Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 547
Filter
1.
World J Gastroenterol ; 30(24): 3076-3085, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38983956

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) infection is closely associated with gastrointestinal diseases. Our preliminary studies have indicated that H. pylori infection had a significant impact on the mucosal microbiome structure in patients with gastric ulcer (GU) or duodenal ulcer (DU). AIM: To investigate the contributions of H. pylori infection and the mucosal microbiome to the pathogenesis and progression of ulcerative diseases. METHODS: Patients with H. pylori infection and either GU or DU, and healthy individuals without H. pylori infection were included. Gastric or duodenal mucosal samples was obtained and subjected to metagenomic sequencing. The compositions of the microbial communities and their metabolic functions in the mucosal tissues were analyzed. RESULTS: Compared with that in the healthy individuals, the gastric mucosal microbiota in the H. pylori-positive patients with GU was dominated by H. pylori, with significantly reduced biodiversity. The intergroup differential functions, which were enriched in the H. pylori-positive GU patients, were all derived from H. pylori, particularly those concerning transfer RNA queuosine-modification and the synthesis of demethylmenaquinones or menaquinones. A significant enrichment of the uibE gene was detected in the synthesis pathway. There was no significant difference in microbial diversity between the H. pylori-positive DU patients and healthy controls. CONCLUSION: H. pylori infection significantly alters the gastric microbiota structure, diversity, and biological functions, which may be important contributing factors for GU.


Subject(s)
Duodenal Ulcer , Gastric Mucosa , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Stomach Ulcer , Humans , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Helicobacter pylori/genetics , Duodenal Ulcer/microbiology , Duodenal Ulcer/diagnosis , Male , Female , Middle Aged , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Stomach Ulcer/microbiology , Adult , Case-Control Studies , Aged , Metagenomics/methods , Duodenum/microbiology , Dysbiosis/microbiology
2.
ACS Appl Bio Mater ; 7(7): 4747-4759, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005189

ABSTRACT

Current engineered synthetic scaffolds fail to functionally repair and regenerate ruptured native tendon tissues, partly because they cannot satisfy both the unique biological and biomechanical properties of these tissues. Ideal scaffolds for tendon repair and regeneration need to provide porous topographic structures and biological cues necessary for the efficient infiltration and tenogenic differentiation of embedded stem cells. To obtain crimped and porous scaffolds, highly aligned poly(l-lactide) fibers were prepared by electrospinning followed by postprocessing. Through a mild and controlled hydrogen gas foaming technique, we successfully transformed the crimped fibrous mats into three-dimensional porous scaffolds without sacrificing the crimped microstructure. Porcine derived decellularized tendon matrix was then grafted onto this porous scaffold through fiber surface modification and carbodiimide chemistry. These biofunctionalized, crimped, and porous scaffolds supported the proliferation, migration, and tenogenic induction of tendon derived stem/progenitor cells, while enabling adhesion to native tendons. Together, our data suggest that these biofunctionalized scaffolds can be exploited as promising engineered scaffolds for the treatment of acute tendon rupture.


Subject(s)
Biocompatible Materials , Materials Testing , Regeneration , Tendons , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tendons/cytology , Animals , Swine , Porosity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Engineering , Cell Proliferation/drug effects , Particle Size , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Polyesters/chemistry
3.
Phys Med Biol ; 69(15)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38981596

