Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Glob Chang Biol ; 30(8): e17464, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135434

ABSTRACT

Enhanced silicate rock weathering (ERW) is an emerging strategy for carbon dioxide removal (CDR) from the atmosphere to mitigate anthropogenic climate change. ERW aims at promoting soil inorganic carbon sequestration by accelerating geochemical weathering processes. Theoretically, ERW may also impact soil organic carbon (SOC), the largest carbon pool in terrestrial ecosystems, but experimental evidence for this is largely lacking. Here, we conducted a 2-year field experiment in tropical rubber plantations in the southeast of China to evaluate the effects of wollastonite powder additions (0, 0.25, and 0.5 kg m-2) on both soil organic and inorganic carbon at 0-10 cm depth. We found that ERW significantly increased the concentration of SOC and HCO3 -, but the increases in SOC were four and eight times higher than that of HCO3 - with low- and high-level wollastonite applications. ERW had positive effects on the accrual of organic carbon in mineral-associated organic matter (MAOM) and macroaggregate fractions, but not on particulate organic matter. Path analysis suggested that ERW increased MAOM mainly by increasing the release of Ca, Si, and Fe, and to a lesser extent by stimulating root growth and microbial-derived carbon inputs. Our study indicates that ERW with wollastonite can promote SOC sequestration in stable MOAM in surface soils through both the soil mineral carbon pump and microbial carbon pump. These effects may have been larger than the inorganic CDR during our experiment. We argue it is essential to account for the responses of SOC in the assessments of CDR by ERW.


Subject(s)
Carbon Sequestration , Carbon , Forests , Silicates , Soil , Soil/chemistry , Silicates/chemistry , Carbon/analysis , China , Calcium Compounds/chemistry , Carbon Dioxide/analysis , Minerals/chemistry
2.
Oecologia ; 205(2): 295-306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824461

ABSTRACT

Understanding how different mechanisms act and interact in shaping communities and ecosystems is essential to better predict their future with global change. Disturbance legacy, abiotic conditions, and biotic interactions can simultaneously influence tree growth, but it remains unclear what are their relative contributions and whether they have additive or interactive effects. We examined the separate and joint effects of disturbance intensity, soil conditions, and neighborhood crowding on tree growth in 10 temperate forests in northeast China. We found that disturbance was the strongest driver of tree growth, followed by neighbors and soil. Specifically, trees grew slower with decreasing initial disturbance intensity, but with increasing neighborhood crowding, soil pH and soil total phosphorus. Interestingly, the decrease in tree growth with increasing soil pH and soil phosphorus was steeper with high initial disturbance intensity. Testing the role of species traits, we showed that fast-growing species exhibited greater maximum tree size, but lower wood density and specific leaf area. Species with lower wood density grew faster with increasing initial disturbance intensity, while species with higher specific leaf area suffered less from neighbors in areas with high initial disturbance intensity. Our study suggests that accounting for both individual and interactive effects of multiple drivers is crucial to better predict forest dynamics.


Subject(s)
Ecosystem , Forests , Soil , Trees , Trees/growth & development , China
3.
J Fungi (Basel) ; 10(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38786665

ABSTRACT

This study investigates the effects of forest aging on ectomycorrhizal (EcM) fungal community and foraging behavior and their interactions with plant-soil attributes. We explored EcM fungal communities and hyphal exploration types via rDNA sequencing and investigated their associations with plant-soil traits by comparing younger (~120 years) and older (~250 years) temperate forest stands in Northeast China. The results revealed increases in the EcM fungal richness and abundance with forest aging, paralleled by plant-soil feedback shifting from explorative to conservative nutrient use strategies. In the younger stands, Tomentella species were prevalent and showed positive correlations with nutrient availability in both the soil and leaves, alongside rapid increases in woody productivity. However, the older stands were marked by the dominance of the genera Inocybe, Hymenogaster, and Otidea which were significantly and positively correlated with soil nutrient contents and plant structural attributes such as the community-weighted mean height and standing biomass. Notably, the ratios of longer-to-shorter distance EcM fungal exploration types tended to decrease along with forest aging. Our findings underscore the integral role of EcM fungi in the aging processes of temperate forests, highlighting the EcM symbiont-mediated mechanisms adapting to nutrient scarcity and promoting sustainability in plant-soil consortia.

4.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Article in English | MEDLINE | ID: mdl-38747174

ABSTRACT

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Subject(s)
Phosphorus , Plant Roots , Silicates , Soil Microbiology , Soil , Phosphorus/metabolism , Soil/chemistry , Plant Roots/metabolism , Plant Roots/growth & development , Silicates/metabolism , Mycorrhizae/physiology , Calcium Compounds , Carbon/metabolism
5.
Sci Data ; 11(1): 527, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778028

ABSTRACT

Long-term, daily, and gap-free Normalized Difference Vegetation Index (NDVI) is of great significance for a better Earth system observation. However, gaps and contamination are quite severe in current daily NDVI datasets. This study developed a daily 0.05° gap-free NDVI dataset from 1981-2023 in China by combining valid data identification and spatiotemporal sequence gap-filling techniques based on the National Oceanic and Atmospheric Administration daily NDVI dataset. The generated NDVI in more than 99.91% of the study area showed an absolute percent bias (|PB|) smaller than 1% compared with the original valid data, with an overall R2 and root mean square error (RMSE) of 0.79 and 0.05, respectively. PB and RMSE between our dataset and the MODIS daily gap-filled NDVI dataset (MCD19A3CMG) during 2000 to 2023 are 7.54% and 0.1, respectively. PB between our dataset and three monthly NDVI datasets (i.e., GIMMS3g, MODIS MOD13C2, and SPOT/PROBA) are only -5.79%, 4.82%, and 2.66%, respectively. To the best of our knowledge, this is the first long-term daily gap-free NDVI in China by far.

6.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3214-3222, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38511359

ABSTRACT

We investigated species composition and community structure of a typical Quercus variabilis natural secondary forest in the northern foothills of the Qinling Mountains, within the dynamic monitoring plot of deciduous broad-leaved forest at the Louguantai experimental forest farm in Zhouzhi County, Shaanxi Province. The results showed that there were 3162 individual woody plants with diameter at breast height ≥1 cm in the plot, which were belonged to 42 species, 36 genera, and 25 families. The community genus's areal type was dominated by the temperate component, which accounted for 44.4%, and followed by the tropical component. The community was dominated by several tree species. The top three species with respect to importance value were Q. variabilis, Pinus tabuliformis, and Quercus aliena, with the sum of their importance value being 64.7%. The average DBH of all woody plants was 7.58 cm. The distribution of all individuals and dominant species in the tree layer was approximately normal, with more medium-size individuals. The community structure was stable. The community was poorly renewed, with a trend of population decline. Biodiversity indices varied considerably among different plots, being lower than those of subtropical broad-leaved evergreen forests. There was a significant correlation between community species distribution and environmental factors. Soil and topography explained 42.4% of the variation in community distribution. Altitude and soil alkali hydrolysable nitrogen had a significant effect on community distribution. Altitude, soil total phosphorus, and organic matter content significantly affected the species diversity of Q. variabilis communities. The stronger adaptability of Q. variabilis populations allowed them to become dominant in low-nutrient environments, which limited species diversity in the community.


Subject(s)
Quercus , Humans , Animals , Forests , Trees , Plants , China , Soil
SELECTION OF CITATIONS
SEARCH DETAIL