Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(24): 12407-12418, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38848479

ABSTRACT

Understanding the microscopic electronic structure determines the macroscopic properties of the materials. Sufficient sampling has the same foundational importance in understanding the interactions. The NO2/MoS2 interaction is well known, but there are still many inconsistencies in the basic data, and the source of the NO2 direct dissociation activity has not been revealed. Based on a large-scale sampling density functional theory (DFT) study, the optimal adsorption of the NO2/MoS2 monolayer system is determined. The impurity state on the top of the valence band of the S-vacancy monolayer (MoS2-VS) was determined by cross-analysis of the band structure and density of states, which has been neglected for a long time. This provides a reasonable explanation for the direct dissociation of NO2 on the MoX2 monolayers. Further atomic structure analysis reveals that the impurity state originates from the not-fully occupied valence orbitals. This also corroborates the fact that the Mo material has dissociation activity, while the W material does not. There is no impurity state on the top of the valence band of the X-vacancy WS2 and WSe2 monolayers. Interestingly, NO2 dissociation did not occur in the MoTe2-VTe monolayer. This may be related to the 6s inert electron pair effect of the Te atom. The double-oriented adsorption behavior of NO2is also revealed. In contrast to the MoSe2 and MoTe2 monolayers, NO2-oriented adsorption on the MoS2 perfect monolayer deviates obviously, which is speculated to be related to space limitation and larger electronegativity of the S atom. The oriented adsorption ability of the MoX2 monolayers followed the order MoTe2 (64.4%) > MoSe2 (44.8%) > MoS2 (42.7%), according to the directed proportion. Renewed insights into the adsorption basic data and the understanding of the electronic structure of NO2/MoX2 (X = S, Se, Te) monolayer systems provide a basic understanding of the gas-surface interactions and various future surface-related advanced applications.

2.
Biomed Pharmacother ; 177: 116943, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878636

ABSTRACT

The immunosuppressive microenvironment is a vital factor for the hepatocellular carcinoma (HCC) progression. However, effective treatment is lacking at current. Shenlian decoction (SLD) is a registered herbal therapy for the HCC treatment, but the underlying mechanism of SLD remains largely elusive. Here, we aimed to explore the anti-tumor effect of SLD in the treatment of HCC. SLD was intragastrically given after the tumor initiation in ß-catenin/C-Met or DEN and CCl4 induced HCC mouse model. The tumor growth levels were evaluated by liver weight and histological staining. The tumor-infiltrating immune cells were detected by immunological staining and flow cytometry. The mechanism of the SLD was detected by non-targeted proteomics and verified by a cell co-culture system. The result showed that SLD significantly attenuated HCC progression. SLD promoted macrophage infiltration and increased the M1/M2 macrophage ratio within the tumor tissues. Non-targeted proteomics showed the inhibition of complement C5/C5a signaling is the key mechanism of SLD. Immunological staining showed SLD inhibited C5/C5a expression and C5aR1+ macrophage infiltration. The suggested mechanism was demonstrated by application of C5aR1 inhibitor, PMX-53 in mouse HCC model. Hepatoma cell-macrophage co-culture showed SLD targeted hepatoma cells and inhibited the supernatant-induced macrophage M2 polarization. SLD inhibited AMPK/p38 signaling which is an upstream mechanism of C5 transcription. In conclusion, we found SLD relieved immune-suppressive environment by inhibiting C5 expression. SLD could suppress the C5 secretion in hepatoma cells via inhibition of AMPK/p38 signaling. We suggested that SLD is a potential herbal therapy for the treatment of HCC by alleviating immune-suppressive status.


Subject(s)
Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Macrophages , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Drugs, Chinese Herbal/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Mice , Macrophages/drug effects , Macrophages/metabolism , Male , Up-Regulation/drug effects , Mice, Inbred C57BL , Tumor Microenvironment/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Humans , Complement C5a/metabolism , Coculture Techniques
3.
J Transl Med ; 22(1): 598, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937806

