counts <50K cells/µL occurred in 1 of 16 NHP at 10 mg/kg/wk and 3 of 16 NHP at 20 mg/kg/wk. In a 26-week double-blind, placebo-controlled Phase 2 trial, 62 patients were treated with 200 mg/wk ISIS 404173 (∼3.3 mg/kg/wk) there was an increased incidence of PLT count >30% decreased compared to baseline but no incidence of PLT <75K cells/µL. Based on these data, the consistent, self-limiting PLT reduction seen in NHP may translate to humans, but these changes appear to be of limited clinical significance. However, NHPs appear to overpredict the incidence of sporadic PLT <50K cells/µL compared to humans.


Subject(s)
Oligonucleotides, Antisense/toxicity , Animals , Clinical Trials, Phase II as Topic , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Dose-Response Relationship, Drug , Double-Blind Method , Drug Evaluation, Preclinical , Female , Humans , Macaca fascicularis , Male , Platelet Count
8.
Mol Ther ; 24(10): 1771-1782, 2016 10.
Article in English | MEDLINE | ID: mdl-27357629

ABSTRACT

The common chemical and biological properties of antisense oligonucleotides provide the opportunity to identify and characterize chemical class effects across species. The chemical class that has proven to be the most versatile and best characterized is the 2'-O-methoxyethyl chimeric antisense oligonucleotides. In this report we present an integrated safety assessment of data obtained from controlled dose-ranging studies in nonhuman primates (macaques) and healthy human volunteers for 12 unique 2'-O-methoxyethyl chimeric antisense oligonucleotides. Safety was assessed by the incidence of safety signals in standardized laboratory tests for kidney and liver function, hematology, and complement activation; as well as by the mean test results as a function of dose level over time. At high doses a number of toxicities were observed in nonhuman primates. However, no class safety effects were identified in healthy human volunteers from this integrated data analysis. Effects on complement in nonhuman primates were not observed in humans. Nonhuman primates predicted safe doses in humans, but over predicted risk of complement activation and effects on platelets. Although limited to a single chemical class, comparisons from this analysis are considered valid and accurate based on the carefully controlled setting for the specified study populations and within the total exposures studied.


Subject(s)
Complement Activation/drug effects , Methyl Ethers/chemistry , Oligonucleotides, Antisense/adverse effects , Oligonucleotides, Antisense/chemistry , Thionucleotides/adverse effects , Thionucleotides/chemistry , Adult , Aged , Animals , Blood Platelets/drug effects , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Healthy Volunteers , Humans , Kidney/drug effects , Liver/drug effects , Macaca fascicularis , Male , Middle Aged , Oligonucleotides, Antisense/administration & dosage , Thionucleotides/administration & dosage , Young Adult
9.
Nucleic Acids Res ; 44(5): 2093-109, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26553810

ABSTRACT

High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a panel of highly efficacious hepatotoxic or non-hepatotoxic LNA ASOs. We observed highly selective transcript knockdown in mice treated with non-hepatotoxic LNA ASOs, while the levels of many unintended transcripts were reduced in mice treated with hepatotoxic LNA ASOs. This transcriptional signature was concurrent with on-target RNA reduction and preceded transaminitis. Remarkably, the mRNA transcripts commonly reduced by toxic LNA ASOs were generally not strongly associated with any particular biological process, cellular component or functional group. However, they tended to have much longer pre-mRNA transcripts. We also demonstrate that the off-target RNA knockdown and hepatotoxicity is attenuated by RNase H1 knockdown, and that this effect can be generalized to high affinity modifications beyond LNA. This suggests that for a certain set of ASOs containing high affinity modifications such as LNA, hepatotoxicity can occur as a result of unintended off-target RNase H1 dependent RNA degradation.


