Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 619
Filter
1.
Physiol Mol Biol Plants ; 30(6): 877-891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974354

ABSTRACT

Natural leaf senescence is critical for plant fitness. Drought-induced premature leaf senescence affects grape yield and quality. However, reports on the regulatory mechanisms underlying premature leaf senescence under drought stress are limited. In this study, two-year-old potted 'Muscat Hamburg' grape plants were subjected to continuous natural drought treatment until mature leaves exhibited senescence symptoms. Physiological and biochemical indices related to drought stress and senescence were monitored. Transcriptome and transgenic Arabidopsis were used to perform expression analyses and functional identification of drought-induced senescence-associated genes. Twelve days of continuous drought stress was sufficient to cause various physiological disruptions and visible senescence symptoms in mature 'Muscat Hamburg' leaves. These disruptions included malondialdehyde and H2O2 accumulation, and decreased catalase activity and chlorophyll (Chl) levels. Transcriptome analysis revealed that most genes involved in photosynthesis and Chl synthesis were downregulated after 12 d of drought treatment. Three key Chl catabolic genes (SGR, NYC1, and PAO) were significantly upregulated. Overexpression of VvSGR in wild Arabidopsis further confirmed that SGR directly promoted early yellowing of cotyledons and leaves. In addition, drought treatment decreased expression of gibberellic acid signaling repressors (GAI and GAI1) and cytokinin signal components (AHK4, AHK2, RR22, RR9-1, RR9-2, RR6, and RR4) but significantly increased the expression of abscisic acid, jasmonic acid, and salicylic acid signaling components and responsive transcription factors (bZIP40/ABF2, WRKY54/75/70, ANAC019, and MYC2). Moreover, some NAC members (NAC0002, NAC019, and NAC048) may also be drought-induced senescence-associated genes. These results provide extensive information on candidate genes involved in drought-induced senescence in grape leaves. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01465-2.

2.
Nat Commun ; 15(1): 4947, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858350

ABSTRACT

The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.


Subject(s)
Glutamic Acid , Hyperalgesia , Neurons , Nucleus Accumbens , Ventral Tegmental Area , Animals , Male , Hyperalgesia/physiopathology , Ventral Tegmental Area/physiopathology , Mice , Glutamic Acid/metabolism , Nucleus Accumbens/physiopathology , Neurons/metabolism , Mesencephalon , Mice, Inbred C57BL , Resilience, Psychological , Habenula , Disease Models, Animal
3.
Asian J Psychiatr ; 97: 104093, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823080

ABSTRACT

BACKGROUND: Childhood maltreatment (CM) is a well-established risk factor for major depressive disorder (MDD). The neural mechanisms linking childhood maltreatment experiences to changes in brain functional networks and the onset of depression are not fully understood. METHODS: In this study, we enrolled 66 patients with MDD and 31 healthy controls who underwent resting-state fMRI scans and neuropsychological assessments. We employed multivariate linear regression to examine the neural associations of CM and depression, specifically focusing on the bilateral occipital functional connectivity (OFC) networks relevant to MDD. Subsequently, a two-step mediation analysis was conducted to assess whether the OFC network mediated the relationship between CM experiences and the severity of depression. RESULTS: Our study showed that patients with MDD exhibited reduced OFC strength, particularly in the occipito-temporal, parietal, and premotor regions. These reductions were negatively correlated with CM scores and the severity of depression. Notably, the overlapping regions in the bilateral OFC networks, affected by both CM experiences and depressive severity, were primarily observed in the bilateral cuneus, left angular and calcarine, as well as the right middle frontal cortex and superior parietal cortex. Furthermore, the altered strengths of the OFC networks were identified as positive mediators of the impact of CM history on depression symptoms in patients with MDD. CONCLUSION: We have demonstrated that early exposure to CM may increase vulnerability to depression by influencing the brain's network. These findings provide new insights into understanding the pathological mechanism underlying depressive symptoms induced by CM.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Nerve Net , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Male , Female , Adult , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Occipital Lobe/physiopathology , Occipital Lobe/diagnostic imaging , Connectome , Adult Survivors of Child Abuse , Middle Aged , Young Adult
4.
Adv Sci (Weinh) ; : e2400929, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900070

