Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.833
Filter
1.
J Nutr Biochem ; : 109716, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147246

ABSTRACT

BACKGROUND: Gestational diabetes mellitus (GDM) is prevalent among pregnant individuals and is linked to increased risks for both mothers and foetuses. Although GDM is known to cause disruptions in gut microbiota and metabolites, their potential transmission to the foetus has not been fully explored. This study aimed to characterize the similarities in microbial and metabolic signatures between mothers with GDM and their neonates as well as the interactions between these signatures. METHODS: This study included 89 maternal-neonate pairs (44 in the GDM group and 45 in the normoglycaemic group). We utilized 16S rRNA gene sequencing and untargeted metabolomics to analyse the gut microbiota and plasma metabolomics of mothers and neonates. Integrative analyses were performed to elucidate the interactions between these omics. RESULTS: Distinct microbial and metabolic signatures were observed in GDM mothers and their neonates compared to those in the normoglycaemic group. Fourteen genera showed similar alterations across both groups. Metabolites linked to glucose, lipid, and energy metabolism were differentially influenced in GDM, with similar trends observed in both mothers and neonates in the GDM group. Network analysis indicated significant associations between Qipengyuania and metabolites related to bile acid metabolism in mothers and newborns. Furthermore, we observed a significant correlation between several genera and metabolites and clinical phenotypes in normoglycaemic mothers and newborns, but these correlations were disrupted in the GDM group. CONCLUSION: Our findings suggest that GDM consistently affects both the microbiota and metabolome in mothers and neonates, thus elucidating the mechanism underlying metabolic transmission across generations. These insights contribute to knowledge regarding the multiomics interactions in GDM and underscore the need to further investigate the prenatal environmental impacts on offspring metabolism.

2.
Chem Sci ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39139737

ABSTRACT

Investigating the impact of exciton-vibration coupling (EC) of molecular aggregates on regulating the excited-state dynamics and controlling room temperature phosphorescence (RTP) emissions is crucial and challenging. We designed and synthesized ArBFO molecules and cultured two crystals with similar molecular packing and completely different luminescent mechanisms from B-form fluorescence to G-form RTP. The mechanism study combining measurement of photophysical properties, time-resolved fluorescence analysis, X-ray diffraction analysis, and theoretical calculations shows that tiny changes in molecular stacking amplify the EC value from B-form to G-form H-aggregates. The larger EC value accelerates the ISC process and suppresses the radiative singlet decay. Meanwhile, the stronger intermolecular interaction restricts non-radiative transitions. All of these facilitate green RTP emission in G-form aggregates. When treated with pressure-heating cycles, the transformation between B-form and G-form aggregates leads to a reversible blue fluorescence/green RTP switch with good reproducibility and photostability. Moreover, their potential in multi-level information encryption and anti-counterfeiting application has been well demonstrated. The results of this research deepen the understanding of the effect of aggregation on the luminescence mechanism and provide a new design guidance for developing smart materials with good performance.

3.
Environ Res ; 262(Pt 1): 119780, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142460

ABSTRACT

Antimicrobial resistance (AMR) poses a global health threat to aquatic environments and its propagation is a hot topic. Therefore, deactivating antibiotic-resistant bacteria (ARB) and removing antibiotic resistance genes (ARGs) from water is crucial for controlling AMR transmission. Peracetic acid (PAA), which is known for its potent oxidizing properties and limited by-product formation, is emerging as a favorable disinfectant for water treatment. In this study, we aimed to assess the efficacy of pre-exposure to PAA followed by UV treatment (PAA-UV/PAA) compared with the simultaneous application of UV and PAA (UV/PAA). The focus was on deactivating vancomycin-resistant Enterococcus faecalis (VREfs), a typical ARB in water. Pre-exposure to PAA significantly enhanced the efficacy of subsequent UV/PAA treatment. At a UV fluence of 7.2 mJ cm-2, the PAA-UV/PAA method achieved a 6.21 log reduction in VREfs, surpassing the 1.29 log reduction observed with UV/PAA. Moreover, compared to UV/PAA, PAA-UV/PAA showed increased efficacy with longer pre-exposure times and higher PAA concentrations, maintaining superior performance across a broad pH range and in the presence of humic acid. Flow cytometry analysis indicated minimal cellular membrane damage using both methods. However, the assessments of superoxide dismutase (SOD) activity and adenosine triphosphate content revealed that PAA-UV/PAA induced greater oxidative stress under similar UV irradiation conditions, leading to slower bacterial regrowth. Specifically, SOD activity in PAA-UV/PAA surged to 3.06 times its baseline, exceeding the 1.73-fold increase under UV/PAA conditions. Additionally, pre-exposure to PAA amplified ARGs degradation and reduced resistance gene leakage, effectively mitigating the spread of AMR. Pre-exposure to 200 µM PAA for 10 and 20 min enhanced vanB gene removal efficiency by 0.14 log and 1.29 log, respectively. Our study provides a feasible approach for optimizing UV/PAA disinfection for efficient removal of ARB and ARGs.