ABSTRACT

Objective. Bifurcation detection in intravascular optical coherence tomography (IVOCT) images plays a significant role in guiding optimal revascularization strategies for percutaneous coronary intervention (PCI). We propose a bifurcation detection method using vision transformer (ViT) based deep learning in IVOCT.Approach. Instead of relying on lumen segmentation, the proposed method identifies the bifurcation image using a ViT-based classification model and then estimate bifurcation ostium points by a ViT-based landmark detection model.Main results. By processing 8640 clinical images, the Accuracy and F1-score of bifurcation identification by the proposed ViT-based model are 2.54% and 16.08% higher than that of traditional non-deep learning methods, are similar to the best performance of convolutional neural networks (CNNs) based methods, respectively. The ostium distance error of the ViT-based model is 0.305 mm, which is reduced 68.5% compared with the traditional non-deep learning method and reduced 24.81% compared with the best performance of CNNs based methods. The results also show that the proposed ViT-based method achieves the highest success detection rate are 11.3% and 29.2% higher than the non-deep learning method, and 4.6% and 2.5% higher than the best performance of CNNs based methods when the distance section is 0.1 and 0.2 mm, respectively.Significance. The proposed ViT-based method enhances the performance of bifurcation detection of IVOCT images, which maintains a high correlation and consistency between the automatic detection results and the expert manual results. It is of great significance in guiding the selection of PCI treatment strategies.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Image Processing, Computer-Assisted/methods , Coronary Vessels/diagnostic imaging
4.
World J Orthop ; 15(5): 390-399, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38835688

ABSTRACT

Combined femoral and acetabular anteversion is the sum of femoral and acetabular anteversion, representing their morphological relationship in the axial plane. Along with the increasing understanding of hip dysplasia in recent years, numerous scholars have confirmed the role of combined femoral and acetabular anteversion in the pathological changes of hip dysplasia. At present, the reconstructive surgery for hip dysplasia includes total hip replacement and redirectional hip preservation surgery. As an important surgery index, combined femoral and acetabular anteversion have a crucial role in these surgeries. Herein, we discuss the role of combined femoral and acetabular anteversion in pathological changes of hip dysplasia, total hip replacement, and redirectional hip preservation surgery.

5.
J Environ Manage ; 362: 121325, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824895

ABSTRACT

Fluidized Bed Fenton (FBF) technology, a fusion of the Fenton method and fluidized bed reactor, has emerged as a superior alternative to conventional Fenton technology for treating organic industrial wastewater. This innovative approach has garnered significant attention from researchers in recent years. While earlier studies primarily focused on pollutant degradation in simulated wastewater and catalyst development, there has been a growing interest in examining the alterations in mass or heat transfer performance attributed to fluidized beds. This paper explores the factors that contribute to the effectiveness of Fluidized Bed Fenton technology in efficiently degrading various challenging organic pollutants, while also reducing iron sludge production and expanding the applicable pH range, through an analysis of reaction kinetics. Meanwhile, combined with the related work of fluid dynamics, the research related to mass and heat transfer inside the reactor of Fluidized Bed Fenton technology is summarized, and it is proposed that the use of computers to establish a suitable model of Fluidized Bed Fenton and solve it with the assistance of computational fluid dynamics (CFD) and other software will help to further explore the process of mass and heat transfer inside the fluidized bed, which will provide the basis for the future of the Fluidized Bed Fenton from the laboratory to the actual industrial application.


Subject(s)
Iron , Wastewater , Wastewater/chemistry , Iron/chemistry , Waste Disposal, Fluid/methods , Hydrogen Peroxide/chemistry , Hydrodynamics , Kinetics , Hot Temperature , Water Pollutants, Chemical/chemistry
6.
JAAD Case Rep ; 49: 94-97, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38938697
8.
Environ Res ; 255: 119130, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38735375

ABSTRACT

OBJECTIVES: This study aims to assess the specific PM2.5-bound metallic elements that contribute to asthma emergency department visits by using a case-crossover study design. METHODS: This study analyzed data from 11,410 asthma emergency department visits as case group and 22,820 non-asthma onset dates occurring one week and two weeks preceding the case day as controls from 2017 to 2020. PM2.5 monitoring data and 35 PM.2.5-bound metallic elements from six different regions in Taiwan were collected. Conditional logistic regression models were used to assess the relationship between asthma and PM2.5-bound metallic elements. RESULTS: Our investigation revealed a statistically significant risk of asthma emergency department visits associated with PM2.5 exposure at lag 0, 1, 2, and 3 during autumn. Additionally, PM2.5-bound hafnium (Hf), thallium (Tl), rubidium (Rb), and aluminum (Al) exhibited a consistently significant positive correlation with asthma emergency department visits at lags 1, 2, and 3. In stratified analyses by area, age, and sex, PM2.5-bound Hf showed a significant and consistent correlation. CONCLUSIONS: This study provides evidence of PM2.5-bound metallic elements effects in asthma exacerbations, particularly for Hf. It emphasizes the importance of understanding the origins of these metallic elements and pursuing emission reductions to mitigate regional health risks.