ABSTRACT

To elucidate the brain-wide information interactions that vary and contribute to individual differences in schizophrenia (SCZ), an information-resolved method is employed to construct individual synergistic and redundant interaction matrices based on regional pairwise BOLD time-series from 538 SCZ and 540 normal controls (NC). This analysis reveals a stable pattern of regionally-specific synergy dysfunction in SCZ. Furthermore, a hierarchical Bayesian model is applied to deconstruct the patterns of whole-brain synergy dysfunction into three latent factors that explain symptom heterogeneity in SCZ. Factor 1 exhibits a significant positive correlation with Positive and Negative Syndrome Scale (PANSS) positive scores, while factor 3 demonstrates significant negative correlations with PANSS negative and general scores. By integrating the neuroimaging data with normative gene expression information, this study identifies that each of these three factors corresponded to a subset of the SCZ risk gene set. Finally, by combining data from NeuroSynth and open molecular imaging sources, along with a spatially heterogeneous mean-field model, this study delineates three SCZ synergy factors corresponding to distinct symptom profiles and implicating unique cognitive, neurodynamic, and neurobiological mechanisms.

5.
J Agric Food Chem ; 72(26): 15027-15039, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38886897

ABSTRACT

Abscisic acid (ABA) is a major regulator of nonclimacteric fruit ripening, with its processes involving epigenetic mechanisms. It remains unclear whether DNA methylation is associated with ABA-regulated ripening. In this study, we investigated the patterns of DNA methylation and gene expression following ABA treatment in grape berries by using whole-genome bisulfite sequencing and RNA-sequencing. ABA application changed global DNA methylation in grapes. The hyper-/hypo-differently methylated regions were enriched in defense-related metabolism, degreening processes, or ripening-related metabolic pathways. Many differentially expressed genes showed an alteration in DNA methylation after ABA treatment. Specifically, ten downregulated genes with hypermethylation in promoters were involved in the ripening process, ABA homeostasis/signaling, and stress response. Nine upregulated genes exhibiting hypo-methylation in promoters were related to the ripening process and stress response. These findings demonstrated ABA-induced DNA alteration of ripening related and stress-responsive genes during grape ripening, which provides new insights of the epigenetic regulation of ABA on fruit ripening.


Subject(s)
Abscisic Acid , DNA Methylation , Epigenesis, Genetic , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Vitis , Vitis/genetics , Vitis/growth & development , Vitis/metabolism , Vitis/drug effects , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , DNA Methylation/drug effects , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Fruit/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Epigenesis, Genetic/drug effects , Stress, Physiological/genetics , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Promoter Regions, Genetic
6.
Antioxidants (Basel) ; 13(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929089

ABSTRACT

Oxidative stress damage in periparturient cows decreases both production and their health; supplementation with complex additives during the periparturient period has been used as an important strategy to enhance the antioxidant status and production of dairy cows. The periparturient cows not only risk a negative energy balance due to reduced dry matter intake but also represent a sensitive period for oxidative stress. Therefore, we have developed an immunomodulatory and nutritional regulation combined additive (INC) that hopefully can improve the immune status and production of cows during the periparturient period and their offspring health and growth by improving their antioxidant stress status. The INC comprised a diverse array of additives, including water-soluble and fat-soluble vitamins, Selenomethionine, and active dry Saccharomyces cerevisiae. Forty-five multiparous Holstein cows were randomly assigned to three treatments: CON (no INC supplementation, n = 15), INC30 (30 g/d INC supplementation, n = 15), and INC60 (60 g/d INC supplementation, n = 15) based on last lactation milk yield, body condition score, and parity. Newborn calves were administered 4 L of maternal colostrum originating from the corresponding treatment and categorized based on the treatment received by their respective dams. The INC not only served to maintain the antioxidative stress system of dairy cows during the periparturient period but also showed a tendency to improve the immune response (lower tumor necrosis factor and interleukin-6) during the perinatal period. A linear decrease in concentrations of alkaline phosphatase postpartum and ß-hydroxybutyrate was observed with INC supplementation. Milk fat yield, milk protein yield, and energy-corrected milk yield were also increased linearly with increasing additive supplementation. Calves in the INC30 group exhibited greater wither height and chest girth but no significant effect on average daily gain or body weight. The diarrhea frequency was linearly decreased with the incremental level of INC. Results indicate that supplementation with INC in peripartum dairy cows could be a major strategy to improve immune response, decrease inflammation, maintain antioxidant stress status in transition dairy cows, and have merit in their calves. In conclusion, this study underlines the benefits of INC supplementation during the transition period, as it improved anti-inflammatory capacity, could positively impact antioxidative stress capacity, and eventually enhanced the production performance of dairy cows and the health and growth of calves.

