Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 298
Filter
1.
Environ Pollut ; 358: 124499, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964648

ABSTRACT

To investigate the impact of different H2O2 concentrations on the Fenton-like systems of H2O2/biochar, this study examined the mechanism of the physical structure and environmental persistent free radicals (EPFRs) of biochar during diethyl phthalate (DEP) removal by the Fenton-like system. The peak-splitting method was utilized to differentiate EPFRs types in cotton stalk biochar produced at different temperatures. High-temperature environments promote π-electron delocalization, which facilitates phenyl π free radicals and σ-π oxygen-containing free radicals. By analyzing relationships between the removal rate K1 and removal constant Kobs of DEP with the structural properties of biochar, it was discovered that EPFRs concentrations in biochar had a significant positive correlation with K1 (r = 0.92) and Kobs (r = 0.97). Different H2O2 concentrations added to the biochar removal system resulted in varied DEP removal efficiency. Among them, CS500, CS550, and CS600 exhibited superior DEP removal efficiency when H2O2 concentration was 5 mM.

2.
Acad Radiol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944632

ABSTRACT

PURPOSE: Isocitrate dehydrogenase (IDH) and cyclin-dependent kinase inhibitor (CDKN) 2A/B status holds important prognostic value in diffuse gliomas. We aimed to construct prediction models using clinically available and reproducible characteristics for predicting IDH-mutant and CDKN2A/B homozygous deletion in adult-type diffuse glioma patients. MATERIALS AND METHODS: This retrospective, two-center study analysed 272 patients with adult-type diffuse glioma (230 for primary cohort and 42 for external validation cohort). Two radiologists independently assessed the patients' images according to the Visually AcceSAble Rembrandt Images (VASARI) feature set. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to optimise variable selection. Multivariable logistic regression analysis was used to develop the prediction models. Calibration plots, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA) were used to validate the models. Nomograms were developed visually based on the prediction models. RESULTS: The interobserver agreement between the two radiologists for VASARI features was excellent (κ range, 0.813-1). For the IDH-mutant prediction model, the area under the curves (AUCs) was 0.88-0.96 in the internal and external validation sets, For the CDKN2A/B homozygous deletion model, the AUCs were 0.80-0.86 in the internal and external validation sets. The decision curves show that both prediction models had good net benefits. CONCLUSION: The prediction models which basing on VASARI and clinical features provided a reliable and clinically meaningful preoperative prediction for IDH and CDKN2A/B status in diffuse glioma patients. These findings provide a foundation for precise preoperative non-invasive diagnosis and personalised treatment approaches for adult-type diffuse glioma patients.

3.
Int J Biol Macromol ; : 133373, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38945717

ABSTRACT

In this work, a Z-scheme heterostructured BiOCOOH/O-gC3N4 material was synthesized and immobilized on chitosan (CTS) to obtain the BiOCOOH/O-gC3N4/CTS photocatalytic material for photocatalytic degradation of oxytetracycline hydrochloride (CTC).Our findings indicate that the composite material BiOCOOH/O-gC3N4, as well as the BiOCOOH/O-gC3N4/CTS composite membrane, displayed a significantly higher efficiency in photocatalytic degradation of CTC compared to BiOCOOH alone, owing to the synergistic effect of adsorption and photocatalysis. Following four cycles of use, the composite material retained around 96 % of its initial photocatalytic degradation activity. The addition of CTS in the photocatalytic material resolved issues such as aggregation and difficult recovery commonly encountered with powder materials, thereby facilitating effective collision between the photocatalytic active sites and CTC. Experimental and theoretical calculations provided confirmation that the combination of BiOCOOH and O-gC3N4 effectively enhanced the light absorption capacity and photocatalytic performance. Furthermore, we investigated the influence of environmental factors such as pH value and anions on the photocatalytic degradation experiment, which offers valuable insights for the application of composite catalysts in wastewater treatment.