Subject(s)
Air Pollutants , Asthma , Cross-Over Studies , Emergency Service, Hospital , Particulate Matter , Asthma/epidemiology , Asthma/chemically induced , Taiwan/epidemiology , Emergency Service, Hospital/statistics & numerical data , Particulate Matter/analysis , Humans , Male , Female , Middle Aged , Adult , Air Pollutants/analysis , Aged , Adolescent , Young Adult , Metals/analysis , Child , Environmental Exposure/adverse effects , Child, Preschool , Infant , Emergency Room Visits
9.
Virus Res ; 345: 199387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719025

ABSTRACT

Influenza A virus can infect respiratory tracts and may cause severe illness in humans. Proteins encoded by influenza A virus can interact with cellular factors and dysregulate host biological processes to support viral replication and cause pathogenicity. The influenza viral PA protein is not only a subunit of influenza viral polymerase but also a virulence factor involved in pathogenicity during infection. To explore the role of the influenza virus PA protein in regulating host biological processes, we performed immunoprecipitation and LC‒MS/MS to globally identify cellular factors that interact with the PA proteins of the influenza A H1N1, 2009 pandemic H1N1, and H3N2 viruses. The results demonstrated that proteins located in the mitochondrion, proteasome, and nucleus are associated with the PA protein. We further discovered that the PA protein is partly located in mitochondria by immunofluorescence and mitochondrial fractionation and that overexpression of the PA protein reduces mitochondrial respiration. In addition, our results revealed the interaction between PA and the mitochondrial matrix protein PYCR2 and the antiviral role of PYCR2 during influenza A virus replication. Moreover, we found that the PA protein could also trigger autophagy and disrupt mitochondrial homeostasis. Overall, our research revealed the impacts of the influenza A virus PA protein on mitochondrial function and autophagy.


Subject(s)
Mitochondria , Viral Proteins , Virus Replication , Humans , Mitochondria/metabolism , Mitochondria/virology , Viral Proteins/metabolism , Viral Proteins/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Influenza A virus/physiology , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza A virus/metabolism , Host-Pathogen Interactions , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H3N2 Subtype/metabolism , Autophagy , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N1 Subtype/pathogenicity , HEK293 Cells , Influenza, Human/virology , Influenza, Human/metabolism , A549 Cells , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Tandem Mass Spectrometry
10.
ACS Omega ; 9(20): 22459-22465, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799307

ABSTRACT

In this study, two-dimensional (2D) nanosheet photocatalysts of Bi2MoO6 with varying thicknesses were synthesized by adjusting the temperature during the hydrothermal reaction. The thinnest Bi2MoO6 nanosheet reached an approximate thickness of ∼4 nm, while the thickest nanosheet measured only ∼16 nm. The photocatalytic performance for Rhodamine B (RhB) degradation was found to be the most effective for the thinnest Bi2MoO6 nanosheet, displaying a degradation rate constant of 0.11 min-1. This rate was 2.5 times higher than that observed for the ∼16 nm thick Bi2MoO6 photocatalyst. The enhanced performance of the thinner two-dimensional nanostructure can be attributed to improved separation and migration of photogenerated charges. Additionally, the study identified hydroxyl radicals (•OH) and superoxide radicals (•O2-) as crucial oxidative species, contributing to the efficient mineralization of RhB dye. This work highlights the controllable synthesis of 2D materials with varying thicknesses and their specific applications in photocatalytic oxidation.