Subject(s)
Liver/drug effects , Oligonucleotides, Antisense/toxicity , Oligonucleotides/toxicity , RNA, Messenger/genetics , Ribonuclease H/genetics , Alanine Transaminase/blood , Alanine Transaminase/genetics , Animals , Gene Expression Profiling , Gene Expression Regulation , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Microarray Analysis , Oligonucleotides/genetics , Oligonucleotides/metabolism , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , RNA Precursors/antagonists & inhibitors , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Ribonuclease H/antagonists & inhibitors , Ribonuclease H/metabolism , Transcriptome/drug effects
10.
J Pharmacol Exp Ther ; 355(2): 329-40, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26330536

ABSTRACT

Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults. DM1 is caused by an expanded CTG repeat in the 3'-untranslated region of DMPK, the gene encoding dystrophia myotonica protein kinase (DMPK). Antisense oligonucleotides (ASOs) containing 2',4'-constrained ethyl-modified (cEt) residues exhibit a significantly increased RNA binding affinity and in vivo potency relative to those modified with other 2'-chemistries, which we speculated could translate to enhanced activity in extrahepatic tissues, such as muscle. Here, we describe the design and characterization of a cEt gapmer DMPK ASO (ISIS 486178), with potent activity in vitro and in vivo against mouse, monkey, and human DMPK. Systemic delivery of unformulated ISIS 486718 to wild-type mice decreased DMPK mRNA levels by up to 90% in liver and skeletal muscle. Similarly, treatment of either human DMPK transgenic mice or cynomolgus monkeys with ISIS 486178 led to up to 70% inhibition of DMPK in multiple skeletal muscles and ∼50% in cardiac muscle in both species. Importantly, inhibition of DMPK was well tolerated and was not associated with any skeletal muscle or cardiac toxicity. Also interesting was the demonstration that the inhibition of DMPK mRNA levels in muscle was maintained for up to 16 and 13 weeks post-treatment in mice and monkeys, respectively. These results demonstrate that cEt-modified ASOs show potent activity in skeletal muscle, and that this attractive therapeutic approach warrants further clinical investigation to inhibit the gain-of-function toxic RNA underlying the pathogenesis of DM1.


Subject(s)
Myotonic Dystrophy/drug therapy , Myotonin-Protein Kinase/metabolism , Oligonucleotides, Antisense/pharmacology , Oligonucleotides/pharmacology , Animals , Cell Line , Humans , Macaca fascicularis , Male , Mice , Mice, Transgenic , Muscle, Skeletal/enzymology , Myotonin-Protein Kinase/antagonists & inhibitors , Myotonin-Protein Kinase/genetics , Oligonucleotides/chemistry , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
11.
J Pharmacol Exp Ther ; 351(3): 709-17, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25301170

ABSTRACT

Differences in sensitivity of monkeys and humans to antisense oligonucleotide (ASO)-induced complement alternative pathway (AP) activation were evaluated in monkeys, humans, and in serum using biochemical assays. Transient AP activation was evident in monkeys at higher doses of two 2'-O-methoxyethyl (2'-MOE) ASOs (ISIS 426115 and ISIS 183750). No evidence of AP activation was observed in humans for either ASO, even with plasma ASO concentrations that reached the threshold for activation in monkeys. The absence of complement activation in humans is consistent with a query of the Isis Clinical Safety Database containing 767 subjects. The in vivo difference in sensitivity was confirmed in vitro, as monkey and human serum exposed to increasing concentrations of ASO indicated that monkeys were more sensitive to AP activation with this class of compounds. The mechanistic basis for the greater sensitivity of monkeys to AP activation by 2'-MOE ASO was evaluated using purified human or monkey factor H protein. The binding affinities between a representative 2'-MOE ASO and either purified protein are similar. However, the IC50 of fluid-phase complement inhibition for monkey factor H is about 3-fold greater than that for human protein using either monkey serum or factor H-depleted human serum. Interestingly, there is a sequence variant in the monkey complement factor H gene similar to a single nucleotide polymorphism in humans that is correlated with decreased factor H protein function. These findings show that monkeys are more sensitive to 2'-MOE ASO-mediated complement activation than humans likely because of differences in factor H inhibitory capacity.


