Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Anal Chem ; 96(17): 6847-6852, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38639290

Organic photoelectrochemical transistor (OPECT) has shown substantial potential in the development of next-generation bioanalysis yet is limited by the either-or situation between the photoelectrode types and the channel types. Inspired by the dual-photoelectrode systems, we propose a new architecture of dual-engine OPECT for enhanced signal modulation and its biosensing application. Exemplified by incorporating the CdS/Bi2S3 photoanode and Cu2O photocathode within the gate-source circuit of Ag/AgCl-gated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel, the device shows enhanced modulation capability and larger transconductance (gm) against the single-photoelectrode ones. Moreover, the light irritation upon the device effectively shifts the peak value of gm to zero gate voltage without degradation and generates larger current steps that are advantageous for the sensitive bioanalysis. Based on the as-developed dual-photoelectrode OPECT, target-mediated recycling and etching reactions are designed upon the CdS/Bi2S3, which could result in dual signal amplification and realize the sensitive microRNA-155 biodetection with a linear range from 1 fM to 100 pM and a lower detection limit of 0.12 fM.


Copper , Electrochemical Techniques , Sulfides , Thiophenes , Electrochemical Techniques/instrumentation , Copper/chemistry , Sulfides/chemistry , Cadmium Compounds/chemistry , Biosensing Techniques/instrumentation , Bismuth/chemistry , Transistors, Electronic , Photochemical Processes , Polystyrenes/chemistry , MicroRNAs/analysis , Electrodes , Polymers/chemistry
2.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38607155

In this paper, a novel method was proposed for the synthesis of Cu2S on copper mesh via electrolysis in SRB culture medium. It was found that following electrolysis in SRB medium, squamous-like Cu2S arrays were obtained on the copper mesh, and the Cu2S loading contents varied with the electrolyzing parameters. The resultant Cu2S on copper mesh in SRB (CSCM-SRB) with the highest catalytic MB degradation properties was produced by electrolysis at 3.75 mA/cm2 for 900 s. The optimized MB-degrading conditions were determined to be 1.2 cm2/mL CSCM-SRB with 0.05 M H2O2 at 35 °C when pH = 6, under which the degradation of MB reached over 99% after 120 min of reaction. Disinfecting properties was also proven by antibacterial tests, revealing that an almost 100% antibacterial rate against E. coli was obtained after 8 min. The organic compounds produced by SRB adsorbed on CSCM-SRB strongly promoted the degradation of MB. Furthermore, possible Fenton-like mechanisms of CSCM-SRB were proposed, illustrating that ·O2-, ·OH, and 1O2 acted as the main functional species during Fenton-like reactions, leading to effective MB degradation and high antibacterial properties. Finally, a simple device for wastewater treatment was designed, providing possible applications in real environments.

3.
Bioelectrochemistry ; 157: 108650, 2024 Jun.
Article En | MEDLINE | ID: mdl-38286079

Microbiologically influenced corrosion (MIC) is a complicated process that happens ubiquitously and quietly in many fields. As a useful nutritional ingredient in microbial culture media, yeast extract (YE) is a routinely added in the MIC field. However, how the YE participated in MIC is not fully clarified. In the present work, the effect of YE on the growth of sulfate reducing prokaryotes (SRP) Desulfovibrio bizertensis SY-1 and corrosion behavior of X70 pipeline steel were studied. It was found that the weight loss of steel coupons in sterile media was doubled when YE was removed from culture media. However, in the SRP assays without YE the number of planktonic cells decreased, but the attachment of bacteria on steel surfaces was enhanced significantly. Besides, the corrosion rate of steel in SRP assays increased fourfold after removing YE from culture media. MIC was not determined for assays with planktonic SRP but only for biofilm assays. The results confirm the effect of YE on D. bizertensis SY-1 growth and also the inhibitory role of YE on MIC.