12.
BMC Surg ; 24(1): 100, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580988

ABSTRACT

BACKGROUND: Malnutrition is not uncommon among the elderly undergoing pancreatoduodenectomy (PD) and is related to increased complications. Previous studies have shown that the Geriatric Nutritional Risk Index (GNRI) predicts outcomes in various populations. Nevertheless, the research exploring the correlation between GNRI and postoperative outcomes in PD is scarce. This study aimed to investigate the preoperative malnutrition, as measured by GNRI, on outcomes in elderly patients undergoing PD. MATERIALS AND METHODS: This retrospective analysis enrolled 144 elderly patients underwent PD for periampullary tumors from November 2016 to December 2021. Patients were stratified based on the GNRI value: high/moderate nutrition risk (GNRI ≤ 92, N = 54), low nutrition risk (92 < GNRI ≤ 98, N = 35), and no nutrition risk (GNRI > 98, N = 55). Perioperative outcomes and postoperative surgical complications were compared between these groups. Univariate and multivariate analyses were performed on major postoperative complications and prolonged postoperative length of stay (PLOS). RESULTS: Patients in the high/moderate risk group were significantly older, with lower BMI (P = 0.012), higher mortality rate (11.1%, P = 0.024), longer PLOS (P < 0.001), and higher incidence of over grade IIIB complications (37.0%, P = 0.001), Univariate and multivariate analyses showed the high/moderate risk GNRI group (OR 3.61, P = 0.032), increased age (OR 1.11, P = 0.014) and operative time over 8 h (OR 3.04, P = 0.027) were significantly associated with increased major postoperative complications. The high/moderate risk GNRI group was also a significant predictor for prolonged PLOS (OR 3.91, P = 0.002). CONCLUSIONS: Preoperative GNRI has the potential to be a predictive tool for identifying high-risk elderly patients and monitoring nutritional status preoperatively to improve postoperative surgical outcomes following PD.


Subject(s)
Malnutrition , Nutritional Status , Humans , Aged , Pancreaticoduodenectomy/adverse effects , Retrospective Studies , Nutrition Assessment , Malnutrition/complications , Malnutrition/epidemiology , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Risk Factors
13.
Sci Rep ; 14(1): 6161, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38485750

ABSTRACT

The present study aimed to elucidate the prognostic mutation signature (PMS) associated with long-term survival in a diffuse large B-cell lymphoma (DLBCL) cohort. All data including derivation and validation cohorts were retrospectively retrieved from The Cancer Genome Atlas (TCGA) database and whole-exome sequencing (WES) data. The Lasso Cox regression analysis was used to construct the PMS based on WES data, and the PMS was determined using the area under the receiver operating curve (AUC). The predictive performance of eligible PMS was analyzed by time-dependent receiver operating curve (ROC) analyses. After the initial evaluation, a PMS composed of 94 PFS-related genes was constructed. Notably, this constructed PMS accurately predicted the 12-, 36-, and 60-month PFS, with AUC values of 0.982, 0.983, and 0.987, respectively. A higher level of PMS was closely linked to a significantly worse PFS, regardless of the molecular subtype. Further evaluation by forest plot revealed incorporation of international prognostic index or tumor mutational burden into PMS increased the prediction capability for PFS. The drug-gene interaction and pathway exploration revealed the PFS-related genes were associated with DNA damage, TP53, apoptosis, and immune cell functions. In conclusion, this study utilizing a high throughput genetic approach demonstrated that the PMS could serve as a prognostic predictor in DLBCL patients. Furthermore, the identification of the key signaling pathways for disease progression also provides information for further investigation to gain more insight into novel drug-resistant mechanisms.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Prognosis , Retrospective Studies , Mutation , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , DNA Damage
14.
Appl Environ Microbiol ; 90(3): e0225623, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38415624

