Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Angew Chem Int Ed Engl ; : e202417115, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363753

ABSTRACT

Solar-driven H2O2 production via the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) dual channels is green and sustainable, but severely restricted by the sluggish reaction kinetics. Constructing intriguing photocatalysts with effective active centers is a shortcut to breaking the kinetic bottleneck with great significance. Herein, we synthesize two novel neutral phenanthridine-based covalent organic frameworks (PD-COF1 and PD-COF2) for photosynthesizing H2O2. Compared to the no phenanthridine counterpart (AN-COF), the H2O2 photosynthetic activities of PD-COF1 and PD-COF2 are markedly boosted. In air and pure water without sacrificial agents, under Xe lamp and natural sunlight, the H2O2 photogeneration rate of PD-COF2 is 6103 and 3646 µmol g-1 h-1, respectively. Further experimental and theoretical inspections demonstrate that introducing phenanthridine units into COFs smoothly modulates the charge carrier dynamics and thermodynamically favors the generation of crucial OOH* and OH* intermediates in the ORR and WOR paths, respectively. Additionally, this is the first time the neutral phenanthridine moiety serves as the photooxidation unit for 2e- WOR towards H2O2 photoproduction. The current work sheds light on exploring novel catalytic centers for high-performance H2O2 evolution.

2.
Small ; : e2405907, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148194

ABSTRACT

Photocatalytic H2O2 production is a green and sustainable route, but far from meeting the increasing demands of industrialization due to the rapid recombination of the photogenerated charge carriers and the sluggish reaction kinetics. Effective strategies for precisely regulating the photogenerated carrier behavior and catalytic activity to construct high-performance photocatalysts are urgently needed. Herein, a nitrogen-site engineering strategy, implying elaborately tuning the species and densities of nitrogen atoms, is applied for H2O2 photogeneration performance regulation. Different nitrogen heterocycles, such as pyridine, pyrimidine, and triazine units, are polymerized with trithiophene units, and five covalent organic frameworks (COFs) with distinct nitrogen species and densities on the skeletons are obtained. Fascinatingly, they photocatalyzed H2O2 production via dominated two-electron O2 reduction processes, including O2-O2 •‒-H2O2 and O2-O2 •‒-O2 1-H2O2 dual pathways. Just in the air and pure water, the multicomponent TTA-TF-COF with the maximum nitrogen densities triazine nitrogen densities exhibited the highest H2O2 production rate of 3343 µmol g-1 h-1, higher than most of other reported COFs. The theoretical calculation revealed the higher activity is due to the easy formation of O2 •‒ and O2 1 in different catalytic process. This study gives a new insight into designing photocatalysis at atomic level.

3.
Angew Chem Int Ed Engl ; 63(24): e202405763, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38607321

ABSTRACT

Photocatalytic oxygen reduction reactions and water oxidation reactions are extremely promising green approaches for massive H2O2 production. Nonetheless, constructing effective photocatalysts for H2O2 generation is critical and still challenging. Since the network topology has significant impacts on the electronic properties of two dimensional (2D) polymers, herein, for the first time, we regulated the H2O2 photosynthetic activity of 2D covalent organic frameworks (COFs) by topology. Through designing the linking sites of the monomers, we synthesized a pair of novel COFs with similar chemical components on the backbones but distinct topologies. Without sacrificial agents, TBD-COF with cpt topology exhibited superior H2O2 photoproduction performance (6085 and 5448 µmol g-1 h-1 in O2 and air) than TBC-COF with hcb topology through the O2-O2⋅--H2O2, O2-O2⋅--O2 1-H2O2, and H2O-H2O2 three paths. Further experimental and theoretical investigations confirmed that during the H2O2 photosynthetic process, the charge carrier separation efficiency, O2⋅- generation and conversion, and the energy barrier of the rate determination steps in the three channels, related to the formation of *OOH, *O2 1, and *OH, can be well tuned by the topology of COFs. The current study enlightens the fabrication of high-performance photocatalysts for H2O2 production by topological structure modulation.