Desulfovibrio , Steel , Corrosion , Biofilms , Sulfates , Plankton/microbiology , Culture Media
4.
Ultrason Sonochem ; 102: 106749, 2024 Jan.
Article En | MEDLINE | ID: mdl-38217907

Photocatalytic MoS2 with visible light response is considered as a promising bactericidal material owing to its non-toxicity and high antibacterial efficiency. However, photocatalysts always exist as powder, so it is difficult to settle photocatalysts on the metal surface, which limits their application in aqueous environments. To solve this problem, ultrasound and sodium dodecyl sulfate (SDS) were introduced into the co-deposition process of MoS2 and zinc matrix, so that novel MoS2-Zn coatings were obtained. In this process, ultrasound and SDS strongly promoted the dispersion and adsorption of MoS2 on the co-depositing surfaces. Then MoS2 were proved to be composited into the Zn matrix with effective structures, and the addition of SDS effectively increased the loading content of MoS2 in the MoS2-Zn coatings. Besides, the antibacterial performance of the MoS2-Zn coatings was evaluated with three typical fouling bacteria E.coli, S.aureus and B.wiedmannii. The MoS2-Zn coating showed high and broad-spectrum antibacterial properties with over 98 % inhibition rate against these three bacteria. Furthermore, it is proved that the MoS2-Zn coatings generated superoxide (·O2-) and hydroxyl radicals (·OH) under visible light, which played the dominant and subordinate roles in the antibacterial process, respectively. The MoS2-Zn coatings also showed high antibacterial stability after four "light-dark" cycles. According to the results of the attached bacteria, the MoS2-Zn coatings were considered to effectively repel the living pelagic bacteria instead of killing the attached ones, which was highly environmentally friendly. The obtained MoS2-Zn coatings were considered promising in biofilm inhibiting and marine antifouling fields.


Electroplating , Molybdenum , Sodium Dodecyl Sulfate/chemistry , Molybdenum/pharmacology , Molybdenum/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc/chemistry , Escherichia coli
5.
Microorganisms ; 11(8)2023 Aug 06.
Article En | MEDLINE | ID: mdl-37630579

Sulfate-reducing bacteria (SRB) are an important group of microorganisms that cause microbial corrosion. In this study, culturable SRB were isolated and identified from the inner rust layer of three kinds of steel and from sediments, and a comparison of amino acid sequences encoding related enzymes in the sulfate reduction pathway between anaerobic and facultative anaerobic SRB strains was carried out. The main results are as follows. (1) Seventy-seven strains were isolated, belonging to five genera and seven species, with the majority being Desulfovibrio marinisediminis. For the first time, Holodesulfovibrio spirochaetisodalis and Acinetobacter bereziniae were separated from the inner rust layer of metal, and sulfate reduction by A. bereziniae, Virgibacillus dokdonensis, and Virgibacillus chiguensis, etc., was also demonstrated for the first time. (2) Three strains of strictly anaerobic bacteria and four strains of facultative anaerobic bacteria were screened from seven bacterial strains. (3) Most of the anaerobic SRB only contained enzymes for the dissimilatory sulfate reduction pathway, while those of facultative anaerobic bacteria capable of producing hydrogen sulfide included two possible ways: containing the related enzymes from the dissimilatory pathway only, or containing enzymes from both dissimilatory and assimilation pathways. This study newly discovered that some bacterial genera exhibit sulfate reduction ability and found that there are differences in the distribution of enzymes related to the sulfate reduction pathway between anaerobic and facultative anaerobic SRB type trains, providing a basis for the development and utilization of sulfate-reducing bacterial resources and furthering our understanding of the metabolic mechanisms of SRB.

6.
Biosens Bioelectron ; 237: 115543, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37499378

DNA intercalation has increasingly been studied for various scenario implementations due to the diverse functions of DNA/intercalators. Nascent organic photoelectrochemical transistor (OPECT) biosensing taking place in organic electronics and photoelectrochemical bioanalysis represents a promising technological frontier in the arena. In this work, we first devise DNA intercalation-enabled OPECT for miRNA detection with a superior gain up to 17100. Intercalation of [Ru(bpy)2dppz]2+ within the miRNA-initiated hybrid chain reaction (HCR)-derived duplex DNA is realized for producing anodic photocurrent upon light stimulation, causing the corresponding target-dependent alternation in gate voltage (VG) and hence the modulated channel current (IDS) of poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonate) (PEDOT:PSS) under specific drain voltage (VDS) for quantitative miRNA-21 analysis, which shows a wide linear relationship and a low detection limit of 5.5 × 10-15 mol L-1. This study features the DNA intercalation-enabled organic electronics with superior gain and is envisaged to attract more attention to explore DNA adducts for innovative bioelectronics and biosensing, given the diverse DNA binders with multiple functions.


