Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 854
1.
Biomol NMR Assign ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822991

The odorant binding protein, OBP44a is one of the most abundant proteins expressed in the brain of the developing fruit fly Drosophila melanogaster. Its cellular function has not yet been determined. The OBP family of proteins is well established to recognize hydrophobic molecules. In this study, NMR is employed to structurally characterize OBP44a. NMR chemical shift perturbation measurements confirm that OBP44a binds to fatty acids. Complete assignments of the backbone chemical shifts and secondary chemical shift analysis demonstrate that the apo state of OBP44a is comprised of six α-helices. Upon binding 8(Z)-eicosenoic acid (8(Z)-C20:1), the OBP44a C-terminal region undergoes a conformational change, from unstructured to α-helical. In addition to C-terminal restructuring upon ligand binding, some hydrophobic residues show dramatic chemical shift changes. Surprisingly, several charged residues are also strongly affected by lipid binding. Some of these residues could represent key structural features that OBP44a relies on to perform its cellular function. The NMR chemical shift assignment is the first step towards characterizing the structure of OBP44a and how specific residues might play a role in lipid binding and release. This information will be important in deciphering the biological function of OBP44a during fly brain development.

2.
Nano Lett ; 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847360

In laser-based additive manufacturing (AM), porosity and unmelted metal powder are typically considered undesirable and harmful. Nevertheless in this work, precisely controlling laser parameters during printing can intentionally introduce controllable porosity, yielding a porous electrode with enhanced catalytic activity for the oxygen evolution reaction (OER). This study demonstrates that deliberate introduction of porosity, typically considered a defect, leads to improved gas molecule desorption, enhanced mass transfer, and increased catalytically active sites. The optimized P-93% electrode displays superior OER performance with an overpotential of 270 mV at 20 mA cm-2. Furthermore, it exhibits remarkable long-term stability, operating continuously for over 1000 h at 10 mA cm-2 and more than 500 h at 500 mA cm-2. This study not only provides a straightforward and mass-producible method for efficient, binder-free OER catalysts but also, if optimized, underscores the potential of laser-based AM driven defect engineering as a promising strategy for industrial water splitting.

3.
Front Physiol ; 15: 1397818, 2024.
Article En | MEDLINE | ID: mdl-38720786

To investigate the impact of the effect of high temperature stimulation on Monopterus albus larvae after a certain period of time, five experimental groups were established at different temperatures. Then, the M. albus under high temperature stress was fed at 30°C for 70 days. After that, the growth index of the M. albus was counted and analyzed. In terms of growth index, high temperature stress had significant effects on FCR, FBW, WGR, and SGR of M. albus (p < 0.05). The SR increased after being stimulated by temperature (p < 0.1). The study revealed that liver cells of M. albus were harmed by elevated temperatures of 36°C and 38°C. In the experimental group, the activities of digestive enzymes changed in the same trend, reaching the highest point in the 32°C group and then decreasing, and the AMS activity in the 38°C group was significantly different from that in the 30°C group (p < 0.05). The activities of antioxidase in liver reached the highest at 34°C, which was significantly different from those at 30°C (p < 0.05). In addition, the expression levels of TLR1, C3, TNF-α, and other genes increased in the experimental group, reaching the highest point at 34°C, and the expression level of the IL-1ß gene reached the highest point at 32°C, which was significantly different from that at 30°C (p < 0.05). However, the expression level of the IRAK3 gene decreased in the experimental group and reached its lowest point at 34°C (p < 0.05). The expression level of the HSP90α gene increased with the highest temperature stimulus and reached its highest point at 38°C (p < 0.05). In the α diversity index of intestinal microorganisms in the experimental group, the observed species, Shannon, and Chao1 indexes in the 34°C group were the highest (p < 0.05), and ß diversity analysis revealed that the intestinal microbial community in the experimental group was separated after high temperature stimulation. At the phylum level, the three dominant flora are Proteus, Firmicutes, and Bacteroides. Bacteroides and Macrococcus abundance increased at the genus level, but Vibrio and Aeromonas abundance decreased. To sum up, appropriate high-temperature stress can enhance the immunity and adaptability of M. albus. These results show that the high temperature stimulation of 32°C-34°C is beneficial to the industrial culture of M. albus.