4.
Bioresour Technol ; 399: 130575, 2024 May.
Article in English | MEDLINE | ID: mdl-38479629

ABSTRACT

Aerobic kitchen waste composting can contribute to greenhouse gas (GHGs) emissions and global warming. This study investigated the effects of biochar and zeolite on GHGs emissions during composting. The findings demonstrated that biochar could reduce N2O and CH4 cumulative releases by 47.7 %and 47.9 %, respectively, and zeolite could reduce the cumulative release of CO2 by 28.4 %. Meanwhile, the biochar and zeolite addition could reduce the abundance of potential core microorganisms associated with GHGs emissions. In addition, biochar and zeolite reduced N2O emissions by regulating the abundance of nitrogen conversion functional genes. Biochar and zeolite were shown to reduce the impact of bacterial communities on GHGs emissions. In summary, this study revealed that biochar and zeolite can effectively reduce GHG emissions during composting by altering the compost microenvironment and regulating microbial community structure. Such findings are valuable for facilitating high-quality resource recovery of organic solid waste.


Subject(s)
Composting , Greenhouse Gases , Zeolites , Greenhouse Gases/analysis , Zeolites/chemistry , Soil/chemistry , Methane/analysis , Charcoal , Nitrogen/analysis , Nitrous Oxide/analysis
5.
Sci Total Environ ; 923: 171460, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442764

ABSTRACT

This study investigated the impact of adding enzyme inducer (MnSO4) on humic substance (HS) formation during straw composting. The results demonstrated that both enzyme inducer treatment group (Mn) and functional microorganism treatment group (F) led to an increase in the content of HS compared to the treatment group without enzyme inducer and functional microorganism (CK). Interestingly, the enzyme inducer exhibited a higher promoting effect on HS (57.80 % ~ 58.58 %) than functional microbial (46.54 %). This was because enzyme inducer stimulated the growth of key microorganisms and changed the interaction relationship between microorganisms. The structural equation model suggested that the enzyme inducer promoted the utilization of amino acids by the fungus and facilitated the conversion of precursors to humic substance components. These findings provided a direction for improving the quality of composting products from agricultural straw waste. It also provided theoretical support for adding MnSO4 to compost.


Subject(s)
Composting , Oryza , Humic Substances/analysis , Soil , Amino Acids , Manure
6.
Bioresour Technol ; 395: 130316, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218410

ABSTRACT

The purpose of this study was to examine the effects of replacing urea with inorganic nitrogen on the organic nitrogen sequestration process and the mitigation of nitrogen loss during rice straw composting. These groups include a control group with urea addition (CK), a group with (NH4)2SO4 addition (NH), a group with KNO3 addition (NO), and a group with (NH4)2SO4 + KNO3 addition (NN). The results demonstrated that adding NH, NO, and NN significantly increased the content of bioavailable organic nitrogen in the composting. Furthermore, compared to the CK, the NH treatment reduced nitrogen loss by 8.41 %. Structural equation modeling revealed the correlation between bacterial communities and organic nitrogen fractions in different treatment groups. Comparisons of nitrogen efficacy and nitrogen loss indicated that adding (NH4)2SO4 was more effective during composting, which provided a meaningful research basis for rice straw composting.


Subject(s)
Composting , Oryza , Carbon , Nitrogen/analysis , Soil , Manure , Urea
7.
Anal Chem ; 95(47): 17400-17406, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37967038

ABSTRACT

Amine determination is crucial to our daily life, including the prevention of pollution, the treatment of certain disorders, and the evaluation of food quality. Herein, a mixed-linkage donor-acceptor covalent organic framework (named DSE-COF) was first constructed by the polymerization between 2,4-dihydroxybenzene-1,3,5-tricarbaldehyde (DTA) and 4,4'-(benzo[c][1,2,5]selenadiazole-4,7-diyl)dianiline (SEZ). DSE-COF displayed superior turn-on fluorescent responses to primary, secondary, and tertiary aliphatic amines, such as cadaverine, isopropylamine, sec-butylamine, cyclohexylamine, hexamethylenediamine, di-n-butylamine, and triethylamine in absolute acetonitrile than other organic species. Further experiments and theoretical calculations demonstrated that the combination of intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) effects between the DSE-COF and aliphatic amines resulted in enhanced fluorescence. Credibly, DSE-COF can quantitatively detect cadaverine content in actual pork samples with satisfactory results. In addition, DSE-COF-based test papers could rapidly monitor cadaverine from real pork samples, manifesting the potential application of COFs in food quality inspection.