Biosensing Techniques , MicroRNAs , DNA/analysis , Styrene , Intercalating Agents
7.
Colloids Surf B Biointerfaces ; 225: 113248, 2023 May.
Article En | MEDLINE | ID: mdl-36905834

The sensitive and rapid detection of dopamine (DA) is of great significance for early diagnosis of related diseases. Current detection strategies of DA are time-consuming, expensive and inaccurate, while biosynthetic nanomaterials were considered highly stable and environment friendly, which were promising on colorimetric sensing. Thus, in this study, novel zinc phosphate hydrate nanosheets (SA@ZnPNS) biosynthesized by Shewanella algae were designed for the detection of DA. SA@ZnPNS showed high peroxidase-like activity which catalyzed the oxidation reaction of 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. Results showed that the catalytic reaction of SA@ZnPNS followed Michaelis-Menton kinetics, and catalytic process conformed to ping-pong mechanism with chief active species of hydroxyl radicals. The colorimetric detection of DA in human serum samples was performed based on SA@ZnPNS peroxidase-like activity. The linear range of DA detection was 0.1-40 µM, and the detection limit was 0.083 µM. This study provided a simple and practical method for the detection of DA and expanded the application of biosynthesized nanoparticles to biosensing fields.


Biomimetic Materials , Peroxidase , Humans , Dopamine , Hydrogen Peroxide , Peroxidases , Phosphates , Colorimetry/methods , Limit of Detection
8.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article En | MEDLINE | ID: mdl-36768764

Exploring new and high efficiency mimic enzymes is a vital and novel strategy for antibacterial application. Haloperoxidase-like enzymes have attracted wide attention thanks to their amazing catalytic property for hypohalous acid generation from hydrogen peroxide and halides. However, few materials have displayed halogenating catalytic performance until now. Herein, we synthesized N-doped C/CeO2 (N-C/CeO2) composite materials by a combination of the liquid and solid-state method. N-C/CeO2 can possess haloperoxidase-like catalytic activity by catalyzing the bromination of organic signaling compounds (phenol red) with H2O2 at a wide range of temperatures (20 °C to 55 °C), with a solution color changing from yellow to blue. Meanwhile, it exhibits high catalytic stability/recyclability in the catalytic reaction. The synthesized N-C/CeO2 composite can effectively catalyze the oxidation of Br- with H2O2 to produce HBrO without the presence of phenol red. The produced HBrO can resist typical marine bacteria like Pseudomonas aeruginosa. This study provides an efficient biomimetic haloperoxidase and a novel sustainable method for antibacterial application.


Hydrogen Peroxide , Phenolsulfonphthalein , Carbon , Biomimetics , Oxidation-Reduction
9.
Anal Chim Acta ; 1240: 340757, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36641158

Advanced optoelectronic devices have attracted extensive interdisciplinary interest but lags far behind in biomolecular detection. The nascent organic photoelectrochemical transistor (OPECT) is expected to become a versatile platform to this end. Herein, using biological derivation of type-I Ag2S/ZnIn2S4 heterojunction, a light-fueled high-efficacy OPECT system with zero-gate-biased operation is successfully developed for biomolecular detection. Exemplified by a sandwich immunocomplexing towards mouse IgG (MIgG) with Ag nanoparticles (Ag NPs) as the label, steering the acidolysis-release of Ag+ toward ZnIn2S4 could induce the in-situ formation of type-I Ag2S/ZnIn2S4 heterojunction, increasing the recombination of light-activated excitons and thus inhibiting the photo-responsibility of ZnIn2S4, as sensitively monitored by the amplified OPECT response. The proposed device could achieve good analytical performance in terms of high specificity and sensitivity, with a detection limit as low as 33.7 fg mL-1. This OPECT device based on bio-induced formation of type-I heterojunction can provide a novel route to biomolecular detection, and offered a new perspective for the optoelectronic sensors to be used in futuristic physiological and pathological detection.