4.
Adv Sci (Weinh) ; : e2308786, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696610

N6-methyladenosine (m6A) modification, installed by METTL3-METTL14 complex, is abundant and critical in eukaryotic mRNA. However, its role in oral mucosal immunity remains ambiguous. Periodontitis is a special but prevalent infectious disease characterized as hyperinflammation of oral mucosa and bone resorption. Here, it is reported that genetic deletion of Mettl3 alleviates periodontal destruction via suppressing NLRP3 inflammasome activation. Mechanistically, the stability of TNFAIP3 (also known as A20) transcript is significantly attenuated upon m6A modification. When silencing METTL3, accumulated TNFAIP3 functioning as a ubiquitin-editing enzyme facilitates the ubiquitination of NEK7 [NIMA (never in mitosis gene a)-related kinase 7], and subsequently impairs NLRP3 inflammasome assembly. Furtherly, Coptisine chloride, a natural small-molecule, is discovered as a novel METTL3 inhibitor and performs therapeutic effect on periodontitis. The study unveils a previously unknown pathogenic mechanism of METTL3-mediated m6A modifications in periodontitis and indicates METTL3 as a potential therapeutic target.

5.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702343

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Oncolytic Virotherapy , Oncolytic Viruses , Animals , Mice , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Virotherapy/methods , Combined Modality Therapy , mRNA Vaccines/immunology , Melanoma, Experimental/therapy , Melanoma, Experimental/immunology , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , Humans , Cell Line, Tumor , Cancer Vaccines/immunology , Cancer Vaccines/genetics , Cancer Vaccines/administration & dosage
6.
Hum Vaccin Immunother ; 20(1): 2338984, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38698555

CAR-T cell therapy has emerged as a significant approach for the management of hematological malignancies. Over the past few years, the utilization of CAR-T cells in the investigation and treatment of solid tumors has gained momentum, thereby establishing itself as a prominent area of research. This descriptive study involved the retrieval of articles about CAR-T cell therapy for solid tumors from the Web of Science Core Collection (WoSCC) database. Subsequently, bibliometric analysis and knowledge map analysis were conducted on these articles. The field under consideration is currently experiencing a period of swift advancement, as evidenced by the escalating number of publications in this domain each year. The United States holds an indisputable position as the foremost leader in this particular field, with the University of Pennsylvania emerging as the most active institution. The authors with the highest citation frequency and co-citation frequency are Carl H. June and Shannon L. Maude, respectively. The research hotspots in this field mainly focus on five aspects. Additionally, 10 emerging themes were identified. This study undertakes a comprehensive, systematic, and objective analysis and exploration of the field of CAR-T cell treatment for solid tumors, utilizing bibliometric methods. The findings of this study are expected to serve as a valuable reference and enlightenment for future research endeavors in this particular domain.


Bibliometrics , Immunotherapy, Adoptive , Neoplasms , Humans , Neoplasms/therapy , Immunotherapy, Adoptive/methods , Biomedical Research/trends , Receptors, Chimeric Antigen/immunology
7.
Pediatr Res ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38760472

BACKGROUND: The risk factors for central venous access device-related thrombosis (CRT) in children are not fully understood. We used evidence-based medicine to find the risk factors for CRT by pooling current studies reporting risk factors of CRT, aiming to guide clinical diagnosis and treatment. METHODS: A systematic search of PubMed, Web of Science, Embase, Cochrane Library, Scopus, CNKI, Sinomed, and Wanfang databases was conducted. RevMan 5.4 was employed for data analysis. RESULTS: The review included 47 studies evaluating 262,587 children with CVAD placement. Qualitative synthesis and quantitative meta-analysis identified D-dimer, location of insertion, type of catheter, number of lumens, catheter indwelling time, and central line-associated bloodstream infection as the most critical risk factors for CRT. Primarily due to observational design, the quality of evidence was regarded as low certainty for these risk factors according to the GRADE approach. CONCLUSION: Because fewer high-quality studies are available, larger sample sizes and well-designed prospective studies are still needed to clarify the risk factors affecting CRT. In the future, developing pediatric-specific CRT risk assessment tools is important. Appropriate stratified preventive strategies for CRT according to risk assessment level will help improve clinical efficiency, avoid the occurrence of CRT, and alleviate unnecessary suffering of children. IMPACT: This is the latest systematic review of risk factors and incidence of CRT in children. A total of 47 studies involving 262,587 patients were included in our meta-analysis, according to which the pooled prevalence of CRT was 9.1%. This study identified several of the most critical risk factors affecting CRT in children, including D-dimer, insertion location, type of catheter, number of lumens, catheter indwelling time, and central line-associated bloodstream infection (CLABSI).