Subject(s)
Complement Activation/drug effects , Complement Activation/physiology , Complement Factor H/genetics , Comprehension , Oligonucleotides, Antisense/pharmacology , Oligoribonucleotides/pharmacology , Adolescent , Adult , Amino Acid Sequence , Animals , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Macaca fascicularis , Male , Middle Aged , Molecular Sequence Data , Oligonucleotides , Oligonucleotides, Antisense/genetics , Oligoribonucleotides/genetics , Young Adult
12.
Nucleic Acid Ther ; 24(4): 291-301, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24946015

ABSTRACT

This document was prepared by the Safety Pharmacology Subcommittee of the Oligonucleotide Safety Working Group (OSWG), a group of industry and regulatory scientists involved in the development and regulation of therapeutic oligonucleotides. The mission of the Subcommittee was to develop scientific recommendations for the industry regarding the appropriate scope and strategies for safety pharmacology evaluations of oligonucleotides (ONs). These recommendations are the consensus opinion of the Subcommittee and do not necessarily reflect the current expectations of regulatory authorities. 1) Safety pharmacology testing, as described in the International Conference on Harmonisation (ICH) S7 guidance, is as applicable to ONs as it is to small molecule drugs and biotherapeutics. 2) Study design considerations for ONs are similar to those for other classes of drugs. In general, as with other therapeutics, studies should evaluate the drug product administered via the clinical route. Species selection should ideally consider relevance of the model with regard to the endpoints of interest, pharmacological responsiveness, and continuity with the nonclinical development program. 3) Evaluation of potential effects in the core battery (cardiovascular, central nervous, and respiratory systems) is recommended. In general: a. In vitro human ether-a-go-go-related gene (hERG) testing does not provide any specific value and is not warranted. b. Emphasis should be placed on in vivo evaluation of cardiovascular function, typically in nonhuman primates (NHPs). c. Due to the low level of concern, neurologic and respiratory function can be assessed concurrently with cardiovascular safety pharmacology evaluation in NHPs, within repeat-dose toxicity studies, or as stand-alone studies. In the latter case, rodents are most commonly used. 4) Other dedicated safety pharmacology studies, beyond the core battery, may have limited value for ONs. Although ONs can accumulate in the kidney and liver, evaluation of functional changes in these organs, as well as gastrointestinal (GI) and unintended "pro-inflammatory" effects, may be best evaluated during repeat-dose toxicity studies. Broad receptor- or ligand-binding profiling has not historically been informative for most ON subclasses, but may have value for investigative purposes.


Subject(s)
Drug Evaluation, Preclinical/methods , Oligonucleotides/toxicity , Patient Safety , Animals , Cardiovascular Diseases/prevention & control , Consensus , Gastrointestinal Diseases/prevention & control , Humans , Neurodegenerative Diseases/prevention & control , Oligonucleotides/pharmacokinetics , Practice Guidelines as Topic , Research Design
13.
Toxicol Sci ; 137(1): 234-48, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24136188

ABSTRACT

Drug-induced liver injury (DILI) represents a leading cause of acute liver failure. Although DILI can be discovered in preclinical animal toxicology studies and/or early clinical trials, some human DILI reactions, termed idiosyncratic DILI (IDILI), are less predictable, occur in a small number of individuals, and do not follow a clear dose-response relationship. The emergence of IDILI poses a critical health challenge for patients and a financial challenge for the pharmaceutical industry. Understanding the cellular and molecular mechanisms underlying IDILI is key to the development of models that can assess potential IDILI risk. This study used Reverse Causal Reasoning (RCR), a method to assess activation of molecular signaling pathways, on gene expression data from rats treated with IDILI or pharmacologic/chemical comparators (NON-DILI) at the maximum tolerated dose to identify mechanistic pathways underlying IDILI. Detailed molecular networks involved in mitochondrial injury, inflammation, and endoplasmic reticulum (ER) stress were found in response to IDILI drugs but not negative controls (NON-DILI). In vitro assays assessing mitochondrial or ER function confirmed the effect of IDILI compounds on these systems. Together our work suggests that using gene expression data can aid in understanding mechanisms underlying IDILI and can guide in vitro screening for IDILI. Specifically, RCR should be considered for compounds that do not show evidence of DILI in preclinical animal studies positive for mitochondrial dysfunction and ER stress assays, especially when the therapeutic index toward projected human maximum drug plasma concentration is low.