4.
Toxics ; 12(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38922074

ABSTRACT

As an antioxidant and antiozonant, N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is predominantly used in the rubber industry to prevent degradation. However, 6PPD can be ozonated to generate a highly toxic transformation product called N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone), which is toxic to aquatic and terrestrial organisms. Thus, 6PPD and 6PPD-quinone, two emerging contaminants, have attracted extensive attention recently. This review discussed the levels and distribution of 6PPD and 6PPD-quinone in the environment and investigated their toxic effects on a series of organisms. 6PPD and 6PPD-quinone have been widely found in air, water, and dust, while data on soil, sediment, and biota are scarce. 6PPD-quinone can cause teratogenic, developmental, reproductive, neuronal, and genetic toxicity for organisms, at environmentally relevant concentrations. Future research should pay more attention to the bioaccumulation, biomagnification, transformation, and toxic mechanisms of 6PPD and 6PPD-quinone.

5.
Genes (Basel) ; 15(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38927703

ABSTRACT

We identified five distinct full-length human mineralocorticoid receptor (MR) genes containing either 984 amino acids (MR-984) or 988 amino acids (MR-988), which can be distinguished by the presence or absence of Lys, Cys, Ser, and Trp (KCSW) in their DNA-binding domain (DBD) and mutations at codons 180 and 241 in their amino-terminal domain (NTD). Two human MR-KCSW genes contain either (Val-180, Val-241) or (Ile-180, Val-241) in their NTD, and three human MR-984 genes contain either (Ile-180, Ala-241), (Val-180, Val-241), or (Ile-180, Val-241). Human MR-KCSW with (Ile-180, Ala-241) has not been cloned. In contrast, chimpanzees contain four MRs: two MR-988s with KCSW in their DBD, or two MR-984s without KCSW in their DBD. Chimpanzee MRs only contain (Ile180, Val-241) in their NTD. A chimpanzee MR with either (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD has not been cloned. Gorillas and orangutans each contain one MR-988 with KCSW in the DBD and one MR-984 without KCSW, and these MRs only contain (Ile-180, Val-241) in their NTD. A gorilla MR or orangutan MR with either (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD has not been cloned. Together, these data suggest that human MRs with (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD evolved after humans and chimpanzees diverged from their common ancestor. Considering the multiple functions in human development of the MR in kidney, brain, heart, skin, and lungs, as well as MR activity in interaction with the glucocorticoid receptor, we suggest that the evolution of human MRs that are absent in chimpanzees may have been important in the evolution of humans from chimpanzees. Investigation of the physiological responses to corticosteroids mediated by the MR in humans, chimpanzees, gorillas, and orangutans may provide insights into the evolution of humans and their closest relatives.


Subject(s)
Evolution, Molecular , Gorilla gorilla , Pan troglodytes , Receptors, Mineralocorticoid , Animals , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Humans , Pan troglodytes/genetics , Gorilla gorilla/genetics , Phylogeny , Pongo/genetics , Amino Acid Sequence , Protein Domains
6.
Water Res ; 260: 121939, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38901308

ABSTRACT

A large amount of organophosphorus-containing wastewater is produced in spent lithium-ion battery disposal. Forward osmosis (FO) offers unique advantages in purifying this kind of wastewater if suitable draw solutes - the core of FO technology, are available. Herein we synthesize several pH-sensitive zinc complexes, namely ZnATMP-iNa (i = 0, 1, 2, 3, 4), from ZnSO4 and amino tris(methylene phosphonic acid) (ATMP) obtained from scale inhibitor wastes for organophosphorus-containing wastewater remediation. Among these ZnATMP-iNa, ZnATMP-3Na best meets the standards of an ideal draw solute. This makes ZnATMP-3Na outperform other reported draw solutes. 0.6 M ZnATMP-3Na produces a water flux of 12.7 LMH, 136 % higher than that of NaCl and a solute loss of 0.015 g/L, lower than that of NH4HCO3 (0.83 g/L). In organophosphorus-containing wastewater treatment, ZnATMP-3Na has higher water recovery efficiency (8.3 LMH) and sustainability than NaCl and NH4HCO3, and is sufficient to handle large quantities of wastewater. Remarkably, the pH-responsive property allows ZnATMP-3Na to be readily recovered through pH-control and reused in FO. The ionic property, expanded cage-like structure and easy-recycling make ZnATMP-3Na achieve sustainable FO separation and superior to other draw solutes. This study provides inspiration for draw solute design from wastes and extends FO application to organophosphorus-containing wastewater remediation.