Subject(s)
Cockayne Syndrome , Metal-Organic Frameworks , Humans , Cadaverine , Amines , Cyclohexylamines , Coloring Agents
8.
Angew Chem Int Ed Engl ; 62(38): e202309624, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37526096

ABSTRACT

H2 O2 is a significant chemical widely utilized in the environmental and industrial fields, with growing global demand. Without sacrificial agents, simultaneous photocatalyzed H2 O2 synthesis through the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) dual channels from seawater is green and sustainable but still challenging. Herein, two novel thiophene-containing covalent organic frameworks (TD-COF and TT-COF) were first constructed and served as catalysts for H2 O2 synthesis via indirect 2e- ORR and direct 2e- WOR channels. The photocatalytic H2 O2 production performance can be regulated by adjusting the N-heterocycle modules (pyridine and triazine) in COFs. Notably, with no sacrificial agents, just using air and water as raw materials, TD-COF exhibited high H2 O2 production yields of 4060 µmol h-1 g-1 and 3364 µmol h-1 g-1 in deionized water and natural seawater, respectively. Further computational mechanism studies revealed that the thiophene was the primary photoreduction unit for ORR, while the benzene ring (linked to the thiophene by the imine bond) was the central photooxidation unit for WOR. The current work exploits thiophene-containing COFs for overall photocatalytic H2 O2 synthesis via ORR and WOR dual channels and provides fresh insight into creating innovative catalysts for photocatalyzing H2 O2 synthesis.

9.
Anal Chem ; 95(29): 11078-11084, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37454333

ABSTRACT

Phenylalaninol (PAL) is a significant chemical intermediate widely utilized in drug development and chiral synthesis, for instance, as a reactant for bicyclic lactams and oxazoloisoindolinones. Since the absolute stereochemical configuration significantly impacts biological action, it is crucial to evaluate the concentration and enantiomeric content of PAL in a quick and convenient manner. Herein, an effective PAL enantiomer recognition method was reported based on a chiral ionic covalent organic framework (COF) fluorescent sensor, which was fabricated via one-step postquaternization modification of an achiral COF by (1R, 2S, 5R)-2-isopropyl-5-methylcyclohexyl-carbonochloridate (L-MTE). The formed chiral L-TB-COF can be applied as a chiral fluorescent sensor to recognize the stereochemical configuration of PAL, which displayed a turn-on fluorescent response for R-PAL over that of S-PAL with an enantioselectivity factor of 16.96. Nonetheless, the single L-MTE molecule had no chiral recognition ability for PAL. Moreover, the ee value of PAL can be identified by L-TB-COF. Furthermore, density functional theory (DFT) calculations demonstrated that the chiral selectivity came from the stronger binding affinity between L-TB-COF and R-PAL in comparison to that with S-PAL. L-TB-COF is the first chiral ionic COF employed to identify chiral isomers by fluorescence. The current work expands the range of applications for ionic COFs and offers fresh suggestions for creating novel chiral fluorescent sensors.