ABSTRACT

The last step of the initiation phase of fatty acid biosynthesis in most bacteria is catalyzed by the 3-ketoacyl-acyl carrier protein (ACP) synthase III (FabH). Pseudomonas syringae pv. syringae strain B728a encodes two FabH homologs, Psyr_3467 and Psyr_3830, which we designated PssFabH1 and PssFabH2, respectively. Here, we explored the roles of these two 3-ketoacyl-ACP synthase (KAS) III proteins. We found that PssFabH1 is similar to the Escherichia coli FabH in using acetyl-acetyl-coenzyme A (CoA ) as a substrate in vitro, whereas PssFabH2 uses acyl-CoAs (C4-C10) or acyl-ACPs (C6-C10). Mutant analysis showed that neither KAS III protein is essential for the de novo fatty acid synthesis and cell growth. Loss of PssFabH1 reduced the production of an acyl homoserine lactone (AHL) quorum-sensing signal, and this production was partially restored by overexpressing FabH homologs from other bacteria. AHL production was also restored by inhibiting fatty acid elongation and providing exogenous butyric acid. Deletion of PssFabH1 supports the redirection of acyl-ACP toward biosurfactant synthesis, which in turn enhances swarming motility. Our study revealed that PssFabH1 is an atypical KAS III protein that represents a new KAS III clade that functions in providing a critical fatty acid precursor, butyryl-ACP, for AHL synthesis.IMPORTANCEAcyl homoserine lactones (AHLs) are important quorum-sensing compounds in Gram-negative bacteria. Although their formation requires acylated acyl carrier proteins (ACPs), how the acylated intermediate is shunted from cellular fatty acid synthesis to AHL synthesis is not known. Here, we provide in vivo evidence that Pseudomonas syringae strain B728a uses the enzyme PssFabH1 to provide the critical fatty acid precursor butyryl-ACP for AHL synthesis. Loss of PssFabH1 reduces the diversion of butyryl-ACP to AHL, enabling the accumulation of acyl-ACP for synthesis of biosurfactants that contribute to bacterial swarming motility. We report that PssFabH1 and PssFabH2 each encode a 3-ketoacyl-acyl carrier protein synthase (KAS) III in P. syringae B728a. Whereas PssFabH2 is able to function in redirecting intermediates from ß-oxidation to fatty acid synthesis, PssFabH1 is an atypical KAS III protein that represents a new KAS III clade based on its sequence, non-involvement in cell growth, and novel role in AHL synthesis.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Acyl-Butyrolactones , Pseudomonas syringae/genetics , Pseudomonas syringae/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Fatty Acids/metabolism , Bacteria/metabolism , Escherichia coli/metabolism , Acetyl Coenzyme A/metabolism
15.
Chem Commun (Camb) ; 60(20): 2784-2787, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38362615

ABSTRACT

Environmentally friendly and highly efficient blue luminescent materials are an unremitting pursuit in the optoelectronic field. Herein, we assembled a new 0D lead-free metal halide of (F-PPA)ZnBr4, which exhibits narrow blue light emission with a remarkable PLQY of 50.15%, high stability and high detection sensitivity toward UV light. These results indicate the potential for the application of low-dimensional zinc-based halides in multiple optoelectronic devices.

16.
Cryobiology ; 114: 104860, 2024 03.
Article in English | MEDLINE | ID: mdl-38340888

ABSTRACT

During the freeze-thaw process, human spermatozoa are susceptible to oxidative stress, which may cause cryodamage and reduce sperm quality. As a novel mitochondria-targeted antioxidant, Mito-tempo has been used for sperm cryopreservation. However, it is currently unknown what role it will play in the process of sperm ultra-rapid freezing. The purpose of this study was to investigate whether Mito-tempo can improve sperm quality during ultra-rapid freezing. In this study, samples with the addition of Mito-tempo (0, 5, 10, 20, and 40 µM) to sperm freezing medium were selected to evaluate the changes in sperm quality, antioxidant capacity and ultrastructure after ultra-rapid freezing. After ultra-rapid freezing, the quality and antioxidant function of the spermatozoa were significantly reduced and the spermatozoa ultrastructure was destroyed. The addition of 10 µM Mito-tempo significantly increased post thaw sperm motility, viability, plasma membrane integrity and mitochondrial membrane potential (P < 0.05). Moreover, the DNA fragmentation index (DFI), ROS levels and MDA content were reduced, and the antioxidant enzyme (CAT and SOD) activities were enhanced in the 10 µM Mito-tempo group (P < 0.05). Moreover, Mito-tempo protected sperm ultrastructure from damage. In conclusion, Mito-tempo improved the quality and antioxidant function of sperm after ultra-rapid freezing while reducing freezing-induced ultrastructural damage.