Biosensing Techniques , Metal Nanoparticles , Animals , Mice , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods , Silver
10.
Front Microbiol ; 13: 831984, 2022.
Article En | MEDLINE | ID: mdl-35369519

Biofilms formed on metal surfaces strongly affect metallic instruments serving in marine environments. However, due to sampling difficulty, less has been known about the bacterial communities of the biofilm on metallic surfaces in hadal environments, so the failure process of these deep-sea metallic instruments influenced by microbial communities could be hardly predicted. In this research, seven alloys, including titanium, aluminum, and copper alloys, were exposed in Yap Trench hadal environment for 1 year. Thus, the communities of the biofilms formed on metallic surfaces at 5,772 m undersea in Yap Trench were initially reported in previous studies. Then, 16S rRNA gene sequencing was performed to visualize the in situ bacterial communities of the biofilms formed on titanium, aluminum, and copper alloys at 5,772 m undersea in Yap Trench. It was found that Proteobacteria was the dominant phylum in all samples, but distinct genera were discovered on various alloys. The titanium alloy provided a suitable substrate for a mutualistic symbiotic biofilm with abundant bacterial richness. Aluminum alloys without copper components showed the least bacterial richness and formed a cold-adapted and oligotrophic-adapted biofilm containing the genera Sulfurimonas and PS1 Clade, while copper-present alloys showed relatively high bacterial richness with copper-resistant or even copper-utilizing biofilms constituting the genera Stenotrophomonas, Burkholderia-Caballeronia-Paraburkholderia, and Achromobacter on the surfaces. Furthermore, among all the element components contained in alloys investigated in this research, copper element showed the strongest influences on the composition and function of microbial communities in the biofilms formed on various metallic surfaces.

11.
Bioelectrochemistry ; 145: 108048, 2022 Jun.
Article En | MEDLINE | ID: mdl-35093618

Biocides are often used to mitigate the microbially influenced corrosion (MIC) of construction materials in many fields. To study the effect of inadequate dosing of non-oxidizing biocide tetrakis (hydroxymethyl) phosphonium sulfate (THPS) on corrosion of pipeline steel caused by microorganisms, a novel marine isolate Desulfovibrio hontreensis SY-21 was selected as a test microorganism. Weight loss rate determination, morphological analyses, and corrosion product analyses combined with electrochemical measurements were performed to investigate the influence of THPS on the MIC of X70 pipeline steel. The responses of sessile and planktonic cells of D. hontreensis to THPS were also studied. Results showed that D. hontreensis cells could significantly promote steel corrosion and induce local corrosion pits. With a THPS addition within the tolerance range of D. hontreensis for the biocide, MIC of the steel was further promoted by 65%. The growth of planktonic cells was inhibited by the biocide, but the number of biofilm cells was significantly increased. This study revealed that THPS concentrations within a specific range increased the corrosive effect of the presence of D. hontreensis by promoting the growth of sessile cells and biofilm formation. Therefore, the use of the biocide in practical applications needs to be properly considered and managed.


Desulfovibrio , Disinfectants , Biofilms , Corrosion , Disinfectants/pharmacology , Flavonoids , Steel/chemistry
12.
Sci Total Environ ; 788: 147573, 2021 Sep 20.
Article En | MEDLINE | ID: mdl-34034174

In microbiologically influenced corrosion (MIC) induced by sulfate-reducing bacteria (SRB), the electrons released from iron were transferred via extracellular electron transfer (EET) to the inner cells. Electron mediators and carbon starvation have also been found to promote steel corrosion. This study aimed to investigate the synergistic effects of electron mediators and carbon starvation on MIC and their effect on biofilm catalytic activity. The results demonstrated that the weight losses of X70 steel were 0.68 and 1.03 mg/cm2 in 100% and 10% carbon source (CS) SRB solution, respectively. The addition of riboflavin and cytochrome c increased the corrosion rate by 1.76 and 1.87 times, respectively, in the 100% CS SRB medium compared to the medium without exogenous redox mediators. For the 10% CS SRB medium, the corrosion rate increased by 1.40 and 1.89 times, respectively, when riboflavin and cytochrome c were added. The addition of riboflavin and cytochrome c also enhanced the biocatalytic activity of the SRB biofilm in both the 100% and 10% CS SRB media.