4.
Sci Total Environ ; : 175592, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154997

ABSTRACT

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely used antioxidant in rubber products, and its corresponding ozone photolysis product N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), have raised public concerns due to their environmental toxicity. However, there is an existing knowledge gap on the toxicity of 6PPD and 6PPD-Q to aquatic plants. A model aquatic plant, Chlorella vulgaris (C. vulgaris), was subjected to 6PPD and 6PPD-Q at concentrations of 50, 100, 200, and 400 µg/L to investigate their effects on plant growth, photosynthetic, antioxidant system, and metabolic behavior. The results showed that 6PPD-Q enhanced the photosynthetic efficiency of C. vulgaris, promoting growth of C. vulgaris at low concentrations (50, 100, and 200 µg/L) while inhibiting growth at high concentration (400 µg/L). 6PPD-Q induced more oxidative stress than 6PPD, disrupting cell permeability and mitochondrial membrane potential stability. C. vulgaris responded to contaminant-induced oxidative stress by altering antioxidant enzyme activities and active substance levels. Metabolomics further identified fatty acids as the most significantly altered metabolites following exposure to both contaminants. In conclusion, this study compares the toxicity of 6PPD and 6PPD-Q to C. vulgaris, with 6PPD-Q demonstrating higher toxicity. This study provides valuable insight into the risk assessment of tire wear particles (TWPs) derived chemicals in aquatic habitats and plants.

5.
Front Vet Sci ; 11: 1418899, 2024.
Article in English | MEDLINE | ID: mdl-39086768

ABSTRACT

Introduction: The research examined the antioxidative impact of astragalosides (AST) on experimental acute pancreatitis (AP) in mice. This study aims to assess the correlation between varying doses of astragalosides and superoxide dismutase (SOD) activity in an acute pancreatitis mouse model. By examining the interplay between astragaloside's protective effects and its antioxidant properties, we aim to deepen our understanding of its therapeutic potential in acute pancreatitis. Methods: The AP model in mice was induced by retrograde injection of sodium deoxycholate into the biliary and pancreatic ducts. Serum amylase activity was monitored at various time points following induction. Furthermore, 24 hours post-induction, levels of serum nitric oxide (NO), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content in pancreatic tissue were assessed. Results: The findings of this study illustrated that AST, while exhibiting a protective effect in experimental AP, could effectively lower the elevated serum NO levels, reduce MDA production, and enhance SOD activity in model mice. AST notably reduced MDA levels in the pancreatic tissue of AP mice, underscoring its ability to inhibit membrane peroxidation induced by oxygen free radicals. Furthermore, AST was observed to elevate SOD activity in scavenging oxygen free radicals in pancreatic tissue. Conclusion: These findings suggest that AST enhances recovery in an experimental acute pancreatitis mouse model by exerting antioxidative effects.

6.
Sci China Life Sci ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096338

ABSTRACT

METTL3 methylates RNA and regulates the fate of mRNA through its methyltransferase activity. METTL3 enhances RNA translation independently of its catalytic activity. However, the underlying mechanism is still elusive. Here, we report that METTL3 is both interacted with and acetylated at lysine 177 by the acetyltransferase PCAF and deacetylated by SIRT3. Neither the methyltransferase activity nor the stability of METTL3 is affected by its acetylation at K177. Importantly, acetylation of METTL3 blocks its interaction with EIF3H, a subunit of the translation initiation factor, thereby reducing mRNA translation efficiency. Interestingly, acetylation of METTL3 responds to oxidative stress. Mechanistically, oxidative stress enhances the interaction of PCAF with METTL3, increases METTL3 acetylation, and suppresses the interaction of METTL3 with EIF3H, thereby decreasing the translation efficiency of ribosomes and inhibiting cell proliferation. Altogether, we suggest a mechanism by which oxidative stress regulates RNA translation efficiency by the modulation of METTL3 acetylation mediated by PCAF.