7.
Int J Biol Macromol ; 274(Pt 2): 133515, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944070

ABSTRACT

Nanocellulose (NC) is a promising biopolymer for various biomedical applications owing to its biocompatibility and low toxicity. However, it faces challenges in tissue engineering (TE) applications due to the inconsistency of the microenvironment within the NC-based scaffolds with target tissues, including anisotropy microstructure and biomechanics. To address this challenge, a facile swelling-induced nanofiber alignment and a novel in situ biomineralization reinforcement strategies were developed for the preparation of NC-based scaffolds with tunable anisotropic structure and mechanical strength for guiding the differentiation of bone marrow-derived mesenchymal stem cells for potential TE application. The bacterial cellulose (BC) and cellulose nanofibrils (CNFs) based scaffolds with tunable swelling anisotropic index in the range of 10-100 could be prepared by controlling the swelling medium. The in situ biomineralization efficiently reinforced the scaffolds with 2-4 times and 10-20 times modulus increasement for BC and CNFs, respectively. The scaffolds with higher mechanical strength were superior in supporting cell growth and proliferation, suggesting the potential application in TE application. This work demonstrated the feasibility of the proposed strategy in the preparation of scaffolds with mechanical anisotropy to induce cells-directed differentiation for TE applications.


Subject(s)
Biomineralization , Cell Differentiation , Cellulose , Mesenchymal Stem Cells , Nanofibers , Tissue Scaffolds , Cellulose/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Tissue Scaffolds/chemistry , Cell Differentiation/drug effects , Anisotropy , Nanofibers/chemistry , Tissue Engineering/methods , Animals , Cell Proliferation/drug effects , Bone Marrow Cells/cytology
8.
Heliyon ; 10(10): e31197, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38807876

ABSTRACT

Electroacupuncture (EA) is an effective alternative for the treatment of functional dyspepsia (FD). It reduces low-grade duodenal inflammation and improves the symptoms of FD by downregulating the expression of NF-κB p65 and NLRP3, but its mechanism needs to be elucidated. To examine the regulatory effect of electroacupuncture (EA) on intestinal flora and NF-κB p65/NLRP3 pyroptosis pathway in FD rats. The FD rat model was established via multi-factor stress intervention for two weeks. The rats were randomly divided into the NC group, model group, NF-kB inhibitor group (NF-κB inhibitor BAY 11-7082 was administered), EA group, and EA + NF-kB inhibitor group. After 14 days of treatment, the rats were sacrificed, and the protein and mRNA levels of NF-κB p65, IκB, and NLRP3 in the duodenum were evaluated by Western blotting assays and real-time fluorescent quantitative PCR. The Illumina MiSeq sequencing platform was used to analyze the V4 region of the 16S rRNA gene of intestinal flora and predict functional genes. The concentration of short-chain fatty acids (SCFAs) in feces was assessed by metabolomics. EA can decrease low-grade duodenal inflammation and promote gastrointestinal motility in FD rats. This effect is mediated by inhibition of the NF-κB p65/NLRP3 pyroptosis pathway, an increase in the alpha and beta diversity of gut microbiota in the duodenum, an increase in the abundance of beneficial bacteria at the phylum and genus levels, and an increase in the content of SCFAs. The protective effect of EA against FD might involve multiple hierarchy and pathways. EA may remodel intestinal flora by inhibiting the NF-κB p65/NLRP3 pyroptosis pathway, thereby improving low-grade duodenal inflammation in FD rats.