8.
Nat Commun ; 15(1): 4133, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755124

Conductive cardiac patches can rebuild the electroactive microenvironment for the infarcted myocardium but their repair effects benefit by carried seed cells or drugs. The key to success is the effective integration of electrical stimulation with the microenvironment created by conductive cardiac patches. Besides, due to the concerns in a high re-admission ratio of heart patients, a remote medicine device will underpin the successful repair. Herein, we report a miniature self-powered biomimetic trinity triboelectric nanogenerator with a unique double-spacer structure that unifies energy harvesting, therapeutics, and diagnosis in one cardiac patch. Trinity triboelectric nanogenerator conductive cardiac patches improve the electroactivity of the infarcted heart and can also wirelessly monitor electrocardiosignal to a mobile device for diagnosis. RNA sequencing analysis from rat hearts reveals that this trinity cardiac patches mainly regulates cardiac muscle contraction-, energy metabolism-, and vascular regulation-related mRNA expressions in vivo. The research is spawning a device that truly integrates an electrical stimulation of a functional heart patch and self-powered e-care remote diagnostic sensor.


Myocardial Infarction , Animals , Myocardial Infarction/therapy , Myocardial Infarction/physiopathology , Rats , Myocardium/metabolism , Myocardium/pathology , Male , Rats, Sprague-Dawley , Electric Stimulation , Humans , Myocardial Contraction
9.
Sci Adv ; 10(20): eadl6343, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758783

Trauma rapidly mobilizes the immune response of surrounding tissues and activates regeneration program. Manipulating immune response to promote tissue regeneration shows a broad application prospect. However, the understanding of bone healing dynamics at cellular level remains limited. Here, we characterize the landscape of immune cells after alveolar bone injury and reveal a pivotal role of infiltrating natural killer T (NKT) cells. We observe a rapid increase in NKT cells after injury, which inhibit osteogenic differentiation of mesenchymal stem cells (MSCs) and impair alveolar bone healing. Cxcl2 is up-regulated in NKT cells after injury. Systemic administration of CXCL2-neutralizing antibody or genetic deletion of Cxcl2 improves the bone healing process. In addition, we fabricate a gelatin-based porous hydrogel to deliver NK1.1 depletion antibody, which successfully promotes alveolar bone healing. In summary, our study highlights the importance of NKT cells in the early stage of bone healing and provides a potential therapeutic strategy for accelerating bone regeneration.


Bone Regeneration , Chemokine CXCL2 , Natural Killer T-Cells , Osteogenesis , Bone Regeneration/drug effects , Animals , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Mice , Osteogenesis/drug effects , Chemokine CXCL2/metabolism , Chemokine CXCL2/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Differentiation , Mice, Inbred C57BL
10.
Cell Biosci ; 14(1): 66, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783336

BACKGROUND: Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS: Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS: We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION: These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.

11.
J Prosthet Dent ; 2024 May 27.
Article En | MEDLINE | ID: mdl-38806339

Precise alignment between digital arch scans and cone beam computed tomography (CBCT) scans is a crucial step in computer-aided implant planning and placement. However, clinicians frequently encounter challenges during this process when imaging patients with existing metal restorations or orthodontic devices, as these can introduce metallic artifacts on CBCT scans that lead to alignment deviations. The presented technique describes a straightforward approach using a radiopaque occlusal registration material as a radiographic marker to facilitate the alignment between digital arch scans and CBCT scans with metallic artifacts. This technique simplifies the clinical workflow by eliminating the need for additional radiographic templates or specialized devices, offering a cost-effective option for clinicians.