7.
Curr Med Sci ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096479

ABSTRACT

Neoatherosclerosis (NA) within stents has become an important clinical problem after coronary artery stent implantation. In-stent restenosis and in-stent thrombosis are the two major complications following coronary stent placement and seriously affect patient prognosis. As the common pathological basis of these two complications, NA plaques, unlike native atherosclerotic plaques, often grow around residual oxidized lipids and stent struts. The main components are foam cells formed by vascular smooth muscle cells (VSMCs) engulfing oxidized lipids at lipid residue sites. Current research mainly focuses on optical coherence tomography (OCT) and intravascular ultrasound (IVUS), but the specific pathogenesis of NA is still unclear. A thorough understanding of the pathogenesis and pathological features of NA provides a theoretical basis for clinical treatment. This article reviews the previous research of our research group and the current situation of domestic and foreign research.

8.
Circulation ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166327

ABSTRACT

BACKGROUND: Colchicine has been approved to reduce cardiovascular risk in patients with coronary heart disease on the basis of its potential benefits demonstrated in the COLCOT (Colchicine-Optical Coherence Tomography Trial) and LoDoCo2 studies. Nevertheless, there are limited data available about the specific impact of colchicine on coronary plaques. METHODS: This was a prospective, single-center, randomized, double-blind clinical trial. From May 3, 2021, until August 31, 2022, a total of 128 patients with acute coronary syndrome aged 18 to 80 years with lipid-rich plaque (lipid pool arc >90°) detected by optical coherence tomography were included. The subjects were randomly assigned in a 1:1 ratio to receive either colchicine (0.5 mg once daily) or placebo for 12 months. The primary end point was the change in the minimal fibrous cap thickness from baseline to the 12-month follow-up. RESULTS: Among 128 patients, 52 in the colchicine group and 52 in the placebo group completed the study. The mean age of the 128 patients was 58.0±9.8 years, and 25.0% were female. Compared with placebo, colchicine therapy significantly increased the minimal fibrous cap thickness (51.9 [95% CI, 32.8 to 71.0] µm versus 87.2 [95% CI, 69.9 to 104.5] µm; difference, 34.2 [95% CI, 9.7 to 58.6] µm; P=0.006), and reduced average lipid arc (-25.2° [95% CI, -30.6° to -19.9°] versus -35.7° [95% CI, -40.5° to -30.8°]; difference, -10.5° [95% CI, -17.7° to -3.4°]; P=0.004), mean angular extension of macrophages (-8.9° [95% CI, -13.3° to -4.6°] versus -14.0° [95% CI, -18.0° to -10.0°]; difference, -6.0° [95% CI, -11.8° to -0.2°]; P=0.044), high-sensitivity C-reactive protein level (geometric mean ratio, 0.6 [95% CI, 0.4 to 1.0] versus 0.3 [95% CI, 0.2 to 0.5]; difference, 0.5 [95% CI, 0.3 to 1.0]; P=0.046), interleukin-6 level (geometric mean ratio, 0.8 [95% CI, 0.6 to 1.1] versus 0.5 [95% CI, 0.4 to 0.7]; difference, 0.6 [95% CI, 0.4 to 0.9]; P=0.025), and myeloperoxidase level (geometric mean ratio, 1.0 [95% CI, 0.8 to 1.2] versus 0.8 [95% CI, 0.7 to 0.9]; difference, 0.8 [95% CI, 0.6 to 1.0]; P=0.047). CONCLUSIONS: Our findings suggested that colchicine resulted in favorable effects on coronary plaque stabilization at optical coherence tomography in patients with acute coronary syndrome. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04848857.