ABSTRACT

BACKGROUND: Monocyte-derived alveolar macrophages (Mo_AMs) are increasingly recognised as potential pathogenic factors for idiopathic pulmonary fibrosis (IPF). While scRNAseq analysis has proven valuable in the transcriptome profiling of Mo_AMs, the integration analysis of multi-omics may provide additional dimensions of understanding of these cellular populations. METHODS: We performed multi-omics analysis on 116 scRNAseq, 119 bulkseq and five scATACseq lung tissue samples from IPF. We built a large-scale IPF scRNAseq atlas and conducted the Monocle 2/3 as well as the Cellchat to explore the developmental path and intercellular communication on Mo_AMs. We also reported the difference in metabolisms, tissue repair and phagocytosis between Mo_AMs and tissue-resident alveolar macrophages (TRMs). To determine whether Mo_AMs affected pulmonary function, we projected clinical phenotypes (FVC%pred) from the bulkseq dataset onto the scRNAseq atlas. Finally, we used scATATCseq to uncover the upstream regulatory mechanisms and determine key drivers in Mo_AMs. RESULTS: We identified three Mo_AMs clusters and the trajectory analysis further validated the origin of these clusters. Moreover, via the Cellchat analysis, the CXCL12/CXCR4 axis was found to be involved in the molecular basis of reciprocal interactions between Mo_AMs and fibroblasts through the activation of the ERK pathway in Mo_AMs. SPP1_RecMacs (RecMacs, recruited macrophages) were higher in the low-FVC group than in the high-FVC group. Specifically, compared with TRMs, the functions of lipid and energetic metabolism as well as tissue repair were higher in Mo_AMs than TRMs. But, TRMs may have higher level of phagocytosis than TRMs. SPIB (PU.1), JUNB, JUND, BACH2, FOSL2, and SMARCC1 showed stronger association with open chromatin of Mo_AMs than TRMs. Significant upregulated expression and deep chromatin accessibility of APOE were observed in both SPP1_RecMacs and TRMs. CONCLUSION: Through trajectory analysis, it was confirmed that SPP1_RecMacs derived from Monocytes. Besides, Mo_AMs may influence FVC% pred and aggravate pulmonary fibrosis through the communication with fibroblasts. Furthermore, distinctive transcriptional regulators between Mo_AMs and TRMs implied that they may depend on different upstream regulatory mechanisms. Overall, this work provides a global overview of how Mo_AMs govern IPF and also helps determine better approaches and intervention therapies.


Subject(s)
Idiopathic Pulmonary Fibrosis , Macrophages, Alveolar , Monocytes , Humans , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Monocytes/metabolism , Male , Gene Expression Profiling , Female , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Middle Aged , Phenotype , Lung/pathology , Lung/metabolism , Gene Expression Regulation
4.
Scand J Immunol ; 100(3): e13393, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38922971

ABSTRACT

It is urgent to explore factors affecting immunotherapy efficacy to benefit non-small cell lung cancer (NSCLC) patient survival. Bioinformatics predicted genes associated with programmed cell death ligand 1 (PD-L1) expression and analysed phospholipase A2 group IID (PLA2G2D) expression in NSCLC. BODIPY 493/503 dye staining and kits detected lipids, triglycerides, and phospholipids in H1299 cells, respectively. Extracellular vesicles (EVs) were extracted for morphology and size assessment using electron microscopy. Western blot assayed CD9, CD63, HSP90, EVs-PD-L1, PD-L1, and PLA2G2D expression. CCK-8, LDH, and ELISA tested proliferation and toxicity of CD8+ T cells, interleukin-2, and interferon-gamma secretion, respectively. PLA2G2D, PD-L1, and Ki67 expression was detected by immunohistochemistry. Immunofluorescence assayed PLA2G2D localisation and CD8+ T cell content. Flow cytometry assessed PD-L1 and CD8 expression. In NSCLC, upregulated EVs-PD-L1 and clinical characteristics showed a strong correlation. H1299 cells with overexpression PD-L1 significantly reduced proliferation, toxicity of CD8+ T cells, and interleukin-2 and interferon-gamma levels. Bioinformatics revealed positive correlations between PLA2G2D and overexpressed PD-L1. PLA2G2D was expressed in macrophages and dendritic cells in NSCLC tissue. Overexpression PLA2G2D (oe-PLA2G2D) increased lipids, triglycerides, and phospholipids contents in H1299 cells. oe-PLA2G2D significantly reduced proliferation, toxicity of CD8+ T cells, and interleukin-2 and interferon-gamma levels. si-PD-L1 restored inhibition of oe-PLA2G2D on CD8+ T cells. oe-PLA2G2D significantly increased mice tumour volume and weight, upregulated expression of blood EVs-PD-L1 and tissue PD-L1, PLA2G2D, Ki67, and decreased CD8+ T cell content. PLA2G2D facilitated immune escape in NSCLC by regulating CD8+ T cell immune function by upregulating EVs-PD-L1.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , B7-H1 Antigen/metabolism , Lung Neoplasms/immunology , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Tumor Escape/immunology , Female , Male , Cell Proliferation , Middle Aged
5.
Crit Rev Food Sci Nutr ; : 1-15, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795062

ABSTRACT

Chlorophyll (Chl) is a natural pigment, widely distributed ranging from photosynthetic prokaryotes to higher plants, with an annual yield of up to 1.2 billion tons worldwide. Five types of Chls are observed in nature, that can be distinguished and identified using spectroscopy and mass spectrometry. Chl is also used in the food industry owing to its bioactivities, including obesity prevention, inflammation reduction, viral infection inhibition, anticancer effects, anti-oxidation, and immunostimulatory properties. It has great potential of being applied as a colorant and dietary supplement in the food industry. However, Chl is unstable under various enzymatic, acidic, heat, and light conditions, which limit its application. Although some strategies, such as aggregation with other food components, microencapsulation, and metal cation replacement, have been proposed to overcome these limitations, they are still not enough to facilitate its widespread application. Therefore, stabilization strategies and bioactivities of Chl need to be expected to expand its application in various fields, thereby aiding in the sustainable development of mankind.

