Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Rep ; 14(1): 10728, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730027

The purpose of this study was to explore the diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease. In this study, we first collected 161 samples from the GEO database (including 87 in the AD group and 74 in the normal group). Subsequently, through differential expression analysis and the iUUCD 2.0 database, we obtained 3450 Differentially Expressed Genes (DEGs) and 806 Ubiquitin-related genes (UbRGs). After taking the intersection, we obtained 128 UbR-DEGs. Secondly, by conducting GO and KEGG enrichment analysis on these 128 UbR-DEGs, we identified the main molecular functions and biological pathways related to AD. Furthermore, through the utilization of GSEA analysis, we have gained insight into the enrichment of functions and pathways within both the AD and normal groups. Further, using lasso regression analysis and cross-validation techniques, we identified 22 characteristic genes associated with AD. Subsequently, we constructed a logistic regression model and optimized it, resulting in the identification of 6 RUbR-DEGs: KLHL21, WDR82, DTX3L, UBTD2, CISH, and ATXN3L. In addition, the ROC result showed that the diagnostic model we built has excellent accuracy and reliability in identifying AD patients. Finally, we constructed a lncRNA-miRNA-mRNA (competing endogenous RNA, ceRNA) regulatory network for AD based on six RUbR-DEGs, further elucidating the interaction between UbRGs and lncRNA, miRNA. In conclusion, our findings will contribute to further understanding of the molecular pathogenesis of AD and provide a new perspective for AD risk prediction, early diagnosis and targeted therapy in the population.


Alzheimer Disease , Ubiquitination , Alzheimer Disease/genetics , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Humans , Gene Expression Profiling , Transcriptome , Gene Regulatory Networks , Databases, Genetic
2.
Environ Technol ; : 1-14, 2022 Dec 19.
Article En | MEDLINE | ID: mdl-36510769

Water pollution is becoming more and more serious nowadays, and water resources are in shortage. As an environmentally friendly wastewater treatment technology without secondary pollution, the three-dimensional electrode method has received more and more attention. However, the conventional direct current (DC) three-dimensional electrode method has the disadvantages of high energy consumption and low current efficiency. Based on this, this work investigated the treatment of malachite green (MG) dye wastewater by pulse three-dimensional electrode method. The influences of pulse duty cycle, pulse period, electrolysis voltage, initial pH, aeration rate and Na2SO4 concentration on MG degradation were investigated. The results showed that under the optimal operating conditions of pulse duty cycle of 0.4, pulse period of 15 s, electrolysis voltage of 15 V, initial pH of 5, aeration rate of 0.5 L/min, Na2SO4 concentration of 0.10 mol/L, the removal rates of MG and COD reached 96.2% and 80.5%, respectively, the current efficiency reached 93.4%, and the energy consumption was 24.2 kWh/kg COD after 150 min. Compared with DC power supply mode, the MG removal rate, COD removal rate and current efficiency were enhanced, and the energy consumption was reduced by 83.9%. Moreover, the generation capacity of ·OH was increased under pulse power supply mode. Finally, a possible degradation pathway of MG in pulse power supply mode was inferred using UV-vis and GC-MS analysis. This study indicates that the pulse three-dimensional electrode method is an efficient and low-energy-consumption wastewater treatment method with stable degradation performance for MG dye wastewater.

3.
Micromachines (Basel) ; 12(12)2021 Dec 20.
Article En | MEDLINE | ID: mdl-34945441

The rate and quality of microscale meniscus confined electrodeposition represent the key to micromanipulation based on electrochemistry and are extremely susceptible to the ambient relative humidity, electrolyte concentration, and applied voltage. To solve this problem, based on a neural network and genetic algorithm approach, this paper optimizes the process parameters of the microscale meniscus confined electrodeposition to achieve high-efficiency and -quality deposition. First, with the COMSOL Multiphysics, the influence factors of electrodeposition were analyzed and the range of high efficiency and quality electrodeposition parameters were discovered. Second, based on the back propagation (BP) neural network, the relationships between influence factors and the rate of microscale meniscus confined electrodeposition were established. Then, in order to achieve effective electrodeposition, the determined electrodeposition rate of 5 × 10-8 m/s was set as the target value, and the genetic algorithm was used to optimize each parameter. Finally, based on the optimization parameters obtained, we proceeded with simulations and experiments. The results indicate that the deposition rate maximum error is only 2.0% in experiments. The feasibility and accuracy of the method proposed in this paper were verified.

4.
Chemosphere ; 217: 279-288, 2019 Feb.
Article En | MEDLINE | ID: mdl-30419382

The feasibility of implementing anaerobic ammonium oxidation (anammox) granules to start up high-loading anaerobic sulfide oxidation (ASO) in an upflow anaerobic sludge bed (UASB) reactor was investigated. An innovation method of the reverse start-up of anammox was also validated. Firstly, the reactor was operated to treat sulfide-rich wastewaters into which nitrite was introduced as an electron acceptor. An high-rate performance with sulfide and nitrate removal rates of 105.5 ±â€¯0.11 kg S m-3 d-1 and 28.45 ±â€¯3.40 kg N m-3 d-1, respectively, was accomplished. Sulfurovum were enriched with the increase of the substrate load and then conquered Candidatus Kuenenia to be the predominant bacteria. Excitation-emission matrix (EEM) spectroscopy showed that the intensities of fluorescence decreased and protein-like substrates were the main components associated with the process of start-up. FT-IR analysis found that the main functional groups indicator were O-H groups. Secondly, the reverse start-up of anammox (achieving 90% TN removal) was achieved immediately when the substrate changed. 16S rRNA analysis indicated the successfully enrichment of anammox bacteria (Candidatus Kuenenia). These results suggest that anammox granules can act as inoculum of high-loading ASO process and the reverse start-up provides a new perspective for the fast initiation of anammox process.


Nitrates/isolation & purification , Sulfides/isolation & purification , Wastewater/chemistry , Anaerobiosis , Bioreactors/microbiology , Nitrates/analysis , Nitrogen/chemistry , Oxidation-Reduction , Planctomycetales/genetics , Planctomycetales/metabolism , Spectrum Analysis , Sulfides/analysis , Time Factors , Wastewater/microbiology
5.
Bioresour Technol ; 244(Pt 1): 117-124, 2017 Nov.
Article En | MEDLINE | ID: mdl-28779662

In this study, the mass transfer, rheological behavior and fractal dimension of anaerobic ammonium oxidation (anammox) granules in upflow anaerobic sludge blanket reactors at various temperatures (8.5-34.5°C) and upflow velocities (0.06, 0.18mh-1) were investigated. The results demonstrated that a lower temperature increased the external mass transfer coefficient and apparent viscosity and impaired the performance of anammox granules. The external mass transfer coefficient was decreased, but efficient nitrogen removal of up to 96% was achieved under high upflow velocity, which also decreased the apparent viscosity. Furthermore, a fractal dimension of up to 2.93 achieved at low temperature was higher than the previously reported values for mesophilic anammox granules. A higher upflow velocity was associated with the lower fractal dimension. Because of the disturbance in granule flaking, the effectiveness factor was less suitable than the external mass transfer coefficient for characterization of mass transfer resistance.


Bioreactors , Fractals , Rheology , Sewage , Temperature
...