10.
J Agric Food Chem ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150542

ABSTRACT

Xanthophyllomyces dendrorhous (X. dendrorhous), previously known as Phaffia rhodozyma, is a red yeast that is widely recognized as a rich source of carotenoids, particularly astaxanthin, which exhibits potent antioxidant activity and other health-promoting functions. However, there is currently a lack of research on the safety of consuming X. dendrorhous. To address this, we conducted an acute toxicity study followed by a 90-day subchronic toxicity trial to evaluate the safety of X. dendrorhous and investigate its in vivo antioxidant activity. In the acute toxicity study, Sprague-Dawley rats were administered a maximum of 12 g/kg body weight of X. dendrorhous powder by gavage and survived without any adverse effects for 14 days. In the subsequent subchronic toxicity test, the rats were randomly divided into five groups, each with free access to their diet adulterated with 0% (control), 2.5% (low), 5% (middle), 10% (high), and 20% (extreme high) X. dendrorhous powder. The rats' behavior, body weight, and food intake were monitored during the 90-day experiment. At the end of the experiment, urine, blood, and organs were collected from the rats for biochemical testing. Additionally, the antioxidant activity in rat sera was evaluated. The results of the acute toxicity test demonstrated that the LD50 of X. dendrorhous was greater than 12 g/kg body weight, indicating that the substance was not toxic. Throughout the 90-day period of subchronic toxicity, the triglyceride levels of male rats fed with 10 and 20% X. dendrorhous increased to 1.54 ± 0.17 and 1.55 ± 0.25 mmol/L (P < 0.05), respectively. This may be attributed to the elevated fat content of the diet in the high-dose and extreme high-dose groups, which was 5.5 and 2.5% higher than that in the control, respectively. Additionally, the white pulp in the spleen exhibited an increase, and the number of white blood cells in the extreme high-dose group increased by 2.41 × 109/L (P < 0.05), which may contribute to enhanced immunity. Finally, the body weight, food intake, blood and urine indexes, and histopathological examination results of the organs of the rats did not demonstrate any regular toxic effects. With the adulteration of X. dendrorhous, the activity of GSH-Px in male rats increased by 16-36.32%. The activity of GSH-Px in female rats of the extreme high-dose group increased by 14.70% (P < 0.05). The free radical scavenging ability of ABTS in male rats in the two high-dose groups exhibited an increase of 6.5 and 11.41% (P < 0.05). In contrast, the MDA content of male rats in the extreme high-dose group demonstrated a reduction of 2.73 nmol/mL (P < 0.05). These findings indicate that X. dendrorhous has no toxic effects, can be taken in high doses, and has a beneficial antioxidant effect that may enhance the body's immunity.

11.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000117

ABSTRACT

Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.


Subject(s)
Canagliflozin , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice, Inbred C57BL , Mitophagy , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Mitophagy/drug effects , Male , Mice , Protein Kinases/metabolism , Protein Kinases/genetics , Rats , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line , Signal Transduction/drug effects , Diet, High-Fat/adverse effects
12.
Plant Sci ; 347: 112179, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39004407

ABSTRACT

Ethylene response factor (ERF) is a class of plant-specific transcription factors that play an important role in plant growth, development, and stress response. However, the underlying mechanism of strawberry ERFs in pathogenic responses against Botrytis cinerea (B. cinerea) remains largely unclear. In this study, we isolated FaERF2, a nucleus-localized ERF transcription factor from Fragaria x ananassa. Transiently overexpressing FaERF2 in strawberry fruits significantly enhances their resistant ability to B. cinerea, while silencing FaERF2 in strawberry fruits enhances their susceptibility to B. cinerea. In addition, we found that FaERF2 could directly bind to the cis-acting element GCC box in the promoters of two ß-1,3-glucanase genes, FaBG-1 and FaBG-2, and activate their expression. Finally, both strawberry fruits transient expression followed by B. cinerea inoculation assays and recombinant protein incubation tests collectively substantiated the inhibitory effect of FaBG-1 and FaBG-2 on B. cinerea mycelium growth. These results revealed the molecular regulation mechanism of FaERF2 in response to B. cinerea and laid foundations for creating disease-resistance strawberry cultivar through genome editing approach.