Subject(s)
Artificial Intelligence , Chemical and Drug Induced Liver Injury/etiology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Liver/drug effects , Systems Biology , Toxicogenetics/methods , Animals , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/pathology , Dose-Response Relationship, Drug , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Hep G2 Cells , Humans , Inflammation Mediators/metabolism , Liver/metabolism , Liver/pathology , Male , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Rats , Rats, Sprague-Dawley , Risk Assessment , Risk Factors , Time Factors
15.
Blood ; 119(10): 2401-8, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22246038

ABSTRACT

A strategy to produce sufficient anticoagulant properties with reduced risk of bleeding may be possible through inhibition of factor XI (FXI), a component of the intrinsic coagulation cascade. The objective of this work was to determine the safety profile of ISIS 416858, a 2'-methoxyethoxy (2'-MOE) antisense oligonucleotide inhibitor of FXI, with focus on assessment of bleeding risk. Cynomolgus monkeys administered ISIS 416858 (4, 8, 12, and 40 mg/kg/wk, subcutaneous) for up to 13 weeks produced a dose-dependent reduction in FXI (mRNA in liver and plasma activity) and a concomitant increase in activated partial thromboplastin time (APTT). ISIS 416858 (20 or 40 mg/kg/wk) reduced plasma FXI activity by 80% at 4 weeks of treatment that resulted in a 33% increase in APTT by 13 weeks with no effects on PT, platelets, or increased bleeding following partial tail amputation or gum and skin laceration. The dose-dependent presence of basophilic granules in multiple tissues in ISIS 416858-treated animals was an expected histologic change for a 2'-MOE antisense oligonucleotide, and no toxicity was attributed to hepatic FXI reduction. Basophilic granules reflect cellular drug uptake and subsequent visualization on hematoxylin staining. These results suggest that ISIS 416858 has an acceptable preclinical safety profile and is a promising clinical candidate to treat thrombotic disease.


Subject(s)
Factor XI/antagonists & inhibitors , Hemorrhage/prevention & control , Oligonucleotides, Antisense/pharmacology , Partial Thromboplastin Time , Animals , Blood Coagulation/drug effects , Dose-Response Relationship, Drug , Drug Administration Schedule , Factor XI/genetics , Factor XI/metabolism , Female , Gene Expression Regulation/drug effects , Hemorrhage/blood , Infusions, Intravenous , Injections, Subcutaneous , Macaca fascicularis , Male , Oligonucleotides/administration & dosage , Oligonucleotides/genetics , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors , Treatment Outcome
16.
Toxicology ; 290(2-3): 278-85, 2011 Dec 18.
Article in English | MEDLINE | ID: mdl-22019926

