Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Spine Surg ; 30(5): E662-E668, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28525494

ABSTRACT

STUDY DESIGN: A radiographic analysis of the anatomy of the C1 lateral mass using computed tomography (CT) scans and Mimics software. OBJECTIVE: To define the anatomy of the C1 lateral mass and make recommendations for optimal entry point and trajectory for anterior C1 lateral mass screws. SUMMARY OF BACKGROUND DATA: Although various posterior insertion angles and entry points for screw insertion have been proposed for posterior C1 lateral mass screws, no large series have been performed to assess the ideal entry point and optimal trajectory for anterior C1 lateral mass screw placement. MATERIALS AND METHODS: The C1 lateral mass was evaluated using CT scans and a 3-dimensional imaging application (Mimics software). Measuring the space available for the anterior C1 lateral mass screw (SAS) at different camber angles from 0 to 30 degrees (5-degree intervals) was performed to identify the ideal camber angle of insertion. Measuring the range of sagittal angles was performed to calculate the ideal sagittal angle. Other measurements involving the height of the C1 lateral mass were also made. RESULTS: The optimal screw entry point was found to be located on the anterior surface of the atlas 12.88 mm (±1.10 mm) lateral to the center of the anterior tubercle. This optimal entry point was found to be 6.81 mm (±0.59 mm) superior to the anterior edge of the atlas inferior articulating process. The mean ideal camber angle was 20.92 degrees laterally and the mean ideal sagittal angle was 5.80 degrees downward. CONCLUSIONS: These measurements define the optimal entry point and trajectory for anterior C1 lateral mass screws and facilitate anterior C1 lateral mass screw placement. A thorough understanding of the local anatomy may decrease the risk of injury to the spinal cord, vertebral artery, and internal carotid artery. Delineating the anatomy in each case with preoperative 3D CT evaluation is recommended.


Subject(s)
Bone Screws , Cervical Vertebrae/surgery , Adolescent , Adult , Biomechanical Phenomena , Cervical Vertebrae/diagnostic imaging , Female , Humans , Male , Middle Aged , Osteotomy , Tomography, X-Ray Computed , Young Adult
2.
Spine (Phila Pa 1976) ; 40(4): E191-8, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25398038

ABSTRACT

STUDY DESIGN: Anatomic study of the C1 lateral mass using fine-cut computed tomographic scans and Mimics software. OBJECTIVE: To investigate the optimal entry point, medial angles, and effective length for safe fixation using posterior C1 lateral mass screws. SUMMARY OF BACKGROUND DATA: Placing posterior C1 lateral mass screws is technically demanding, and a misplaced screw can result in injury to the vertebral artery, spinal cord, or internal carotid artery. Although various insertion angles have been proposed for posterior C1 lateral mass screw, no clear consensus has been reached on the ideal medial angle of the C1 lateral mass. METHODS: The C1 lateral masses were evaluated using computed tomographic scans and Mimics software in 70 patients. The effective width and effective screw length of posterior C1 lateral mass screws were measured at different medial angulations relative to the midline sagittal plane. The height (H) for screw entry point on the posterior surface of C1 lateral mass and the distance (D) between screw entry point and the intersection of the midline sagittal plane and the posterior arch of the atlas were also measured. RESULTS: The mean height (H) for screw entry on the posterior surface of the lateral mass was 4.25 mm, the mean distance (D) between screw entry point and the intersection of the midsagittal plane and the posterior arch of the atlas was 27.62 mm. The optimal medial angle was 20.86° with a corresponding effective width of 10.56 mm and effective screw length of 21.87 mm. CONCLUSION: This study helps to define the specific anatomy related to C1 posterior lateral mass screw placement in an effort to facilitate instrumentation. However, variation is seen in lateral mass anatomy, and this study must be combined with customized surgical planning that includes advanced imaging for safe and effective instrumentation. LEVEL OF EVIDENCE: 1.


Subject(s)
Atlanto-Axial Joint/surgery , Bone Screws , Cervical Atlas/surgery , Spinal Fusion/methods , Adolescent , Adult , Female , Humans , Male , Middle Aged , Neck Pain/surgery , Young Adult
3.
PLoS One ; 9(9): e108450, 2014.
Article in English | MEDLINE | ID: mdl-25251538

ABSTRACT

We have investigated the processes of community assembly using size classes of trees. Specifically our work examined (1) whether point process models incorporating an effect of size-class produce more realistic summary outcomes than do models without this effect; (2) which of three selected models incorporating, respectively environmental effects, dispersal and the joint-effect of both of these, is most useful in explaining species-area relationships (SARs) and point dispersion patterns. For this evaluation we used tree species data from the 50-ha forest dynamics plot in Barro Colorado Island, Panama and the comparable 20 ha plot at Bubeng, Southwest China. Our results demonstrated that incorporating an size-class effect dramatically improved the SAR estimation at both the plots when the dispersal only model was used. The joint effect model produced similar improvement but only for the 50-ha plot in Panama. The point patterns results were not improved by incorporation of size-class effects using any of the three models. Our results indicate that dispersal is likely to be a key process determining both SARs and point patterns. The environment-only model and joint-effects model were effective at the species level and the community level, respectively. We conclude that it is critical to use multiple summary characteristics when modelling spatial patterns at the species and community levels if a comprehensive understanding of the ecological processes that shape species' distributions is sought; without this results may have inherent biases. By influencing dispersal, the effect of size-class contributes to species assembly and enhances our understanding of species coexistence.


Subject(s)
Trees/chemistry , Tropical Climate , China , Models, Theoretical , Panama
SELECTION OF CITATIONS
SEARCH DETAIL