Subject(s)
Botrytis , Disease Resistance , Fragaria , Plant Diseases , Plant Proteins , Botrytis/physiology , Fragaria/genetics , Fragaria/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Glucan 1,3-beta-Glucosidase/metabolism , Glucan 1,3-beta-Glucosidase/genetics
13.
Sci Signal ; 17(843): eadk0231, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954637

ABSTRACT

The Hippo pathway is generally understood to inhibit tumor growth by phosphorylating the transcriptional cofactor YAP to sequester it to the cytoplasm and reduce the formation of YAP-TEAD transcriptional complexes. Aberrant activation of YAP occurs in various cancers. However, we found a tumor-suppressive function of YAP in clear cell renal cell carcinoma (ccRCC). Using cell cultures, xenografts, and patient-derived explant models, we found that the inhibition of upstream Hippo-pathway kinases MST1 and MST2 or expression of a constitutively active YAP mutant impeded ccRCC proliferation and decreased gene expression mediated by the transcription factor NF-κB. Mechanistically, the NF-κB subunit p65 bound to the transcriptional cofactor TEAD to facilitate NF-κB-target gene expression that promoted cell proliferation. However, by competing for TEAD, YAP disrupted its interaction with NF-κB and prompted the dissociation of p65 from target gene promoters, thereby inhibiting NF-κB transcriptional programs. This cross-talk between the Hippo and NF-κB pathways in ccRCC suggests that targeting the Hippo-YAP axis in an atypical manner-that is, by activating YAP-may be a strategy for slowing tumor growth in patients.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Renal Cell , Cell Proliferation , Kidney Neoplasms , Protein Serine-Threonine Kinases , Transcription Factors , YAP-Signaling Proteins , Humans , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Signal Transduction , TEA Domain Transcription Factors/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Nude , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Serine-Threonine Kinase 3
14.
Heliyon ; 10(13): e33687, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040243

ABSTRACT

Purpose: Gemcitabine is a basic chemotherapy drug for pancreatic cancer (PC), but resistance is common and causes tumor recurrence and metastasis. Therefore, it is significant to explore gemcitabine resistance-related molecules for individualized treatment and prognosis assessment of PC. Methods: In this study, transcriptome sequencing and TCGA database analysis were performed, and a differentiated gene AHNAK2 was screened. MEXPRESS database, tissue microarray analysis, and CIBERSORT and TIMER databases were used to correlate AHNAK2 expression with clinicopathological features and prognosis and immune infiltration of PC. Enrichment analysis was used to investigate the significant biological processes associated with AHNAK2. Results: AHNAK2 was highly expressed in gemcitabine-resistant cells. High expression of AHNAK2 increased the risk of poor overall survival (OS) and progression-free survival (PFS) in PC. Clinicopathologic analysis revealed that AHNAK2 correlated with KRAS, TP53 mutations, histologic type, short OS, N stage, and elevated CA199 levels in PC. Knockdown of AHNAK2 inhibited the ability of cell proliferation and colony formation and enhanced the toxic effect of gemcitabine in PC. Meanwhile, the knockdown of AHNAK2 expression enhanced cell-ECM adhesion, inhibited cell-cell adhesion, and downregulated the KRAS/p53 signaling pathway in PC. Furthermore, AHNAK2 was correlated with immune infiltration, especially B cells and macrophages. Conclusions: Our study unveils for the first time the pivotal role of AHNAK2 in PC, particularly its association with gemcitabine resistance, clinical prognosis, and immune infiltration. AHNAK2 not only drives the proliferation and drug resistance of PC cells by potentially activating the KRAS/p53 pathway but also significantly impacts cell-cell and cell- ECM adhesion. Additionally, AHNAK2 plays a crucial role in modulating the tumor immune microenvironment. These insights underscore AHNAK2's unique potential as a novel therapeutic target for overcoming gemcitabine resistance, offering new perspectives for PC treatment strategies.

15.
iScience ; 27(7): 110343, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39045103

ABSTRACT

Maternal obesity has long-term effects on offspring metabolic health. Among the potential mechanisms, prior research has indicated potential disruptions in circadian rhythms and gut microbiota in the offspring. To challenge this hypothesis, we implemented a maternal high fat diet regimen before and during pregnancy, followed by a standard diet after birth. Our findings confirm that maternal obesity impacts offspring birth weight and glucose and lipid metabolisms. However, we found minimal impact on circadian rhythms and microbiota that are predominantly driven by the feeding/fasting cycle. Notably, maternal obesity altered rhythmic liver gene expression, affecting mitochondrial function and inflammatory response without disrupting the hepatic circadian clock. These changes could be explained by a masculinization of liver gene expression similar to the changes observed in polycystic ovarian syndrome. Intriguingly, such alterations seem to provide the first-generation offspring with a degree of protection against obesity when exposed to a high fat diet.