7.
Nat Commun ; 15(1): 4880, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849347

ABSTRACT

Assembling graphene sheets into macroscopic fibers with graphitic layers uniaxially aligned along the fiber axis is of both fundamental and technological importance. However, the optimal performance of graphene-based fibers has been far lower than what is expected based on the properties of individual graphene. Here we show that both mechanical properties and electrical conductivity of graphene-based fibers can be significantly improved if bridges are created between graphene edges through covalent conjugating aromatic amide bonds. The improved electrical conductivity is likely due to extended electron conjugation over the aromatic amide bridged graphene sheets. The larger sheets also result in improved π-π stacking, which, along with the robust aromatic amide linkage, provides high mechanical strength. In our experiments, graphene edges were bridged using the established wet-spinning technique in the presence of an aromatic amine linker, which selectively reacts to carboxyl groups at the graphene edge sites. This technique is already industrial and can be easily upscaled. Our methodology thus paves the way to the fabrication of high-performance macroscopic graphene fibers under optimal techno-economic and ecological conditions.

8.
Clin Cosmet Investig Dermatol ; 17: 1405-1412, 2024.
Article in English | MEDLINE | ID: mdl-38895607

ABSTRACT

Rosacea is a chronic inflammatory skin disease that affects a patient's appearance and quality of life. It mainly affects the midface region and presents as erythema, flushing, telangiectasia, papules, pustules, and rhinophyma. Despite its prevalence, the precise pathophysiology of rosacea remains unknown, and novel pharmacological therapies are currently under investigation. Tranexamic acid (TA) is a synthetic, lysine-like compound that competitively inhibits fibrinogen production by synthesizing fibrinolytic enzymes. In addition to its popular application in hemorrhage treatment, TA has been used to manage a number of skin conditions, including melasma, chronic urticaria, and angioedema. TA is a better option for melasma treatment. However, the role of TA in treating rosacea has not yet been systematically elucidated. In this study, we reviewed all available literature on the use of TA for rosacea treatment. The included articles examined the therapeutic effects of TA in patients with rosacea, including traditional methods such as oral and topical administration and more novel approaches such as intradermal injections, microneedling, and laser-assisted delivery. Several recent clinical studies demonstrated that TA alleviates rosacea symptoms by restoring the permeability barrier, ameliorating the immune reaction, and inhibiting angiogenesis. In this review, we summarized the function and potential application of TA in rosacea treatment, aiming to facilitate the implementation of clinical applications.

9.
Redox Biol ; 73: 103183, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759418

ABSTRACT

AIMS: Vascular calcification is strongly linked to the development of major adverse cardiovascular events, but effective treatments are lacking. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an emerging category of oral hypoglycemic drugs that have displayed marked effects on metabolic and cardiovascular diseases, including recently reported vascular medial calcification. However, the roles and underlying mechanisms of SGLT2 inhibitors in vascular calcification have not been fully elucidated. Thus, we aimed to further determine whether SGLT2 inhibitors protect against vascular calcification and to investigate the mechanisms involved. METHODS AND RESULTS: A computed tomography angiography investigation of coronary arteries from 1554 patients with type 2 diabetes revealed that SGLT2 inhibitor use was correlated with a lower Agatston calcification score. In the vitamin D3 overdose, 5/6 nephrectomy chronic kidney disease-induced medial calcification and Western diet-induced atherosclerotic intimal calcification models, dapagliflozin (DAPA) substantially alleviated vascular calcification in the aorta. Furthermore, we showed that DAPA reduced vascular calcification via Runx2-dependent osteogenic transdifferentiation in vascular smooth muscle cells (VSMCs). Transcriptome profiling revealed that thioredoxin domain containing 5 (TXNDC5) was involved in the attenuation of vascular calcification by DAPA. Rescue experiments showed that DAPA-induced TXNDC5 downregulation in VSMCs blocked the protective effect on vascular calcification. Furthermore, TXNDC5 downregulation disrupted protein folding-dependent Runx2 stability and promoted subsequent proteasomal degradation. Moreover, DAPA downregulated TXNDC5 expression via amelioration of oxidative stress and ATF6-dependent endoplasmic reticulum stress. Consistently, the class effects of SGLT2 inhibitors on vascular calcification were validated with empagliflozin in intimal and medial calcification models. CONCLUSIONS: SGLT2 inhibitors ameliorate vascular calcification through blocking endoplasmic reticulum stress-dependent TXNDC5 upregulation and promoting subsequent Runx2 proteasomal degradation, suggesting that SGLT2 inhibitors are potentially beneficial for vascular calcification treatment and prevention.