Carbon , Steel , Biofilms , Corrosion , Desulfovibrio , Oxidation-Reduction , Sulfates
13.
Nanomaterials (Basel) ; 10(9)2020 Sep 04.
Article En | MEDLINE | ID: mdl-32899800

Discovering novel materials and improving the properties of existing materials are the main goals in the field of photocatalysis to increase the potential application of the materials. In this paper, a modified graphitic carbon nitride (g-C3N4) photocatalyst named Fe3+-doped alkalized carbon nitride, which couples the photocatalytic reaction with the Fenton reaction, is introduced to demonstrate its Rhodamine B (RhB) degradation and antibacterial properties. Under visible-light irradiation, the degradation rate of RhB was 99.9% after 200 min, while the antibacterial rates of Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) after 300 min were 99.9986%, 99.9974%, and 99.9876%, respectively. Moreover, the repetitive experiments of RhB degradation demonstrate that the proposed photocatalysts have excellent stability and reusability. The active free radical trapping experiments reveal that the superoxide radical (·O2-) is the dominant reactive oxygen species. In addition, the Fenton reaction is introduced into the photocatalytic system due to the doping of Fe3+, and the hydroxyl radical (·OH) produced from the Fenton reaction further enhances the photocatalytic performance. The remarkable improvement in photocatalytic performance of the proposed photocatalyst can be attributed to its broader UV-visible absorption characteristic and the occurrence of the Fenton reaction.

14.
Mikrochim Acta ; 187(7): 422, 2020 07 02.
Article En | MEDLINE | ID: mdl-32617681

Four kinds of Ag3PO4 materials were prepared by controlling the experimental conditions, which were developed as oxidase mimics. Experimental results showed that different synthesis methods led to distinct crystal structures, morphologies, and surface properties, which contributed to diverse oxidase-like activities of Ag3PO4 materials. Among them, Ag3PO4 microcubes (APMCs) can efficiently catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine in the presence of dissolved oxygen to form a blue-colored oxide, presenting the best intrinsic oxidase mimetic ability. The higher-energy [110] facets with more oxygen vacancies exposed and more active sites coupled with more negative charge and larger specific surface area of APMCs contributed to its enhanced oxidase mimetic performance. Besides, mercury ions were proved to remarkably and selectively stimulate the oxidase-like ability of APMCs owing to the formation of Ag-Hg amalgam on its surface. Based on the stimulating effect of Hg2+ towards APMCs, a simple and rapid method for colorimetric determination of Hg2+ was thus established via the significant signal amplification and megascopic color variation. Under the optimal conditions, the sensing system showed a good linear relationship ranging from 0.1 to 7.0 µM and a detection limit of 20 nM for Hg2+, exhibiting high selectivity and good colour stability. Moreover, the colorimetric method was successfully applied to determine Hg2+ in real water samples. Considering these advantages, the developed colorimetric sensing system is expected to hold bright prospects for trace determination of Hg2+ in biological, environmental, and food samples. Graphical abstract The preparation process of Ag3PO4 materials and Hg2+-stimulated enhanced oxidase-like ability of Ag3PO4 microcubes in catalyzing the oxidation of TMB to generate a typical blue color, which can be applied in rapid and ultrasensitive detection of Hg2+ visually.