10.
BMC Plant Biol ; 23(1): 134, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36882703

ABSTRACT

BACKGROUND: Calcium ions (Ca2+), secondary messengers, are crucial for the signal transduction process of the interaction between plants and pathogens. Ca2+ signaling also regulates autophagy. As plant calcium signal-decoding proteins, calcium-dependent protein kinases (CDPKs) have been found to be involved in biotic and abiotic stress responses. However, information on their functions in response to powdery mildew attack in wheat crops is limited. RESULT: In the present study, the expression levels of TaCDPK27, four essential autophagy-related genes (ATGs) (TaATG5, TaATG7, TaATG8, and TaATG10), and two major metacaspase genes, namely, TaMCA1 and TaMCA9, were increased by powdery mildew (Blumeria graminis f. sp. tritici, Bgt) infection in wheat seedling leaves. Silencing TaCDPK27 improves wheat seedling resistance to powdery mildew, with fewer Bgt hyphae occurring on TaCDPK27-silenced wheat seedling leaves than on normal seedlings. In wheat seedling leaves under powdery mildew infection, silencing TaCDPK27 induced excess contents of reactive oxygen species (ROS); decreased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); and led to an increase in programmed cell death (PCD). Silencing TaCDPK27 also inhibited autophagy in wheat seedling leaves, and silencing TaATG7 also enhanced wheat seedling resistance to powdery mildew infection. TaCDPK27-mCherry and GFP-TaATG8h colocalized in wheat protoplasts. Overexpressed TaCDPK27-mCherry fusions required enhanced autophagy activity in wheat protoplast under carbon starvation. CONCLUSION: These results suggested that TaCDPK27 negatively regulates wheat resistance to PW infection, and functionally links with autophagy in wheat.


Subject(s)
Calcium , Disease Resistance , Plant Diseases , Triticum , Amino Acids , Erysiphe , Protein Kinases , Seedlings , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Genes, Plant
11.
Anal Chem ; 94(41): 14419-14425, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36194858

ABSTRACT

Simple and accurate monitoring of urinary dopamine (DA) concentration is significant, which is helpful for the assessment or exclusion of catecholamine-producing tumors, such as pheochromocytoma and paraganglioma. Herein, a fluorescence/colorimetry/smartphone triple-mode sensing platform for DA determination was constructed using copper ion (Cu2+)-modified hydrazone-linked covalent organic frameworks (Cu-BTA-COF). Cu-BTA-COF with 21.67 wt % copper content exhibited peroxidase-mimic activity. After adding H2O2 and 1,3-dihydroxynaphthalene, the Cu-BTA-COF platform can sensitively and selectively detect DA in three modes with consistent results. In fluorescence/colorimetry/smartphone modes, the linear ranges of DA were 1-10, 0.2-40, and 1-10 µM, with related detection limits of 7.2, 8.6, and 23 nM, respectively. Moreover, the Cu-BTA-COF platform can be explored for DA determination in human urine samples with satisfactory recoveries (97.6-100.4%) in all the three modes, suggesting the potential practical application of the Cu-BTA-COF platform for DA detection in urine.


Subject(s)
Colorimetry , Peroxidase , Colorimetry/methods , Coloring Agents , Copper , Dopamine , Humans , Hydrazones , Hydrogen Peroxide , Oxidoreductases , Peroxidases , Smartphone
12.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806346

ABSTRACT

As essential calcium ion (Ca2+) sensors in plants, calcium-dependent protein kinases (CDPKs) function in regulating the environmental adaptation of plants. However, the response mechanism of CDPKs to salt stress is not well understood. In the current study, the wheat salt-responsive gene TaCDPK27 was identified. The open reading frame (ORF) of TaCDPK27 was 1875 bp, coding 624 amino acids. The predicted molecular weight and isoelectric point were 68.905 kDa and 5.6, respectively. TaCDPK27 has the closest relationship with subgroup III members of the CDPK family of rice. Increased expression of TaCDPK27 in wheat seedling roots and leaves was triggered by 150 mM NaCl treatment. TaCDPK27 was mainly located in the cytoplasm. After NaCl treatment, some of this protein was transferred to the membrane. The inhibitory effect of TaCDPK27 silencing on the growth of wheat seedlings was slight. After exposure to 150 mM NaCl for 6 days, the NaCl stress tolerance of TaCDPK27-silenced wheat seedlings was reduced, with shorter lengths of both roots and leaves compared with those of the control seedlings. Moreover, silencing of TaCDPK27 further promoted the generation of reactive oxygen species (ROS); reduced the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); aggravated the injury to photosystem II (PS II); and increased programmed cell death (PCD) in wheat leaves under NaCl treatment, confirming that the TaCDPK27-silenced seedlings exhibited more NaCl injury than control seedlings. Taken together, the decrease in NaCl tolerance in TaCDPK27-silenced seedlings was due to excessive ROS accumulation and subsequent aggravation of the NaCl-induced PCD. TaCDPK27 may be essential for positively regulating salt tolerance in wheat seedlings.