Subject(s)
Glucosides , Osteogenesis , Sodium-Glucose Transporter 2 Inhibitors , Vascular Calcification , Vascular Calcification/metabolism , Vascular Calcification/drug therapy , Vascular Calcification/pathology , Vascular Calcification/etiology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Humans , Osteogenesis/drug effects , Mice , Glucosides/pharmacology , Male , Thioredoxins/metabolism , Thioredoxins/genetics , Benzhydryl Compounds/pharmacology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Rats , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Disease Models, Animal , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Endoplasmic Reticulum Stress/drug effects , Female
10.
Exp Eye Res ; 244: 109937, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782179

ABSTRACT

Sjögren's syndrome (SS) dry eye can cause ocular surface inflammation and lacrimal gland (LG) damage, leading to discomfort and potential vision problems. The existing treatment options for SS dry eye are currently constrained. We investigated the possible therapeutic effect and the underlying mechanism of AS101 in autoimmune dry eye. AS101 was injected subconjunctivally into a rabbit model of autoimmune dacryoadenitis and its therapeutic effects were determined by evaluating clinical and histological scores. The expressions of effector T cells (Teff)/regulatory T cells (Treg)-related transcription factors and cytokines, inflammation mediators, and transcription factor NFATc2 were measured by quantitative real-time PCR and/or Western blot both in vivo and in vitro. Additionally, the role of NFATc2 in the immunomodulatory effects of AS101 on T cells was explored by co-culturing activated peripheral blood lymphocytes (PBLs) transfected with NFATc2 overexpression lentiviral plasmid with AS101. AS101 treatment potently ameliorated the clinical severity and reduced the inflammation of LG. Further investigation revealed that AS101 treatment led to decreased expression of Th1-related genes (T-bet and IFN-γ) and Th17-related genes (RORC, IL-17A, IL-17F, and GM-CSF) and increased expression of Treg-related gene Foxp3 in vivo and in vitro. Meanwhile, AS101 suppressed the expression of TNF-α, IL-1ß, IL-23, IL-6, MMP-2, and MMP-9. Mechanistically, AS101 downregulated the expression of NFATc2 in inflamed LGs. Overexpression of NFATc2 in activated PBLs partially blunted the effect of AS101 on Teff suppression and Treg promotion. In conclusion, AS101 is a potential regulator of Teff/Treg cell balance and could be an effective treatment agent for SS dry eye.


Subject(s)
Dacryocystitis , Disease Models, Animal , NFATC Transcription Factors , T-Lymphocytes, Regulatory , Animals , Rabbits , T-Lymphocytes, Regulatory/immunology , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Dacryocystitis/drug therapy , Dacryocystitis/metabolism , Real-Time Polymerase Chain Reaction , Autoimmune Diseases/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Female , Blotting, Western , Lacrimal Apparatus/metabolism , Lacrimal Apparatus/pathology , Cytokines/metabolism , Gene Expression Regulation
11.
J Steroid Biochem Mol Biol ; 243: 106548, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821293

ABSTRACT

Due to alternative splicing in an ancestral DNA-binding domain (DBD) of the mineralocorticoid receptor (MR), humans contain two almost identical MR transcripts with either 984 amino acids (MR-984) or 988 amino acids (MR-988), in which their DBDs differ by only four amino acids, Lys,Cys,Ser,Trp (KCSW). Human MRs also contain mutations at two sites, codons 180 and 241, in the amino terminal domain (NTD). Together, there are five distinct full-length human MR genes in GenBank. Human MR-984, which was cloned in 1987, has been extensively studied. Human MR-988, cloned in 1995, contains KCSW in its DBD. Neither this human MR-988 nor the other human MR-988 genes have been studied for their response to aldosterone and other corticosteroids. Here, we report that transcriptional activation of human MR-988 by aldosterone is increased by about 50 % compared to activation of human MR-984 in HEK293 cells transfected with the TAT3 promoter, while the half-maximal response (EC50) is similar for aldosterone activation of MR-984 and MR-988. Transcriptional activation of human MR also depends on the amino acids at codons 180 and 241. Interestingly, in HEK293 cells transfected with the MMTV promoter, transcriptional activation by aldosterone of human MR-988 is similar to activation of human MR-984, indicating that the promoter has a role in the regulation of the response of human MR-988 to aldosterone. The physiological responses to aldosterone and other corticosteroids in humans with MR genes containing KCSW and with differences at codons 180 and 241 in the NTD warrant investigation.