Colorimetry/methods , Mercury/analysis , Phosphates/chemistry , Silver Compounds/chemistry , Benzidines/chemistry , Catalysis , Chromogenic Compounds/chemistry , Drinking Water/analysis , Limit of Detection , Oxidation-Reduction , Oxygen/chemistry , Seawater/analysis , Water Pollutants, Chemical/analysis
15.
Bioact Mater ; 5(4): 902-916, 2020 Dec.
Article En | MEDLINE | ID: mdl-32637753

Biodegradable magnesium alloys are challenging to be implanted in patients with hyperglycemia and diabetes. A hypothesis is suggested that glucose accelerates microbial ingress and in vitro degradation of Mg-Li-Ca implants. Corrosion resistance and mechanical properties was demonstrated using electrochemical, hydrogen evolution and tensile tests. The bacteria from Hank's solution were isolated via 16S rRNA gene analysis. The results revealed that Mg-1Li-1Ca alloy exhibited different responses to Hank's solution with and without glucose. The solution acidity was ascribed to Microbacterium hominis and Enterobacter xiangfangensis, indicating that glucose promoted microbial activity and degradation and deterioration in mechanical property of Mg-1Li-1Ca alloy.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118499, 2020 Oct 05.
Article En | MEDLINE | ID: mdl-32470815

In this paper, nanoparticles decorated Ce2(WO4)3 nanosheets (CWNSs) with negative potential and large specific surface area were synthesized and developed as highly efficient peroxidase mimics for colorimetric detection of H2O2. CWNSs can efficiently catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to induce an obvious color variation. Kinetic analysis indicated that the catalytic behaviors of CWNSs obey the typical Michaelis-Menten mechanism. The peroxidase-like catalytic mechanism of CWNSs was proposed according to the active species trapping experiments, verifying that ·O2- radicals played primary roles in the catalytic reaction. Based on the strong and stable peroxidase-like catalytic activity of CWNSs, a simple, rapid, selective, and ultrasensitive method was successfully established for colorimetric detection of H2O2. The method has a good linear response ranging from 0.5 µM to 100 µM for H2O2 concentration with a lower detection limit of 0.15 µM. Benefitting from the sensitive response and good stability, the method is applied in real sample detection and shows a favorable reproducibility and feasibility. This work not only provides a novel enzymatic mimics with remarkable catalytic activities for biomedical and environmental analysis, but also extends the application area of Ce2(WO4)3 materials.


Biomimetic Materials , Nanoparticles , Benzidines , Colorimetry , Hydrogen Peroxide , Kinetics , Peroxidase/metabolism , Peroxidases/metabolism , Reproducibility of Results
17.
Molecules ; 24(10)2019 May 22.
Article En | MEDLINE | ID: mdl-31121968

Microbial corrosion is a universal phenomenon in salt water media such as seawater and wastewater environments. As a kind of efficient protective metal coating for steel, the damage of the Zn-Ni alloy coating was found to be accelerated under microbial corrosive conditions. To solve this problem, chitosan, which is considered a natural product with high antibacterial efficiency, was added to Zn-Ni electrolytes as a functional ingredient of electrodeposited Zn-Ni-chitosan coatings. It was found that the addition of chitosan significantly and negatively shifted the electrodeposition potentials and influenced the Ni contents, the phase composition, and the surface morphologies. By exposing the coatings in a sulfate-reducing bacteria medium, the microbial corrosion resistance was investigated. The results showed that compared to the Zn-Ni alloy coating, Zn-Ni-chitosan coatings showed obvious inhibiting effects on sulfate-reducing bacteria (SRB) and the corrosion rates of these coatings were mitigated to some degree. Further research on the coatings immersed in an Escherichia coli-suspended phosphate buffer saline medium showed that the bacteria attachment on the coating surface was effectively reduced, which indicated enhanced antibacterial properties. As a result, the Zn-Ni-chitosan coatings showed remarkably enhanced anticorrosive and antibacterial properties.


Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Nickel/chemistry , Zinc/chemistry , Alloys , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Bacterial Physiological Phenomena , Biofouling , Chitosan , Coated Materials, Biocompatible/chemistry , Corrosion , Electroplating , Materials Testing
18.
Front Microbiol ; 10: 2863, 2019.
Article En | MEDLINE | ID: mdl-31921043