16.
World J Gastrointest Oncol ; 16(7): 3230-3240, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39072174

ABSTRACT

BACKGROUND: Aldehyde (ALDH2) dysfunction has been verified to contribute to human cancers. AIM: To investigate the molecular mechanism and biological function of ALDH2 in colorectal cancer (CRC) progression. METHODS: Human CRC cells with high expression of ALDH2 were screened. After shRNA ALDH2 (sh-ALDH2) transfection, phenotypes [proliferation, apoptosis, acetaldehyde (ACE) accumulation, DNA damage] of CRC cells were verified using cell counting kit-8, flow cytometry, ACE assay, and comet assays. Western blotting was used for evaluation of the apoptosis proteins (Bax and Bcl-2) and JNK/p38 MAPK pathway-associated proteins. We subjected CVT-10216 (a selective ALDH2 inhibitor) to nude mice for establishment of SK-CO-1 mouse xenograft model and observed the occurrence of CRC. RESULTS: The inhibition of ALDH2 could promote the malignant structures of CRC cells, including apoptosis, ACE level, and DNA damage, and cell proliferation was decreased in the sh-ALDH2 group, whereas ALDH2 agonist Alda-1 reversed features. ALDH2 repression can cause ACE accumulation, whereas ACE enhanced CRC cell features related to increased DNA damage. Additionally, ALDH2 repression led to JNK/P38 MAPK activation, and apoptosis, ACE accumulation, and DNA damage were inhibited after p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125 addition. ACE accumulation and raised DNA damage were recognized in CVT-10216 treated-mouse tumor tissues in vivo. CONCLUSION: The repression of ALDH2 led to ACE accumulation, inducing cell apoptosis and DNA damage by the JNK/p38 MAPK signaling pathway activation in CRC.

17.
ACS Nano ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072481

ABSTRACT

It is crucial to clarify how the iron nanostructure activates plant growth, particularly in combination with arbuscular mycorrhizal fungi (AMF). We first identified 1.0 g·kg-1 of nanoscale zerovalent iron (nZVI) as appropriate dosage to maximize maize growth by 12.7-19.7% in non-AMF and 18.9-26.4% in AMF, respectively. Yet, excessive nZVI at 2.0 g·kg-1 exerted inhibitory effects while FeSO4 showed slight effects (p > 0.05). Under an appropriate dose, a nano core-shell structure was formed and the transfer and diffusion of electrons between PS II and PS I were facilitated, significantly promoting the reduction of ferricyanide and NADP (p < 0.05). SEM images showed that excessive nZVI particles can form stacked layers on the surface of roots and hyphae, inhibiting water and nutrient uptake. TEM observations showed that excessive nanoparticles can penetrate into root cortical cells, disrupt cellular homeostasis, and substantially elevate Fe content in roots (p < 0.05). This exacerbated membrane lipid peroxidation and osmotic regulation, accordingly restricting photosynthetic capacity and AMF colonization. Yet, appropriate nZVI can be adhered to a mycelium surface, forming a uniform nanofilm structure. The strength of the mycelium network was evidently enhanced, under an increased root colonization rate and an extramatrical hyphal length (p < 0.05). Enhanced mycorrhizal infection was tightly associated with higher gas exchange and Rubisco and Rubisco enzyme activities. This enabled more photosynthetic carbon to input into AMF symbiont. There existed a positive feedback loop connecting downward transfer of photosynthate and upward transport of water/nutrients. FeSO4 only slightly affected mycorrhizal development. Thus, it was the Fe nanostructure but not its inorganic salt state that primed AMF symbionts for better growth.