12.
BMC Genomics ; 25(1): 485, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755540

ABSTRACT

BACKGROUND: Indigenous chickens were developed through a combination of natural and artificial selection; essentially, changes in genomes led to the formation of these modern breeds via admixture events. However, their confusing genetic backgrounds include a genomic footprint regulating complex traits, which is not conducive to modern animal breeding. RESULTS: To better evaluate the candidate regions under domestication in indigenous chickens, we considered both runs of homozygosity (ROHs) and selective signatures in 13 indigenous chickens. The genomes of Silkie feather chickens presented the highest heterozygosity, whereas the highest inbreeding status and ROH number were found in Luhua chickens. Short ROH (< 1 Mb), were the principal type in all chickens. A total of 291 ROH islands were detected, and QTLdb mapping results indicated that body weight and carcass traits were the most important traits. An ROH on chromosome 2 covering VSTM2A gene was detected in 12 populations. Combined analysis with the Tajima's D index revealed that 18 genes (e.g., VSTM2A, BBOX1, and RYR2) were under selection and covered by ROH islands. Transcriptional analysis results showed that RYR2 and BBOX1 were specifically expressed in the heart and muscle tissue, respectively. CONCLUSION: Based on genome-wide scanning for ROH and selective signatures, we evaluated the genomic characteristics and detected significant candidate genes covered by ROH islands and selective signatures. The findings in this study facilitated the understanding of genetic diversity and provided valuable insights for chicken breeding and conservation strategies.


Subject(s)
Chickens , Domestication , Homozygote , Animals , Chickens/genetics , Selection, Genetic , Quantitative Trait Loci , Genome , Genomics/methods , Polymorphism, Single Nucleotide
13.
Sci Rep ; 14(1): 10959, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745034

ABSTRACT

Molecular hydrogen is an emerging broad-spectrum antioxidant molecule that can be used to treat myocardial infarction (MI). However, with hydrogen inhalation, the concentration that can be reached within target organs is low and the duration of action is short, which makes it difficult to achieve high dose targeted delivery of hydrogen to the heart, seriously limiting the therapeutic potential of hydrogen for MI. As a result of reactions with the internal environment of the body, subcutaneous implantation of magnesium slices leads to continuous endogenous hydrogen production, leading to a higher hydrogen concentration and a longer duration of action in target organs. In this study, we propose magnesium implant-based hydrogen therapy for MI. After subcutaneous implantation of magnesium slices in the dorsum of rats, we measured hydrogen production and efficiency, and evaluated the safety of this approach. Compared with hydrogen inhalation, it significantly improved cardiac function in rats with MI. Magnesium implantation also cleared free radicals that were released as a result of mitochondrial dysfunction, as well as suppressing cardiomyocyte apoptosis.


Subject(s)
Hydrogen , Magnesium , Myocardial Infarction , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Magnesium/metabolism , Rats , Male , Rats, Sprague-Dawley , Apoptosis/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Disease Models, Animal
14.
Lancet Reg Health West Pac ; 45: 100992, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699293

ABSTRACT

Over the last 20 years, the numbers, types, distribution, and qualifications of mental health professionals in China have changed dramatically. However, there has been no systematic attempt to collect information about this transformation in the human resources available to provide mental health services-information that needs to be regularly updated to improve the country's coordination of these services. This scoping review compiles current details about China's mental health workforce and identifies critical gaps in available research and reporting. We reviewed all relevant studies and reports published between 1 January 2000 and 30 June 2021 in two English-language and four Chinese-language databases, the website of China's National Health Commission, and national and provincial health services yearbooks. In addition to summarising data from government yearbooks, we integrated relevant results from 82 peer-reviewed publications and two government reports. From 2000 to 2020, the number of psychiatrists in the country increased by 139%, and the number of psychiatric nurses increased by 340%. However, the much higher ratio of mental health professionals per 100,000 population and the better quality of training of mental health professionals in urban, eastern provinces compared to rural, western provinces has not changed. Progress has been made in standardising the training of psychiatrists, but there are no standardised training programs for psychiatric nurses, clinical psychologists, or psychiatric social workers. Future research needs to address several issues that limit the effectiveness of policies aimed at increasing the size, quality and equitable distribution of China's mental health workforce: 1) limited data available about the numbers and characteristics of professionals who provide mental health services, 2) absence of nationally standardised training programs for non-psychiatric medical professionals and non-medical personnel who provide essential monitoring and supportive care to persons with mental illnesses, and 3) failure to scientifically assess the outcomes of currently available training programs.