We used metagenomic sequencing combined with morphological and chemical analyses to investigate microbial taxa and functions related to copper-resistance and microbiologically influenced corrosion in mature copper-associated biofilms in coastal seawater for 44 months. Facultative anaerobic microbes such as Woeseia sp. were found to be the dominant groups on the copper surface. Genes related to stress response and possible heavy metal transport systems, especially RNA polymerase sigma factors (rpoE) and putative ATP-binding cassette (ABC) transport system permease protein (ABC.CD.P) were observed to be highly enriched in copper-associated biofilms, while genes encoding DNA-methyltransferase and RNA polymerase subunit were highly enriched in aluminum-associated biofilms and seawater planktonic cells, respectively. Moreover, copper-associated biofilms harbored abundant copper-resistance genes including cus, cop and pco, as well as abundant genes related to extracellular polymeric substances, indicating the presence of diverse copper-resistance patterns. The proportion of dsr in copper-associated biofilms, key genes related to sulfide production, was as low as that in aluminum biofilm and seawater, which ruled out the possibility of microbial sulfide-induced copper-corrosion under field conditions. These results may fill knowledge gaps about the in situ microbial functions of marine biofilms and their effects on toxic-metal corrosion.

19.
Mikrochim Acta ; 185(9): 417, 2018 08 17.
Article En | MEDLINE | ID: mdl-30120586

Various 3-dimensional C/CeO2 hollow nanostructure frameworks (3D C/CeO2 HNFs) were synthesized by using a polymer blowing process that is accelerated by adding a certain amount of cerium nitrate. Polyvinylpyrrolidone was used as the polymer. The resulting HNFs were characterized by scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. The HNFs possess a large specific surface area, and the CeO2 nanocrystals consist of a single phase. The HNFs display intrinsic peroxidase-like activity and can catalyze the oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine in the presence of H2O2 to produce a blue product. The method was applied to the quantification of H2O2 with a 5.2 nM detection limit. The analytical range is from 10 nM to 1 µM. Graphical abstract Schematic of the preparation of a 3-dimensional C/CeO2 hollow nanostructure framework by a polyvinylpyrrolidone-blowing process accelerated by Ce(NO3)3. They were applied to H2O2 detection by catalyzing the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) to the oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) to produce blue-color reaction.


Biomimetic Materials/chemistry , Carbon/chemistry , Cerium/chemistry , Colorimetry/methods , Hydrogen Peroxide/analysis , Nanostructures/chemistry , Peroxidase/metabolism , Benzidines/chemistry , Color , Hydrogen Peroxide/chemistry , Models, Molecular , Molecular Conformation
20.
Front Microbiol ; 8: 1737, 2017.
Article En | MEDLINE | ID: mdl-28955315

Metal corrosion is of worldwide concern because it is the cause of major economic losses, and because it creates significant safety issues. The mechanism of the corrosion process, as influenced by bacteria, has been studied extensively. However, the bacterial communities that create the biofilms that form on metals are complicated, and have not been well studied. This is why we sought to analyze the composition of bacterial communities living on steel structures, together with the influence of ecological factors on these communities. The corrosion samples were collected from rust layers on steel plates that were immersed in seawater for two different periods at Sanya and Xiamen, China. We analyzed the bacterial communities on the samples by targeted 16S rRNA gene (V3-V4 region) sequencing using the Illumina MiSeq. Phylogenetic analysis revealed that the bacteria fell into 13 phylotypes (similarity level = 97%). Proteobacteria, Firmicutes and Bacteroidetes were the dominant phyla, accounting for 88.84% of the total. Deltaproteobacteria, Clostridia and Gammaproteobacteria were the dominant classes, and accounted for 70.90% of the total. Desulfovibrio spp., Desulfobacter spp. and Desulfotomaculum spp. were the dominant genera and accounted for 45.87% of the total. These genera are sulfate-reducing bacteria that are known to corrode steel. Bacterial diversity on the 6 months immersion samples was much higher than that of the samples that had been immersed for 8 years (P < 0.001, Student's t-test). The average complexity of the biofilms from the 8-years immersion samples from Sanya was greater than those from Xiamen, but not significantly so (P > 0.05, Student's t-test). Overall, the data showed that the rust layers on the steel plates carried many bacterial species. The bacterial community composition was influenced by the immersion time. The results of our study will be of benefit to the further studies of bacterial corrosion mechanisms and corrosion resistance.

...