Subject(s)
Salt Tolerance , Triticum , Calcium/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Salt Tolerance/genetics , Seedlings/metabolism , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Triticum/metabolism
13.
Front Plant Sci ; 13: 904933, 2022.
Article in English | MEDLINE | ID: mdl-35812918

ABSTRACT

Metacaspases (MCAs), a family of caspase-like proteins, are important regulators of programmed cell death (PCD) in plant defense response. Autophagy is an important regulator of PCD. This study explored the underlying mechanism of the interaction among PCD, MCAs, and autophagy and their impact on wheat response to salt stress. In this study, the wheat salt-responsive gene TaMCA-Id was identified. The open reading frame (ORF) of TaMCA-Id was 1,071 bp, coding 356 amino acids. The predicted molecular weight and isoelectric point were 38,337.03 Da and 8.45, respectively. TaMCA-Id had classic characteristics of type I MCAs domains, a typical N-terminal pro-domain rich in proline. TaMCA-Id was mainly localized in the chloroplast and exhibited nucleocytoplasmictrafficking under NaCl treatment. Increased expression of TaMCA-Id in wheat seedling roots and leaves was triggered by 150 mM NaCl treatment. Silencing of TaMCA-Id enhanced sensitivity of wheat seedlings to NaCl stress. Under NaCl stress, TaMCA-Id-silenced seedlings exhibited a reduction in activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), higher accumulation of H2O2 and O 2 . - , more serious injury to photosystem II (PSII), increase in PCD level, and autophagy activity in leaves of wheat seedlings. These results indicated that TaMCA-Id functioned in PCD through interacting with autophagy under NaCl stress, which could be used to improve the salt tolerance of crop plants.

14.
Anal Chem ; 94(31): 11062-11069, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35880804

ABSTRACT

Ratiometric detection of pH is always significant in environmental regulation, medical diagnosis, synthetic chemistry, and beyond. The construction of practical ratiometric pH sensors with reusability is still challenging. Herein, by exploiting a multivariate strategy, we first synthesized and reported a series of novel three-component covalent organic frameworks (COF-COOHX, X = 33, 50, and 67) through Schiff base reaction between 2-hydroxybenzene-1,3,5-tricarbaldehyde (HTA), 4,4'-diamino-3,3'-biphenyldicarboxylic acid (DBA), and 5,5'-diamino-2,2'-bipyridine (BPY) at various molar ratios (X = [DBA]/([BPY] + [DBA]) × 100 = 33, 50, and 67). COF-COOHX (X = 33, 50, and 67) displayed ratiometric pH sensing performance in acidic conditions with selectivity and repeatability. By tuning the molar ratio of DBA and BPY, the fluorescent properties, linear pH responsive ranges, and pKa values of COF-COOHX (X = 33, 50, and 67) can be regulated. Meanwhile, the two-component COF-COOH0 and COF-COOH100 did not exhibit ratiometric pH detection ability. Moreover, the constructed three ratiometric sensors can be applied to detect pH in drug solutions and carbonated drinks with satisfactory results. This work sheds new light on the design and fabrication of innovative ratiometric fluorescent sensors using COFs.


Subject(s)
Metal-Organic Frameworks , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Metal-Organic Frameworks/chemistry
15.
Plant Cell Rep ; 41(2): 473-487, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34981152