ABSTRACT

Previous studies indicated that lipopolysaccharide (LPS) interacts with the nonsteroidal anti-inflammatory drug sulindac (SLD) to produce liver injury in rats. In the present study, the mechanism of SLD/LPS-induced liver injury was further investigated. Accumulation of polymorphonuclear neutrophils (PMNs) in the liver was greater in SLD/LPS-cotreated rats compared to those treated with SLD or LPS alone. In addition, PMN activation occurred specifically in livers of rats cotreated with SLD/LPS. The hypothesis that PMNs and proteases released from them play critical roles in the hepatotoxicity was tested. SLD/LPS-induced liver injury was attenuated by prior depletion of PMNs or by treatment with the PMN protease inhibitor, eglin C. Previous studies suggested that tumor necrosis factor-α (TNF) and the hemostatic system play critical roles in the pathogenesis of liver injury induced by SLD/LPS. TNF and plasminogen activator inhibitor-1 (PAI-1) can contribute to hepatotoxicity by affecting PMN activation and fibrin deposition. Therefore, the role of TNF and PAI-1 in PMN activation and fibrin deposition in the SLD/LPS-induced liver injury model was tested. Neutralization of TNF or inhibition of PAI-1 attenuated PMN activation. TNF had no effect on PAI-1 production or fibrin deposition. In contrast, PAI-1 contributed to fibrin deposition in livers of rats treated with SLD/LPS. In summary, PMNs, TNF and PAI-1 contribute to the liver injury induced by SLD/LPS cotreatment. TNF and PAI-1 independently contributed to PMN activation, which is critical to the pathogenesis of liver injury. Moreover, PAI-1 contributed to liver injury by promoting fibrin deposition.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/toxicity , Chemical and Drug Induced Liver Injury/etiology , Lipopolysaccharides/toxicity , Neutrophils/drug effects , Sulindac/toxicity , Animals , Chemical and Drug Induced Liver Injury/pathology , Cytokines/metabolism , Fibrin/metabolism , Male , Neutrophils/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Proteins/pharmacology , Rabbits , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
17.
Exp Eye Res ; 93(3): 256-64, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21376717

ABSTRACT

Better control of intraocular pressure (IOP) is the most effective way to preserve visual field function in glaucomatous patients. While prostaglandin FP analogs are leading the therapeutic intervention for glaucoma, new target classes also are being identified with new lead compounds being developed for IOP reduction. One target class currently being investigated includes the prostaglandin EP receptor agonists. Recently PF-04217329 (Taprenepag isopropyl), a prodrug of CP-544326 (active acid metabolite), a potent and selective EP(2) receptor agonist, was successfully evaluated for its ocular hypotensive activity in a clinical study involving patients with primary open angle glaucoma. In the current manuscript, the preclinical attributes of CP-544326 and PF-0421329 have been described. CP-544326 was found to be a potent and selective EP(2) agonist (IC(50) = 10 nM; EC(50) = 2.8 nM) whose corneal permeability and ocular bioavailability were significantly increased when the compound was dosed as the isopropyl ester prodrug, PF-04217329. Topical ocular dosing of PF-04217329 was well tolerated in preclinical species and caused an elevation of cAMP in aqueous humor/iris-ciliary body indicative of in vivo EP(2) target receptor activation. Topical ocular dosing of PF-04217329 resulted in ocular exposure of CP-544326 at levels greater than the EC(50) for the EP(2) receptor. PF-04217329 when dosed once daily caused between 30 and 50% IOP reduction in single day studies in normotensive Dutch-belted rabbits, normotensive dogs, and laser-induced ocular hypertensive cynomolgus monkeys and 20-40% IOP reduction in multiple day studies compared to vehicle-dosed eyes. IOP reduction was sustained from 6 h through 24 h following a single topical dose. In conclusion, preclinical data generated thus far appear to support the clinical development of PF-04217329 as a novel compound for the treatment of glaucoma.


Subject(s)
Acetates/pharmacology , Antihypertensive Agents/pharmacology , Disease Models, Animal , Glaucoma, Open-Angle/drug therapy , Glaucoma/drug therapy , Intraocular Pressure/drug effects , Prodrugs/pharmacology , Receptors, Prostaglandin E, EP2 Subtype/agonists , Sulfonamides/pharmacology , Acetates/pharmacokinetics , Administration, Topical , Animals , Antihypertensive Agents/pharmacokinetics , Aqueous Humor/metabolism , Biological Availability , Calcium/metabolism , Ciliary Body/metabolism , Cornea/metabolism , Cyclic AMP/metabolism , Dogs , Drug Evaluation, Preclinical , Glaucoma/metabolism , Humans , Iris/metabolism , Macaca fascicularis , Male , Ophthalmic Solutions/pharmacokinetics , Ophthalmic Solutions/pharmacology , Prodrugs/pharmacokinetics , Rabbits , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Sulfonamides/pharmacokinetics , Tonometry, Ocular
18.
Chem Biol Interact ; 188(1): 204-13, 2010 Oct 06.
Article in English | MEDLINE | ID: mdl-20655887