9.
Cell Genom ; 4(5): 100550, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38697125

ABSTRACT

To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Recombinational DNA Repair , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Line, Tumor , Genetic Predisposition to Disease , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Recombinational DNA Repair/drug effects , Mice, Nude , Mice, Inbred BALB C , Adult
10.
Schizophr Bull ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38754993

ABSTRACT

BACKGROUND AND HYPOTHESIS: Schizophrenia (SZ) is a prevalent mental disorder that imposes significant health burdens. Diagnostic accuracy remains challenging due to clinical subjectivity. To address this issue, we explore magnetic resonance imaging (MRI) as a tool to enhance SZ diagnosis and provide objective references and biomarkers. Using deep learning with graph convolution, we represent MRI data as graphs, aligning with brain structure, and improving feature extraction, and classification. Integration of multiple modalities is expected to enhance classification. STUDY DESIGN: Our study enrolled 683 SZ patients and 606 healthy controls from 7 hospitals, collecting structural MRI and functional MRI data. Both data types were represented as graphs, processed by 2 graph attention networks, and fused for classification. Grad-CAM with graph convolution ensured interpretability, and partial least squares analyzed gene expression in brain regions. STUDY RESULTS: Our method excelled in the classification task, achieving 83.32% accuracy, 83.41% sensitivity, and 83.20% specificity in 10-fold cross-validation, surpassing traditional methods. And our multimodal approach outperformed unimodal methods. Grad-CAM identified potential brain biomarkers consistent with gene analysis and prior research. CONCLUSIONS: Our study demonstrates the effectiveness of deep learning with graph attention networks, surpassing previous SZ diagnostic methods. Multimodal MRI's superiority over unimodal MRI confirms our initial hypothesis. Identifying potential brain biomarkers alongside gene biomarkers holds promise for advancing objective SZ diagnosis and research in SZ.

11.
Front Microbiol ; 15: 1356161, 2024.
Article in English | MEDLINE | ID: mdl-38721598

ABSTRACT

Skin microorganisms are an important component of host innate immunity and serve as the first line of defense against pathogenic infections. The relative abundance of bacterial species, microbial community assembly, and secretion of specific bacterial metabolites are closely associated with host health. In this study, we investigated the association between the skin microbiome and Ranavirus, and compared the bacterial community assemblage, alpha and beta diversity, and functional predictions of the skin bacterial assemblage in cultured healthy Chinese giant salamanders (Andrias davidianus) and individuals infected with Chinese giant salamander iridovirus (GSIV or ADRV). To achieve this, we employed 16S rRNA amplicon sequencing. The results identified Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota as the dominant phyla in the diseased and healthy groups. Alpha diversity analysis indicated that the skin bacterial community in the diseased group exhibited no significant differences in bacterial species diversity and lower species richness compared to the healthy group. Beta diversity suggested that the two group bacterial community was quite different. Kyoto encyclopedia of genes and genomes (KEGG) pathway analyze and clusters of orthologous groups of proteins (COG) function predictions revealed that changes and variations occurred in the metabolic pathways and function distribution of skin bacterial communities in two groups.

12.
Int J Biol Macromol ; 269(Pt 2): 131771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688792

ABSTRACT

Xyloglucan (XG), as a natural biopolymer, possesses a sound biocompatibility and an impressive biodegradability, which are usually featured with abundant hydroxyl groups available for the bioconjugation with a bioactive moiety, suggesting a promising or unique value possibly applied in the field of biomedicine. In this study, XG was extracted from Tamarind seeds and subjected to four regioselective oxidation methods to introduce carboxyl groups onto the XG molecules for a bioconjugation with collagen. Galactose oxidase and reducing end aldehyde group oxidation mainly resulted in a low carboxylate content at ∼0.34 mmol/g, whereas the primary and secondary hydroxyl group oxidations would lead to a high carboxyl content at ∼0.84 mmol/g. The number-average molar mass (Mn) and weight-average molar mass (Mw) of XG were 8.8 × 105 g/mol and 1.1 × 106 g/mol, respectively. The oxidized XGs were then subjected to a further biofunctionalization with the collagen through EDC/NHS coupling, which exhibited a degree of conjugation rate, ranged from 50 % to 72 %. The collagen-conjugated at the C6 position of XGs exhibited the highest cell viability recorded at 168 % in promoting cell growth and proliferation after 72 h of culture, surpassing that of pure collagen recorded at 138 %, which may indeed suggest a promising value in a biomedical application.