ABSTRACT

KEY MESSAGE: TaPGLP1, a chloroplast stromal 2-phosphoglycolate phosphatase of wheat, is an ATG8-interacting protein and undergoes autophagic degradation in starvation-treated wheat mesophyll protoplasts. Selective autophagy in plants has been shown to target diverse cellular cargoes including whole chloroplasts (Chlorophagy) and several chloroplast components (Piecemeal chlorophagy). Most cargoes of selective autophagy are captured by the autophagic machinery through their direct or indirect interactions with the autophagy-essential factor ATG8. Here, we reported a new ATG8-interacting cargo of piecemeal chlorophagy, the wheat photorespiratory 2-phosphoglycolate phosphatase TaPGLP1. The TaPGLP1-mCherry fusions expressed in wheat protoplasts located in the chloroplast stroma. Strikingly, these fusions are translocated into newly formed chloroplast surface protrusions after a long time incubation of protoplasts in a nutrition-free solution. Visualization of co-expressed TaPGLP1-mCherry and the autophagy marker GFP-TaATG8a revealed physical associations of TaPGLP1-mCherry-accumulating chloroplast protrusions with autophagic structures, implying the delivery of TaPGLP1-mCherry fusions from chloroplasts to the autophagic machinery. TaPGLP1-mCherry fusions were also detected in the GFP-TaATG8a-labelled autophagic bodies undergoing degradation in the vacuoles, which suggested the autophagic degradation of TaPGLP1. This autophagic degradation of TaPGLP1 was further demonstrated by the enhanced stability of TaPGLP1-mCherry in protoplasts with impaired autophagy. Expression of TaPGLP1-mCherry in protoplasts stimulated an enhanced autophagy level probably adopted by cells to degrade the over-produced TaPGLP1-mCherry fusions. Results from gene silencing assays showed the requirement of ATG2s and ATG7s in the autophagic degradation of TaPGLP1. Additionally, TaPGLP1 was shown to interact with ATG8 family members. Collectively, our data suggest that autophagy mediates the degradation of the chloroplast stromal protein TaPGLP1 in starvation-treated mesophyll protoplasts.


Subject(s)
Autophagy/physiology , Chloroplasts/metabolism , Phosphoric Monoester Hydrolases/metabolism , Plant Proteins/metabolism , Triticum/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mesophyll Cells/metabolism , Phosphoric Monoester Hydrolases/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Protein Transport , Triticum/cytology , Triticum/genetics , Red Fluorescent Protein
16.
Angew Chem Int Ed Engl ; 61(1): e202111778, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34676957

ABSTRACT

We report a stereoselective conversion of terminal alkynes to α-chiral carboxylic acids using a nickel-catalyzed domino hydrocarboxylation-transfer hydrogenation reaction. A simple nickel/BenzP* catalyst displayed high activity in both steps of regioselective hydrocarboxylation of alkynes and subsequent asymmetric transfer hydrogenation. The reaction was successfully applied in enantioselective preparation of three nonsteroidal anti-inflammatory profens (>90 % ees) and the chiral fragment of AZD2716.


Subject(s)
Alkynes/chemistry , Carboxylic Acids/chemical synthesis , Formates/chemistry , Nickel/chemistry , Carboxylic Acids/chemistry , Catalysis , Molecular Structure , Stereoisomerism
17.
BMC Plant Biol ; 21(1): 577, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34872497

ABSTRACT

BACKGROUND: Salt stress hinders plant growth and production around the world. Autophagy induced by salt stress helps plants improve their adaptability to salt stress. However, the underlying mechanism behind this adaptability remains unclear. To obtain deeper insight into this phenomenon, combined metabolomics and transcriptomics analyses were used to explore the coexpression of differentially expressed-metabolite (DEM) and gene (DEG) between control and salt-stressed wheat roots and leaves in the presence or absence of the added autophagy inhibitor 3-methyladenine (3-MA). RESULTS: The results indicated that 3-MA addition inhibited autophagy, increased ROS accumulation, damaged photosynthesis apparatus and impaired the tolerance of wheat seedlings to NaCl stress. A total of 14,759 DEGs and 554 DEMs in roots and leaves of wheat seedlings were induced by salt stress. DEGs were predominantly enriched in cellular amino acid catabolic process, response to external biotic stimulus, regulation of the response to salt stress, reactive oxygen species (ROS) biosynthetic process, regulation of response to osmotic stress, ect. The DEMs were mostly associated with amino acid metabolism, carbohydrate metabolism, phenylalanine metabolism, carbapenem biosynthesis, and pantothenate and CoA biosynthesis. Further analysis identified some critical genes (gene involved in the oxidative stress response, gene encoding transcription factor (TF) and gene involved in the synthesis of metabolite such as alanine, asparagine, aspartate, glutamate, glutamine, 4-aminobutyric acid, abscisic acid, jasmonic acid, ect.) that potentially participated in a complex regulatory network in the wheat response to NaCl stress. The expression of the upregulated DEGs and DEMs were higher, and the expression of the down-regulated DEGs and DEMs was lower in 3-MA-treated plants under NaCl treatment. CONCLUSION: 3-MA enhanced the salt stress sensitivity of wheat seedlings by inhibiting the activity of the roots and leaves, inhibiting autophagy in the roots and leaves, increasing the content of both H2O2 and O2•-, damaged photosynthesis apparatus and changing the transcriptome and metabolome of salt-stressed wheat seedlings.