18.
Adv Sci (Weinh) ; : e2400486, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978328

ABSTRACT

The risk for suffering immune checkpoint inhibitors (ICIs)-associated myocarditis increases in patients with pre-existing conditions and the mechanisms remain to be clarified. Spatial transcriptomics, single-cell RNA sequencing, and flow cytometry are used to decipher how anti-cytotoxic T lymphocyte antigen-4 m2a antibody (anti-CTLA-4 m2a antibody) aggravated cardiac injury in experimental autoimmune myocarditis (EAM) mice. It is found that anti-CTLA-4 m2a antibody increases cardiac fibroblast-derived C-X-C motif chemokine ligand 1 (Cxcl1), which promots neutrophil infiltration to the myocarditic zones (MZs) of EAM mice via enhanced Cxcl1-Cxcr2 chemotaxis. It is identified that the C-C motif chemokine ligand 5 (Ccl5)-neutrophil subpopulation is responsible for high activity of cytokine production, adaptive immune response, NF-κB signaling, and cellular response to interferon-gamma and that the Ccl5-neutrophil subpopulation and its-associated proinflammatory cytokines/chemokines promoted macrophage (Mφ) polarization to M1 Mφ. These altered infiltrating landscape and phenotypic switch of immune cells, and proinflammatory factors synergistically aggravated anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. Neutralizing neutrophils, Cxcl1, and applying Cxcr2 antagonist dramatically alleviates anti-CTLA-4 m2a antibody-induced leukocyte infiltration, cardiac fibrosis, and dysfunction. It is suggested that Ccl5-neutrophil subpopulation plays a critical role in aggravating anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. This data may provide a strategic rational for preventing/curing ICIs-associated myocarditis.

19.
Front Bioeng Biotechnol ; 12: 1399691, 2024.
Article in English | MEDLINE | ID: mdl-39015138

ABSTRACT

Introduction: Surgical correction is a common treatment for severe scoliosis. Due to the significant spinal deformation that occurs with this condition, spinal cord injuries during corrective surgery can occur, sometimes leading to paralysis. Methods: Such events are associated with biomechanical changes in the spinal cord during surgery, however, their underlying mechanisms are not well understood. Six patient-specific cases of scoliosis either with or without spinal complications were examined. Finite element analyses (FEA) were performed to assess the dynamic changes and stress distribution of spinal cords after surgical correction. The FEA method is a numerical technique that simplifies problem solving by replacing complex problem solving with simplified numerical computations. Results: In four patients with poor prognosis, there was a concentration of stress in the spinal cord. The predicted spinal cord injury areas in this study were consistent with the clinical manifestations of the patients. In two patients with good prognosis, the stress distribution in the spinal cord models was uniform, and they showed no abnormal clinical manifestations postoperatively. Discussion: This study identified a potential biomechanical mechanism of spinal cord injury caused by surgical correction of scoliosis. Numerical prediction of postoperative spinal cord stress distribution might improve surgical planning and avoid complications.

20.
J Colloid Interface Sci ; 676: 33-44, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018808

ABSTRACT

Ideal wave-absorbing materials are required to possess the characteristics such as being "broad, lightweight, thin, and strong." Biomass-derived materials for absorbing electromagnetic waves (EMWs) are widely explored due to their low cost, lightweight, environmentally friendly, high specific surface area, and porous structure. In this study, wood was used as the raw material, and N-doped carbon nanotubes were grown in situ in porous carbon derived from wood, loaded with magnetic metal Co nanoparticles through chemical vapor deposition. The Fir@Co@CNT composite material exhibited a three-dimensional conductive electromagnetic network structure and excellent impedance matching, thereby demonstrating excellent wave absorption performance. By controlling the introduction of carbon nanotubes, the roles of polarization loss and conduction loss in the Fir@Co@CNT composite material were precisely regulated. The Fir@Co@CNT 1:5 composite material achieved a minimum reflection loss (RLmin) of -43.03 dB in the low-frequency region and a maximum effective absorption bandwidth (EABmax) of 4.3 GHz (1.5 mm). Meanwhile, the Fir@Co@CNT 1:10 composite material achieved a RLmin of -52 dB with a thickness of only 2.3 mm, along with an EABmax of 4.2 GHz (1.6 mm). Both materials collectively cover the entire C-band, X-band, and Ku-band in terms of EAB. This work introduces a method for regulating polarization loss and conduction loss, showcasing the potential of biomass carbon materials as low-frequency EMW absorption materials for the first time. It also provides a new direction for the development and application of environmentally friendly, lightweight, high-performance wave-absorbing materials.

SELECTION OF CITATIONS
SEARCH DETAIL