Subject(s)
Collagen , Glucans , Oxidation-Reduction , Xylans , Carboxylic Acids/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Collagen/chemistry , Glucans/chemistry , Tamarindus/chemistry , Xylans/chemistry , Animals , Mice , NIH 3T3 Cells
13.
J Mol Graph Model ; 130: 108778, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38652998

ABSTRACT

SIRT6 is of interest for its promising effect in the treatment of aging-related diseases. Studies have shown quercetin (QUE) and its derivatives have varying degrees of effect on the catalytic effect of SIRT6. In the research, the effect of QUE on the protein-substrate interaction in the SIRT6-mediated mono-ADP ribosylation system was investigated by conventional molecular dynamics (MD) simulations combined with MM/PBSA binding free energy calculations. The results show that QUE can bind stably to SIRT6 with the binding energy of -22.8 kcal/mol and further affect the atomic interaction between SIRT6 and NAD+ (or H3K9), resulting in an increased affinity between SIRT6-NAD+ and decreased SIRT6-H3K9 binding capacity. At the same time, the binding of QUE can also alter some structural characteristics of the protein, with large shifts occurring in the residue regions involving the N-terminal (residues 1-27), Rossmann fold regions (residues 55-92), and ZBD (residues 164-179). Thus, QUE shows great potential as a scaffold for the design of novel potent SIRT6 modulators.


Subject(s)
Molecular Dynamics Simulation , Protein Binding , Quercetin , Sirtuins , Quercetin/chemistry , Quercetin/pharmacology , Sirtuins/chemistry , Sirtuins/metabolism , Humans , Binding Sites , NAD/chemistry , NAD/metabolism , Thermodynamics , Molecular Docking Simulation , Substrate Specificity , Hydrogen Bonding , Protein Conformation
14.
Cell Signal ; 119: 111182, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640983

ABSTRACT

Cancer-associated Fibroblasts (CAFs) exert a tumor-promoting effect in various cancers, including breast cancer. CAFs secrete exosomes containing miRNA and proteins, influencing the tumor microenvironment. In this study, we identified CAF-derived exosomes that transport functional miR-92a from CAFs to tumor cells, thereby intensifying the aggressiveness of breast cancer. CAFs downregulate the expression of G3BP2 in breast cancer cells, and a significant elevation in miR-92a levels in CAF-derived exosomes was observed. Both in vitro and in vivo experiments demonstrate that miR-92a enhances breast cancer cell migration and invasion by directly targeting G3BP2, functioning as a tumor-promoting miRNA. We validated that the RNA-binding proteins SNRPA facilitate the transfer of CAF-derived exosomal miR-92a to breast cancer cells. The reduction of G3BP2 protein by CAF-derived exosomes releases TWIST1 into the nucleus, promoting epithelial-mesenchymal transition (EMT) and further exacerbating breast cancer progression. Moreover, CAF-derived exosomal miR-92a induces tumor invasion and metastasis in mice. Overall, our study reveals that CAF-derived exosomal miR-92a serves as a promoter in the migration and invasion of breast cancer cells by reducing G3BP2 and may represent a potential novel tumor marker for breast cancer.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Cell Movement , Epithelial-Mesenchymal Transition , Exosomes , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasm Invasiveness , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Exosomes/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Neoplasm Metastasis , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics
15.
Gen Psychiatr ; 37(2): e101173, 2024.
Article in English | MEDLINE | ID: mdl-38562406