Subject(s)
Adenine/analogs & derivatives , Autophagy/drug effects , Salt Stress/drug effects , Salt Tolerance/drug effects , Triticum/drug effects , Adenine/pharmacology , Autophagy/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Metabolome , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Salt Tolerance/physiology , Seedlings/drug effects , Seedlings/genetics , Seedlings/physiology , Triticum/genetics , Triticum/physiology
18.
Chem Commun (Camb) ; 57(94): 12619-12622, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34757362

ABSTRACT

Four novel two-dimensional porphyrin COFs (M-TP-COF, M = H2, Co, Ni and Mn) with donor-acceptor dyads were fabricated and served as electrocatalysts for the oxygen reduction reaction (ORR). The ORR catalytic activity of M-TP-COF was tuned by changing the M atom in the center of the porphyrin backbone. The experimental structure-function relationship was in accordance with the results of density functional theory calculations based on the O2-O2*-OOH*-O*-OH*-OH- route.

19.
Ecotoxicol Environ Saf ; 225: 112761, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34509161

ABSTRACT

Salt stress, as an abiotic stress, limits crops production worldwide. Autophagy and programmed cell death (PCD) have been functionally linked to plant adaptation to abiotic stress. However, the relation of autophagy and PCD is still under debate and the mechanism behind remains not fully understood. In this study, salt-tolerant wheat cultivar Jimai22 was used as the experimental material, and 150 mM NaCl was added to the hydroponic culture to test the effect of salt treatment. The results showed that NaCl stress enhances autophagic activity and induced occurrence of PCD in roots and leaves of wheat seedlings. Then, the barley stripe mosaic virus-induced silencing (BSMV-VIGS) method was used to inhibit autophagy by silencing the expression of ATG2 or ATG7. The results showed that silencing of ATG2 or ATG7 significantly inhibited autophagy and impaired the tolerance of wheat to NaCl stress. Moreover, silencing of ATG2 or ATG7 disrupted the absorption of Na, Cl, K and Ca elements and led to subsequent disequilibrium of Na+, Cl-, K+ and Ca2+, induced generation of excess reactive oxygen species (ROS), decreased the antioxidant activity, damaged photosynthesis apparatus, increased the level of PCD and led to differential expression of the genes, two metacaspase genes, cysteine-rich receptor-like kinase (CRK) 10, and CRK26 in leaves of wheat seedlings under NaCl stress. The effect of the inhibitor 3-methyladenine (3-MA) on roots and leaves of wheat seedlings was in accordance with that of ATG2 and ATG7 silencing. Our results suggest that autophagy negatively regulates salt-induced PCD, or limits the scale of salt-induced PCD to avoid severe tissue death in wheat seedlings.


Subject(s)
Autophagy-Related Protein 7/genetics , Autophagy-Related Proteins/genetics , Seedlings , Triticum , Apoptosis , Autophagy , Salt Stress , Seedlings/genetics , Triticum/genetics
20.
Chem Commun (Camb) ; 56(90): 14083-14086, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33107876

ABSTRACT

A simple catalyst of Ni(OAc)2 and P(t-Bu)3 enables selective C-alkylation of thioacetamides and primary acetamides with alcohols for the first time. Monoalkylation of thioamides, amides and t-butyl esters occurs in excellent yields (>95%). Mechanistic studies reveal that the reaction proceeds via a hydrogen autotransfer pathway.

SELECTION OF CITATIONS
SEARCH DETAIL