15.
Sci Total Environ ; 930: 172794, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38677421

ABSTRACT

The rapid urbanization witnessed in developing countries in Asia and Africa has led to a substantial increase in municipal solid waste (MSW) generation. However, the corresponding disposal strategies, along with constraints in land resources and finances, compounded by unorganized public behaviour, have resulted in ineffective policy implementation and monitoring. This lack of systematic and targeted orientation, combined with blind mapping, has led to inefficient development in many areas. This review examines the key challenges of MSW management in developing countries in Asia and Africa from 2013 to 2023, drawing insights from 170 academic papers. Rather than solely focusing on recycling, the study proposes waste sorting at the source, optimization of landfill practices, thermal treatment measures, and strategies to capitalize on the value of waste as more pertinent solutions aligned with local realities. Barriers to optimizing management systems arise from socio-economic factors, infrastructural limitations, and cultural considerations. The review emphasizes the importance of integrating the study area into the circular economy framework, with a focus on enhancing citizen participation in solid waste reduction and promoting recycling initiatives, along with seeking economic assistance from international organizations.

16.
J Phys Chem Lett ; 15(15): 4197-4205, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38598694

ABSTRACT

Multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are excellent candidates for high-performance organic light-emitting diodes (OLEDs) due to their narrowband emission properties. However, the inherent mechanism of regulating the rate of intersystem crossing (ISC) is ambiguous in certain MR-TADF skeletons. Herein, we propose a mechanism of accelerating ISC in B/S-based MR-TADF emitters by peripheral modifications of electron-donating groups (EDGs) without affecting the narrowband emission property. The long-range charge transfer (LRCT) stems from the introduced EDG leading to high-lying singlet and triplet excited states. The ISC process is accelerated by the enhanced spin-orbital coupling (SOC) between the singlet short-range charge transfer (SRCT) and triplet LRCT manifolds. Meanwhile, the narrowband emission derived from the MR-type SRCT state is well retained as expected in the peripherally modified MR-TADF emitters. This work reveals the regulation mechanism of photophysical properties by high-lying LRCT excited states and provides a significant theoretical basis for modulating the rate of ISC in the further design of MR-TADF materials.

17.
J Phys Chem A ; 128(18): 3539-3547, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38679886

ABSTRACT

The potentially carcinogenic halobenzoquinones (HBQs) have been recently identified in drinking water as disinfection byproducts. Several radical intermediates in the reaction of 2,5-dichloro-1,4-benzoquinone (DCBQ) and t-butyl hydroperoxide (t-BuOOH), which may induce DNA damage, were detected experimentally, and metal-independent decomposition reactions of t-BuOOH by DCBQ were proposed. It has not yet been confirmed by theoretical calculations. The theoretical study in this work provides insights into the details of the reaction. An unprecedented self-catalysis mechanism of organic hydroperoxides, that is, the reactant t-BuOOH also has a catalytic effect, was uncovered at the molecular level. Moreover, as the solvent, water molecules also clearly have an efficient catalytic effect. Due to the catalysis of t-BuOOH and water, the metal-independent reaction of t-BuOOH and DCBQ can occur under moderate conditions. Our findings about the novel catalytic effect of organic hydroperoxides t-BuOOH could offer a unique perspective into the design of new catalysts and an understanding of the catalytic biological, environmental, and air pollution reactions. Furthermore, organic hydroperoxide t-BuOOH could serve as a proton shuttle, where the proton transfer process is accompanied by simultaneous charge transfer. Therefore, organic hydroperoxides may disrupt the vital proton transfer process in biological systems and may give rise to unexpected toxicity.