Subject(s)
Antioxidants , Semen Preservation , Male , Humans , Antioxidants/pharmacology , Freezing , Cryopreservation/methods , Sperm Motility , Cryoprotective Agents/pharmacology , Semen , Spermatozoa , Mitochondria
17.
J Cutan Med Surg ; : 12034754231225958, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323569
18.
Pharm Biol ; 62(1): 153-161, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38347502

ABSTRACT

CONTEXT: Pileostegia tomentella Hand. Mazz (Saxifragaceae) total coumarins (TCPT) show antitumour activity in colorectal cancer (CRC) with unknown mechanism of action. Tumour angiogenesis mediated by exosomes-derived miRNA exhibits the vital regulation of endothelial cell function in metastasis of CRC. OBJECTIVE: To investigate the effect of TCPT on exosomal miRNA expression and angiogenesis of CRC cells. MATERIALS AND METHODS: HT-29-derived exosomes were generated from human CRC cells (HT-29) or either treated with TCPT (100 µg/mL) for 24 h, followed by identification by transmission electron microscope, nanoparticle tracking analysis (NTA) and Western blot. Co-culture experiments for human umbilical vein endothelial cells (HUVECs) and exosomes were performed to detect the uptake of exosomes in HUVECs and its influence on HUVECs cells migration and lumen formation ability. Potential target miRNAs in exosomes were screened out by sequencing technology. Rescue assays of angiogenesis were performed by the transfecting mimics or inhibitors of targeted miRNA into HUVECs. RESULTS: HT-29-derived exosomes, after TCPT treatment (Exo-TCPT), inhibited the migration and lumen formation of HUVECs, reduced the expression levels of vascular marker (FLT-1, VCAM-1 and VEGFR-2) in HUVECs. Furthermore, the level of miR-375-3p was significantly upregulated in Exo-TCPT. Rescue assays showed that high expression of miR-375-3p in HUVECs inhibited migration and lumen formation abilities, which was consistent with the effects of Exo-TCPT, whereas applying miR-375-3p inhibitors displayed opposite effects. DISCUSSION AND CONCLUSION: TCPT exhibits anti-angiogenesis in CRC, possibly through upregulating exosomal miR-375-3p. Our findings will shed light on new target exosomes miRNA-mediated tumour microenvironment and the therapeutic application of Pileostegia tomentella in CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Angiogenesis , Neovascularization, Pathologic/genetics , Human Umbilical Vein Endothelial Cells , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cell Proliferation , Tumor Microenvironment
19.
World J Orthop ; 15(1): 1-10, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38293262

ABSTRACT

In children with asymmetric growth on the medial and lateral side of limbs, if there still remains growth potential, the guided growth technique of hemi-epiphysiodesis on one side of the epiphysis is recognized as a safe and effective method. However, when the hemi-epiphysiodesis start to correct the deformities, how many degrees could hemi-epiphysiodesis bring every month and when to remove the hemi-epiphysiodesis implant without rebound phenomenon are still on debate. This article reviews the current studies focus on the effective time, correction speed and termination time of hemi-epiphysiodesis.

20.
Adv Mater ; 36(4): e2307218, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972344

ABSTRACT

Costly data movement in terms of time and energy in traditional von Neumann systems is exacerbated by emerging information technologies related to artificial intelligence. In-memory computing (IMC) architecture aims to address this problem. Although the IMC hardware prototype represented by a memristor is developed rapidly and performs well, the sneak path issue is a critical and unavoidable challenge prevalent in large-scale and high-density crossbar arrays, particularly in three-dimensional (3D) integration. As a perfect solution to the sneak-path issue, a self-rectifying memristor (SRM) is proposed for 3D integration because of its superior integration density. To date, SRMs have performed well in terms of power consumption (aJ level) and scalability (>102  Mbit). Moreover, SRM-configured 3D integration is considered an ideal hardware platform for 3D IMC. This review focuses on the progress in SRMs and their applications in 3D memory, IMC, neuromorphic computing, and hardware security. The advantages, disadvantages, and optimization strategies of SRMs in diverse application scenarios are illustrated. Challenges posed by physical mechanisms, fabrication processes, and peripheral circuits, as well as potential solutions at the device and system levels, are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...