12.
J Proteomics ; 301: 105191, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38697285

Cystic echinococcosis is a zoonotic disease resulting from infection caused by the larval stage of Echinococcus granulosus. This study aimed to assess the specific proteins that are potential candidates for the development of a vaccine against E. granulosus. The data-independent acquisition approach was employed to identify differentially expressed proteins (DEPs) in E. granulosus samples. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was employed to identify several noteworthy proteins. Results: The DEPs in E. granulosus samples were identified (245 pericystic wall vs. parasite-free yellowish granuloma (PYG, 1725 PY vs. PYG, 2274 PN vs. PYG). Further examination of these distinct proteins revealed their predominant enrichment in metabolic pathways, amyotrophic lateral sclerosis, and neurodegeneration-associated pathways. Notably, among these DEPs, SH3BGRL, MST1, TAGLN2, FABP5, UBE2V2, and RARRES2 exhibited significantly higher expression levels in the PYG group compared with the PY group (P < 0.05). The findings may contribute to the understanding of the pathological mechanisms underlying echinococcosis, providing valuable insights into the development of more effective diagnostic tools, treatment modalities, and preventive strategies. SIGNIFICANCE: CE is a major public health hazard in the western regions of China, Central Asia, South America, the Mediterranean countries, and eastern Africa. Echinococcus granulosus is responsible for zoonotic disease through infection Our analysis focuses on the proteins in various samples by data-dependent acquisition (DIA) for proteomic analysis. The importance of this research is to develop new strategies and targets to protect against E. granulosus infections in humans.


Echinococcus granulosus , Proteomics , Proteomics/methods , Humans , Echinococcus granulosus/metabolism , Animals , Helminth Proteins/metabolism , Helminth Proteins/analysis , Echinococcosis, Hepatic/metabolism , Echinococcosis, Hepatic/parasitology , Proteome/analysis , Proteome/metabolism
13.
Sci Total Environ ; 939: 172979, 2024 May 03.
Article En | MEDLINE | ID: mdl-38705303

Integrating microbial fuel cells (MFC) into constructed wetland systems (CW) has been an efficient wastewater treatment to improve the pollutants removal and regenerate power energy. This study fabricated a sludge biochar material (SBM) to sequestrate the carbon of residual sludge. Thereafter used SBM and modified SBM as the substrate materials to construct three groups of CW-MFC for decreasing the greenhouse gas (GHG) emission. The water quality improvement in removal efficiency achieved (2.59 %, 3.10 %, 5.21 % for COD; 3.31 %, 3.60 %, 6.71 % for TN; 1.80 %, 7.38 %, 4.93 % for TP) by the application of MFC, SBM, and modified SBM in wastewater treatment, respectively. Additionally, the reduction in global warming potential (GWP) realized 17.2 %, 42.2 %, and 64.4 % resulting from these applications. The carbon flow and fate diagrams showed MFC shifted the gas phase­carbon flow from CH4 to CO2, and SBM promoted this shift trends. Microbial diversity indicated enrichment of electrochemically active bacteria (EAB), denitrifying bacteria, and phosphate accumulating organisms (PAOs) by SBM. Metabolic pathways analysis showed that introduction of MFC and SBM exhibited significant increases of key functional genes in metabolic pathway of anaerobic oxidation of methane (AOM). This study highlights the benefit of CW-MFC in and provides a new strategy for removing pollutants and abating GHG emissions in wastewater treatment.

14.
Heliyon ; 10(10): e31110, 2024 May 30.
Article En | MEDLINE | ID: mdl-38803900

We herein delve into the corrosion dynamics of UG1 in high-temperature water, employing thermal acceleration to expedite reactions. Corrosion-induced changes in spectral properties, optical constants, and morphology are analyzed. The results reveal a phosphorus-poor layer near the surface that affects transmittance, refractive index, and extinction coefficient, with corrosion rates following a parabolic model. This study provides crucial insights for protecting UG1 in humid environments and emphasizes the importance of implementing protective measures against phosphorus diffusion.