ABSTRACT

Background: Postoperative sleep disturbance (PSD) is a common and serious postoperative complication and is associated with poor postoperative outcomes. Aims: This study aimed to investigate the effect of transcranial direct current stimulation (tDCS) on PSD in older patients undergoing lower limb major arthroplasty. Methods: In this prospective, double-blind, pilot, randomised, sham-controlled trial, patients 65 years and over undergoing lower limb major arthroplasty were randomly assigned to receive active tDCS (a-tDCS) or sham tDCS (s-tDCS). The primary outcomes were the objective sleep measures on postoperative nights (N) 1 and N2. Results: 116 inpatients were assessed for eligibility, and a total of 92 patients were enrolled; 47 received a-tDCS and 45 received s-tDCS. tDCS improved PSD by altering the following sleep measures in the a-tDCS and s-tDCS groups; the respective comparisons were as follows: the promotion of rapid eye movement (REM) sleep time on N1 (64.5 (33.5-105.5) vs 19.0 (0.0, 45.0) min, F=20.10, p<0.001) and N2 (75.0 (36.0-120.8) vs 30.0 (1.3-59.3) min, F=12.55, p<0.001); the total sleep time on N1 (506.0 (408.0-561.0) vs 392.0 (243.0-483.5) min, F=14.13, p<0.001) and N2 (488.5 (455.5-548.5) vs 346.0 (286.5-517.5) min, F=7.36, p=0.007); the deep sleep time on N1 (130.0 (103.3-177.0) vs 42.5 (9.8-100.8) min, F=24.4, p<0.001) and N2 (103.5 (46.0-154.8) vs 57.5 (23.3-106.5) min, F=8.4, p=0.004); and the percentages of light sleep and REM sleep on N1 and N2 (p<0.05 for each). The postoperative depression and anxiety scores did not differ significantly between the two groups. No significant adverse events were reported. Conclusion: In older patients undergoing lower limb major arthroplasty, a single session of anodal tDCS over the left dorsolateral prefrontal cortex showed a potentially prophylactic effect in improving postoperative short-term objective sleep measures. However, this benefit was temporary and was not maintained over time.

16.
Carbohydr Polym ; 335: 122078, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616098

ABSTRACT

Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Biological Transport , Fermentation , Functional Food
17.
JAMA Netw Open ; 7(4): e246589, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38635271

ABSTRACT

Importance: Perioperative anxiety is prevalent among patients undergoing surgical treatment of cancer and often influences their prognosis. Transcranial direct current stimulation (tDCS) has shown potential in the treatment of various anxiety-related disorders, but data on the impact of tDCS on perioperative anxiety are limited. Objective: To evaluate the effect of tDCS in reducing perioperative anxiety among patients undergoing laparoscopic colorectal cancer (CRC) resection. Design, Setting, And Participants: This randomized clinical trial was conducted from March to August 2023 at the Affiliated Hospital of Xuzhou Medical University. Patients aged 18 years or older undergoing elective laparoscopic radical resection for CRC were randomly assigned to either the active tDCS group or the sham tDCS group. Intention-to-treat data analysis was performed in September 2023. Interventions: Patients were randomly assigned to receive 2 sessions of either active tDCS or sham tDCS over the left dorsolateral prefrontal cortex on the afternoon of the day before the operation and in the morning of the day of operation. Main Outcomes and Measures: The main outcome was the incidence of perioperative anxiety from the day of the operation up to 3 days after the procedure, as measured using the Hospital Anxiety and Depression Scale-Anxiety (HADS-A) subscale (range: 0-21, with higher scores indicating more anxiety). Secondary outcomes included postoperative delirium (assessed by the Confusion Assessment Method or Confusion Assessment Method intensive care unit scale); pain (assessed by the 10-point Numeric Rating Scale [NRS], with scores ranging from 0 [no pain] to 10 [worst pain]); frailty (assessed by the Fatigue, Resistance, Ambulation, Illness and Loss of Weight [FRAIL] Index, with scores ranging from 0 [most robust] to 5 [most frail]; and sleep quality (assessed by the Pittsburgh Sleep Quality Index [PSQI], with scores ranging from 0 to 21 and higher scores indicating worse sleep quality) after the 2 sessions of the tDCS intervention. Results: A total of 196 patients (mean [SD] age, 63.5 [11.0] years; 124 [63.3%] men) were recruited and randomly assigned to the active tDCS group (98 patients) or the sham tDCS group (98 patients). After the second tDCS intervention on the day of the operation, the incidence of perioperative anxiety was 38.8% in the active tDCS group and 70.4% in the sham tDCS group (relative risk, 0.55 [95% CI, 0.42-0.73]; P < .001). Patients in the active tDCS group vs the sham tDCS group were less likely to have postoperative delirium (8.2% vs 25.5%) and, at 3 days after the operation, had lower median (IQR) pain scores (NRS, 1.0 [1.0-1.0] vs 2.0 [2.0-2.0]), better median (IQR) sleep quality scores (PSQI, 10.5 [10.0-11.0] vs 12.0 [11.0-13.0]), and lower median (IQR) FRAIL Index (2.0 [1.0-2.0] vs 2.0 [2.0-3.0]). Conclusions and Relevance: Findings of this randomized clinical trial indicate that administration of 2 preoperative sessions of tDCS was associated with a decreased incidence of perioperative anxiety in patients undergoing elective CRC resection. Active tDCS was also associated with better anxiety scores, pain levels, and sleep quality as well as reduced postoperative delirium and frailty. The findings suggest that tDCS may be a novel strategy for improving perioperative anxiety in patients undergoing CRC resection. Trial Registration: Chinese Clinical Trial Register Identifier: ChiCTR2300068859.