ABSTRACT

Trovafloxacin (TVX) is a fluoroquinolone antibiotic whose therapeutic use was severely restricted due to an unacceptable risk of idiosyncratic liver injury. Oxidative stress and mitochondrial injury have been implicated in fluoroquinolone toxicity, but the mechanisms underlying liver injury are poorly understood. Because TVX-induced hepatotoxicity cannot be modeled in normal healthy rodents, we asked whether an underlying genetic defect (heterozygous deficiency in mitochondrial superoxide dismutase, Sod2) might aggravate TVX-induced mitochondrial adverse effects. Wild-type and Sod2(+/-) mice were treated with vehicle or alatrofloxacin (the prodrug of TVX, 33mg/kg/day, ip) for 28 days. We found that hepatic protein carbonyls were increased by 2.5-fold and hepatic mitochondrial aconitase activity was decreased by 20% in mutant, but not wild-type mice. Because aconitase is a major target of peroxynitrite, we determined the extent of nitrotyrosine residues in hepatic mitochondrial proteins. Trovafloxacin significantly increased nitrotyrosine in Sod2(+/-) mice only. Using the NO-selective probe DAF-2, we found that TVX increased the production of mitochondrial NO in immortalized human hepatocytes. Similarly, mitochondrial Ca(2+) was increased by TVX, suggesting Ca(2+)-dependent activation of mitochondrial NOS activity. Furthermore, the transcript levels of the mtDNA-encoded gene Cox2/mtCo2 were decreased in Sod2(+/-) mice only, while the expression of nDNA-encoded mitochondrial genes was not significantly altered in both genotypes, suggesting selective effects on mtDNA expression. The amount of mtDNA (copy number) was, however, unchanged. These data indicate that TVX enhances hepatic mitochondrial peroxynitrite stress in mice with underlying increased basal levels of superoxide, leading to the disruption of critical mitochondrial enzymes and gene regulation.


Subject(s)
Anti-Infective Agents/adverse effects , Fluoroquinolones/adverse effects , Mitochondria, Liver/drug effects , Naphthyridines/adverse effects , Peroxynitrous Acid/metabolism , Animals , Calcium/metabolism , Cell Line, Transformed , Humans , Liver/drug effects , Liver/enzymology , Mice , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Nitric Oxide/biosynthesis , Oxidative Stress , Reverse Transcriptase Polymerase Chain Reaction , Superoxide Dismutase/genetics
19.
Toxicology ; 272(1-3): 32-8, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20371263