15.
Materials (Basel) ; 17(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38730908

All-silicon terahertz absorbers have attracted considerable interest. We present a design and numerical study of an all-silicon polarization-insensitive terahertz metamaterial absorber. The meta-atoms of the metamaterial absorber are square silicon rings which can be viewed as gratings. By properly optimizing the structure of the meta-atom, we achieve a broadband absorptivity that is above 90% ranging from 0.77 THz to 2.53 THz, with a relative bandwidth of 106.7%. Impedance matching reduces the reflection of the terahertz waves and the (0, ±1)-order diffraction induce the strong absorption. The absorption of this absorber is insensitive to the polarization of the terahertz wave and has a large incident angle tolerance of up to 60 degrees. The all-silicon metamaterial absorber proposed here provides an effective way to obtain broadband absorption in the terahertz regime. Metamaterial absorbers have outstanding applications in terahertz communication and imaging.

16.
Front Immunol ; 15: 1358114, 2024.
Article En | MEDLINE | ID: mdl-38711518

Background: The relationship between serum antinuclear antibody (ANA) and rheumatoid arthritis (RA) remains unknown. Therefore, we aimed to evaluate whether serum ANA was associated with an increased risk of RA in a case-control study. Methods: Patients with rheumatoid arthritis hospitalized at Shandong Provincial Hospital from January 2018 to December 2022 were recruited as the case group, and patients with other types of arthritis and healthy people at the same time were taken as the control group. Antinuclear antibody (ANA) was detected by indirect immunofluorescence assays. Propensity score matching was employed to construct a cohort of patients exhibiting comparable baseline characteristics. The relationship between serum ANA and the risk of rheumatoid arthritis was analyzed by logistic regression analysis. Results: A total of 1,175 patients with RA and 1,662 control subjects were included in this study. After adjusting for potential confounding factors in the propensity-score matched cohort, the risk of RA gradually increased with rising of ANA titers. When ANA titers were divided into three groups (1:100, 1:320, and 1:1,000), the OR (95% CI) for ANA titers from low to high was 3.95 (3.01, 5.18), 16.63 (9.44, 29.30), and 17.34 (9.53, 31.54), respectively, compared to those when ANA was negative. The ANA patterns closely related to the occurrence of RA include nuclear homogeneous, nuclear speckled, and cytoplasmic speckled. Among them, the positive rate of nuclear homogeneous was the highest, which accounted for 42.64%. The OR (95% CI) of ANA patterns including nuclear homogeneous, nuclear speckled, and cytoplasmic speckled was 16.81 (11.46, 24.65), 3.40 (2.49, 4.63), and 3.09 (1.77, 5.40), respectively. Conclusion: There was a curve relation between ANA titer and RA, and the higher the ANA titer, the higher the probability of RA. However, there was no statistical difference in probability of RA for 1:320 versus 1:1,000 ANA titers. The most important kind of ANA pattern in the blood of RA patients was nuclear homogeneous. These findings suggest that ANA may be a novel risk marker for RA.


Antibodies, Antinuclear , Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/diagnosis , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Male , Female , Middle Aged , Case-Control Studies , Adult , Aged , Biomarkers/blood , Risk Factors
17.
Biochem Biophys Res Commun ; 722: 150156, 2024 May 23.
Article En | MEDLINE | ID: mdl-38797155

Osteosarcoma, considered as the primary cause of malignant bone tumors in children, necessitates novel therapeutic strategies to enhance overall survival rates. KAT7, a histone acetyltransferase, exerts pivotal functions in gene transcription and immune modulation. In light of this, our study identified a significant upregulation of KAT7 in the mRNA and protein levels in human osteosarcoma, boosting cell proliferation in vivo and in vitro. In addition, KAT7-mediated H3K14ac activation induced MMP14 transcription, leading to increased expression and facilitation of osteosarcoma cell metastasis. Subsequent bioinformatics analyses highlighted a correlation between KAT7 and adaptive immune responses, indicating CCL3 as a downstream target of KAT7. Mechanistically, STAT1 was found to transcriptionally upregulate CCL3 expression. Furthermore, overexpression of KAT7 suppressed CCL3 secretions, whereas knockdown of KAT7 enhanced its release. Overall, these findings underscore the oncogenic role of KAT7 in regulating immune responses for osteosarcoma treatment.