Subject(s)
Colorectal Neoplasms , Emergence Delirium , Frailty , Laparoscopy , Transcranial Direct Current Stimulation , Female , Humans , Male , Middle Aged , Anxiety , Fatigue , Pain , Aged
18.
ACS Appl Mater Interfaces ; 16(15): 19615-19624, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587106

ABSTRACT

Introducing component-selective polymer chains onto the surface of a particle is an effective approach to improve the compatibilization efficiency of a particle-based compatibilizer. In this study, two particles with different kinds of component-selective polymer chains that have the same length and similar density but different graft locations were synthesized and their compatibilization effects were comparatively investigated. It was found that compared with the particle with homogeneous PMMA and PP grafts (R-P), the particle with a hemisphere of poly(methyl methacrylate) (PMMA) grafts and other hemisphere of polypropylene (PP) chains (J-P) showed a better compatibilization effect under equal loadings, although both particles exhibited high efficiency. The better compatibilization effect of particles with Janus grafts may be attributed to the stronger entanglements between grafted polymer chains and selective individual components. This work suggests that optimizing the graft location of a particle is an effective strategy for improving its compatibilization efficiency and helpful for the design of advanced particle compatibilizers.

19.
Asian J Psychiatr ; 95: 104025, 2024 May.
Article in English | MEDLINE | ID: mdl-38522164

ABSTRACT

This study aimed to investigate the neurobiological mechanisms by which microRNA 124 (miR-124) is involved in major depressive disorder (MDD). We enrolled 53 untreated MDD patients and 38 healthy control (HC) subjects who completed behavior assessments and resting-state functional MRI (rs-fMRI) scans. MiR-124 expression levels were detected in the peripheral blood of all participants. We determined that miR-124 levels could influence depressive symptoms via disrupted large-scale intrinsic intra- and internetwork connectivity, including the default mode network (DMN)-DMN, dorsal attention network (DAN)-salience network (SN), and DAN-cingulo-opercular network (CON). This study deepens our understanding of how miR-124 dysregulation contributes to depression.


Subject(s)
Depressive Disorder, Major , MicroRNAs , Adult , Female , Humans , Male , Middle Aged , Young Adult , Brain/diagnostic imaging , Brain/physiopathology , Connectome , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Depressive Disorder, Major/physiopathology , Magnetic Resonance Imaging , MicroRNAs/genetics , Nerve Net/diagnostic imaging , Nerve Net/physiopathology
20.
Int J Biol Macromol ; 265(Pt 1): 130900, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499126

ABSTRACT

Nanocellulose-based biomaterials have gained significant attention in various fields, especially in medical and pharmaceutical areas, due to their unique properties, including non-toxicity, high specific surface area, biodegradability, biocompatibility, and abundant feasible and sophisticated strategies for functional modification. The biosafety of nanocellulose itself is a prerequisite to ensure the safe and effective application of biomaterials as they interact with living cells, tissues, and organs at the nanoscale. Potential residual endogenous impurities and exogenous contaminants could lead to the failure of the intended functionalities or even serious health complications if they are not adequately removed and assessed before use. This review summarizes the sources of impurities in nanocellulose that may pose potential hazards to their biosafety, including endogenous impurities that co-exist in the cellulosic raw materials themselves and exogenous contaminants caused by external exposure. Strategies to reduce or completely remove these impurities are outlined and classified as chemical, physical, biological, and combined methods. Additionally, key points that require careful consideration in the interpretation of the biosafety evaluation outcomes were discussed to ensure the safety and effectiveness of the nanocellulose-based biomaterials in medical applications.


Subject(s)
Biocompatible Materials , Containment of Biohazards
SELECTION OF CITATIONS
SEARCH DETAIL