ABSTRACT

Among currently prescribed nonsteroidal anti-inflammatory drugs, sulindac (SLD) is associated with the greatest incidence of idiosyncratic hepatotoxicity in humans. Previously, an animal model of SLD-induced idiosyncratic hepatotoxicity was developed by cotreating rats with a nonhepatotoxic dose of LPS. Tumor necrosis factor-alpha (TNF) was found to be critically important to the pathogenesis. In this study, the mechanism of liver injury induced by SLD/LPS cotreatment was further explored. Protein carbonyls, products of oxidative stress, were elevated in liver mitochondria of SLD/LPS-cotreated rats. The results of analyzing gene expression in livers of rats before the onset of liver injury indicated that genes associated with oxidative stress were selectively regulated by SLD/LPS cotreatment. Antioxidant treatment with either ebselen or dimethyl sulfoxide attenuated SLD/LPS-induced liver injury. The role of oxidative stress was further investigated in vitro. SLD sulfide, the toxic metabolite of SLD, enhanced TNF-induced cytotoxicity and caspase 3/7 activity in HepG2 cells. SLD sulfide also increased dichlorofluorescein fluorescence, suggesting generation of reactive oxygen species (ROS). Hydrogen peroxide and TNF cotreatment of HepG2 cells caused greater cytotoxicity than either treatment alone. Either antioxidant tempol or a pancaspase inhibitor Z-VAD-FMK decreased cell death as well as caspase 3/7 activity induced by SLD sulfide/TNF coexposure. These results indicate that SLD/LPS treatment causes oxidative stress in livers of rats and suggest that ROS are important in SLD/LPS-induced liver injury in vivo. Furthermore, ROS contribute to the cytotoxic interaction of SLD and TNF by activating caspase 3/7.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Lipopolysaccharides/metabolism , Liver/pathology , Oxidative Stress/genetics , Sulindac/metabolism , Amino Acid Chloromethyl Ketones/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Cell Line, Tumor , Cells, Cultured , Gene Expression/drug effects , Hep G2 Cells , Humans , Lipopolysaccharides/toxicity , Liver/metabolism , Male , Mitochondria, Liver/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sulindac/toxicity , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
20.
J Ocul Pharmacol Ther ; 25(6): 519-30, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19929595

ABSTRACT

OBJECTIVE: PD0325901, a selective inhibitor of mitogen-activated protein kinase kinase (MEK), was associated with the occurrence of ocular retinal vein occlusion (RVO) during clinical trials in patients with solid tumors. As previous animal safety studies in rats and dogs did not identify the eye as a target organ of toxicity, this work was conducted to develop a rabbit model of ocular toxicity with PD0325901. METHODS: Dutch-Belted rabbits were administered a single intravitreal injection of PD0325901 (0.5 or 1 mg/eye) or saline control, and ophthalmic examinations and retinal angiography were conducted over a 2-week period post-dose. In addition, mechanism of ocular toxicity was further explored in rat with microarray analysis. RESULTS: PD0325901 treatment produced RVO with retinal vasculature leakage and hemorrhage within 48-h postinjection in Dutch-Belted rabbits. Subsequent retinal detachment and degeneration were also detected on day 8 postinjection. To evaluate the potential mechanism(s) of PD0325901-mediated RVO, male Brown Norway rats were orally administered PD0325901 (45 mg/kg/day) up to 5 days and retinal tissue was collected for gene array analysis. Although PD0325901 did not produce clinical evidence of RVO in rats, retinal gene expression suggested an increased oxidative stress and inflammatory response, endothelium and blood-retinal barrier damage, and prothrombotic effects. Moreover, soluble endothelial protein C receptor (sEPCR), a biomarker for RVO, was elevated in human umbilical vascular endothelial cells (HUVECs) cultured with PD0325901. CONCLUSIONS: This work has developed a rabbit model of PD0325901-induced RVO that may be used to characterize the cellular and molecular mechanisms of this effect in humans.


Subject(s)
Benzamides/toxicity , Diphenylamine/analogs & derivatives , Disease Models, Animal , Protein Kinase Inhibitors/toxicity , Retinal Vein Occlusion/chemically induced , Administration, Oral , Animals , Antigens, CD/drug effects , Antigens, CD/metabolism , Benzamides/administration & dosage , Cells, Cultured , Diphenylamine/administration & dosage , Diphenylamine/toxicity , Dose-Response Relationship, Drug , Endothelial Protein C Receptor , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Female , Fluorescein Angiography/methods , Gene Expression Regulation/drug effects , Humans , Male , Microarray Analysis , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Oxidative Stress/drug effects , Protein Kinase Inhibitors/administration & dosage , Rabbits , Rats , Rats, Inbred BN , Receptors, Cell Surface/drug effects , Receptors, Cell Surface/metabolism , Species Specificity , Umbilical Veins/cytology , Umbilical Veins/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...