18.
Front Cardiovasc Med ; 11: 1341819, 2024.
Article En | MEDLINE | ID: mdl-38562188

Background: Erectile Dysfunction (ED) is a common sexual dysfunction in men who are unable to consistently obtain and maintain sufficient penile erection to accomplish a satisfactory sexual life. ED is currently considered to be a predictor of cardiovascular disease (CVD), but few studies have observed the association between ED and clinical features of coronary heart disease (CHD). An investigation of the association between ED and clinical characteristics of CHD was carried out using a cross-sectional study design. Methods: This cross-sectional single-center study was conducted in the Department of Cardiology and included 248 patients. Associations between patients' general information, underlying disease information, coronary heart disease information, and ED severity were statistically and analytically analyzed using SPSS 26.0 software. Patients with comparable clinical characteristics were grouped together using K-means clustering. Finally, ordered logistic regression analysis was performed for general and underlying disease information. Results: In the comparison of general data, age, education, and weekly exercise were associated with the distribution of ED severity. In the comparison of underlying disease information, the number of underlying diseases, hypertension, diabetes, hyperlipidemia, anxiety state, and depressive state were associated with the distribution of ED severity. In the comparison of CHD information, the degree of ED severity was associated with CHD subtypes, lesion sites, number of stenoses, degree of stenosis, and interventional interventions. The time from ED to CHD onset was associated with the subtypes of CHD and the number of stenoses. We clustered the main characteristics of low-risk and high-risk patients and ordered logistic regression analysis found that BMI, smoking, alcoholism, number of underlying diseases, diabetes, anxiety state, and depression state were all risk factors for CHD severity (P < 0.05); the higher the value of the above factors, the more severe the degree of CHD. Age was a protective factor for CHD severity; the younger the patient, the lower the likelihood of myocardial infarction. Conclusion: ED severity and the time from ED to CHD onset may be predictive of coronary heart disease severity. Reducing smoking and alcohol consumption, maintaining a healthy body weight, and regular physical activity are important in preventing CVD in ED patients.

19.
J Prosthet Dent ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38604906

With the development of digital dental technologies, a complete digital workflow without using physical casts has become possible. However, for certain clinical and dental laboratory procedures, especially in complex rehabilitation treatments, physically mounted casts in an ideal location in a mechanical articulator are still necessary for treatment planning and restoration fabrication. This technique report describes a digital approach to fabricating a custom transfer plate to cross mount intraoral scan casts from a virtual articulator to the corresponding mechanical articulator. This technique eliminates the need for conventional physical facebow transfer processes and offers a straightforward approach to integrating virtual procedures with analog workflows.

20.
bioRxiv ; 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38645138

Glia derived secretory factors play diverse roles in supporting the development, physiology, and stress responses of the central nervous system (CNS). Through transcriptomics and imaging analyses, we have identified Obp44a as one of the most abundantly produced secretory proteins from Drosophila CNS glia. Protein structure homology modeling and Nuclear Magnetic Resonance (NMR) experiments reveal Obp44a as a fatty acid binding protein (FABP) with a high affinity towards long-chain fatty acids in both native and oxidized forms. Further analyses demonstrate that Obp44a effectively infiltrates the neuropil, traffics between neuron and glia, and is secreted into hemolymph, acting as a lipid chaperone and scavenger to regulate lipid and redox homeostasis in the developing brain. In agreement with this essential role, deficiency of Obp44a leads to anatomical and behavioral deficits in adult animals and elevated oxidized lipid levels. Collectively, our findings unveil the crucial involvement of a noncanonical lipid chaperone to shuttle fatty acids within and outside the brain, as needed to maintain a healthy brain lipid environment. These findings could inspire the design of novel approaches to restore lipid homeostasis that is dysregulated in CNS diseases.

...