18.
Environ Sci Pollut Res Int ; 31(19): 27804-27816, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38517629

ABSTRACT

With the development of industry and economy, ammonia nitrogen pollutions in surface water are of great concern worldwide. This study investigated the historical contents of total ammonia nitrogen (TAN) and unionized ammonia molecules (NH3) in nine fresh lakes in China during 2014-2022. Three different classification methods (flood season, season, and geographical distribution) were used to analyze the concentration variation of TAN and NH3. The concentration of TAN first decreased and then increased in the flood season, showing a lower concentration in summer and a higher concentration in winter. The variation trend of NH3 was in an opposite way with TAN. Correlation analysis between ammonia and 10 water quality parameters and 4 pollution emission and treatment parameters showed that the correlation coefficient between TAN and total phosphorus (total nitrogen) was 0.44 (0.43), respectively. The correlation coefficients between average annual TAN concentration and total emissions (waste water treatment input) were 0.35 (0.53), respectively. Combined with ecotoxicity data from a series of aquatic species, the ecological risks of TAN and NH3 in lakes were evaluated using hazard quotient and joint probability curve methods. From 2014 to 2022, the probability of 5% species affected in the acute ecological risk of TAN and NH3 is lower than 0.01, but for the chronic ecological risk of TAN and NH3, the probabilities of 5% species affected are 0.003-0.030 and 0.04-0.14, respectively. The chronic ecological risks were higher than the acute ecological risks, and high risks in plateau lakes like Dianchi Lake should be paid more attention to.


Subject(s)
Ammonia , Environmental Monitoring , Lakes , Water Pollutants, Chemical , Lakes/chemistry , China , Ammonia/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Water Quality , Seasons
19.
Front Oncol ; 14: 1329264, 2024.
Article in English | MEDLINE | ID: mdl-38496764

ABSTRACT

Low Grade Fibromyxoid Sarcoma (LGFMS), a rare entity characterized by bland histologic features, typically affects deep soft tissues of the trunk and lower extremities. Rare cases have been reported arising from the viscera and few demonstrating morphology of high-grade dedifferentiation. Here we report a 39-year-old Chinese woman presenting with primary lung LGFMS, which metastasized to the pancreas five years after diagnosis and then relapsed ten years later as a mediastinum mass. Microscopically, the lung and pancreatic lumps shared similar classical features of LGFMS, composed of bland spindle-shaped cells with low mitotic activity. However, the mediastinal mass had dedifferentiated morphology of dense sheets of round and epithelioid cells with high degree of nuclear pleomorphism and brisk mitosis. Molecular studies showed both classical and dedifferentiated areas had FUS::CREB3L2 rearrangement. However, the mediastinal dedifferentiated area presented with extra H193Y mutation of the TP53. Moreover, the mediastinal tumor displayed a strong and diffuse pattern of p53 expression immunohistochemically, but the primary lung and secondary pancreatic masses did not. Thus, we diagnosed the mediastinal mass as dedifferentiated LGFMS and proposed that TP53 mutation was probably the driver gene alteration in the process, which, to the best of our knowledge, has not been reported in the existing literature.

20.
J Invest Dermatol ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38447867

ABSTRACT

Rosacea is a chronic inflammatory skin disorder characterized by immune response-dependent erythema and pustules. S100A9, a proinflammatory alarmin, has been associated with various inflammation-related diseases. However, the specific role of S100A9 in rosacea remains unexplored. Therefore, our objective was to unravel the role of S100A9 in the pathogenesis of rosacea and its underlying molecular mechanisms. In this study, we show that expression levels of S100A9 were elevated in both the lesions and serum of patients with papulopustular rosacea as well as in lesions of the LL37-induced rosacea-like mouse model. Moreover, the upregulation of S100A9 was correlated with clinical severity and levels of inflammatory cytokines. In addition, we demonstrated that S100A9 promoted the production of proinflammatory factors in HaCaT cells by activating toll-like receptor 4/MyD88/NF-κB signaling pathways. Notably, inhibition of S100A9 suppressed the progression of rosacea-like dermatitis and inflammatory responses in the LL37-induced rosacea-like mouse model through toll-like receptor 4/MyD88/NF-κB signaling pathways. In conclusion, this study illustrated that S100A9 participates in the pathogenesis of rosacea by upregulating toll-like receptor 4/MyD88/NF-κB signaling pathways, thereby promoting rosacea-associated skin inflammation. These results not only expand our understanding of the potential role of S100A9 in the development of rosacea but also offer greater insight toward targeted therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...