6.
Adv Healthc Mater ; : e2401078, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708719

ABSTRACT

Cuproptosis, as a newly identified form of programmed cell death, shows great promise in cancer treatment. Efficient Cu+ delivery while avoiding systemic toxicity and elimination of the resistance from over-expressed intracellular copper chelator glutathione (GSH) are critical for cuproptosis. Herein, this work innovatively constructs a biocompatible and defect-rich copper hydroxide nanowire (HCu nanowire) through a human serum albumin (HSA) mediated biomineralization method. This work finds that the morphology and size of HCu nanowires can be controlled adjusted by the feed ratio of HSA and Cu2+. Remarkably, except for outstanding biocompatibility, HSA coordination endows HCu nanowires abundant oxygen vacancies (OVs), and the defect-rich HCu nanowire possesses excellent GSH consumption efficiency. Density functional theory studies indicate that OVs change GSH absorption energy on defective HCu nanowires. In cancer cells, HCu nanowires deplete GSH and simultaneously produce sufficient free Cu+ for enhanced cuproptosis. Meanwhile, Cu+ can catalyze endogenous H2O2 into hydroxyl radicals (·OH) via a Fenton-like reaction. Thus, synergetic cuproptosis and ROS mediated apoptosis against tumor are achieved. The experimental results show that HCu nanowires have a better performance in both antitumor efficiency and safety compared with chemotherapeutic drug Dox at the same dose, demonstrating its great potential in clinical applications.

7.
J Clin Microbiol ; 62(7): e0015424, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38809033

ABSTRACT

The increasing use of ceftazidime-avibactam has led to the emergence of a wide range of ceftazidime-avibactam-resistant blaKPC-2 variants. Particularly, the conventional carbapenemase phenotypic assay exhibited a high false-negative rate for KPC-2 variants. In this study, three colloidal gold immunoassays, including the Gold Mountainriver CGI test, Dynamiker CGI test and NG-Test CARBA5, and GeneXpert Carba-R, were used to detect the presence of KPC-2 carbapenemase and its various variants in 42 Klebsiella pneumoniae strains. These strains covered blaKPC-2 (13/42) and 16 other blaKPC-2 variants including blaKPC-12 (1/42), blaKPC-23 (1/42), blaKPC-25 (1/42), blaKPC-33 (6/42), blaKPC-35 (1/42), blaKPC-44 (1/42), blaKPC-71 (1/42), blaKPC-76 (8/42), blaKPC-78 (1/42), blaKPC-79 (1/42), blaKPC-100 (1/42), blaKPC-127 (1/42), blaKPC-128 (1/42), blaKPC-144 (1/42), blaKPC-157 (2/42), and blaKPC-180 (1/42). For KPC-2 strains, all four assays showed 100% negative percentage agreement (NPA) and 100% positive percentage agreement (PPA) with sequencing results. For all 16 KPC-2 variants, GeneXpert Carba-R showed 100% NPA and 100% PPA, and the three colloidal gold immunoassays showed 100% NPA, while the PPAs of the Gold Mountainriver CGI test, Dynamiker CGI test, and NG-Test CARBA5 were 87.5%, 87.5%, and 68.8%, respectively. We also found a correlation between the mutation site in the amino acid of the variants and false-negative results by colloidal gold immunoassays. In conclusion, the GeneXpert Carba-R has been proven to be a reliable method in detecting KPC-2 and its variants, and the colloidal gold immunoassay tests offer a practical and cost-effective approach for their detection. For the sample with a negative result by a colloidal gold immunoassay test but not matching the drug-resistant phenotype, it is recommended to retest using another type of kit or the GeneXpert Carba-R assay, which can significantly improve the accuracy of detection.


Subject(s)
Gold Colloid , Klebsiella Infections , Klebsiella pneumoniae , beta-Lactamases , beta-Lactamases/genetics , Klebsiella pneumoniae/genetics , Immunoassay/methods , Humans , Gold Colloid/chemistry , Klebsiella Infections/microbiology , Klebsiella Infections/diagnosis , Sensitivity and Specificity , Bacterial Proteins/genetics , Microbial Sensitivity Tests
8.
J Ethnopharmacol ; 329: 118165, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588984

ABSTRACT

BACKGROUND: Xiaozhi formula (XZF) is a practical Chinese herbal formula for the treatment of non-alcoholic fatty liver disease (NAFLD), which possesses an authorized patent certificate issued by the State Intellectual Property Office of China (ZL202211392355.0). However, the underlying mechanism by which XZF treats NAFLD remains unclear. PURPOSE: This study aimed to explore the main component of XZF and its mechanism of action in NAFLD treatment. METHODS: UHPLC-Q-Orbitrap HRMS was used to identify the components of the XZF. A high-fat diet (HFD)-induced NAFLD mouse model was used to demonstrate the effectiveness of XZF. Body weight, liver weight, and white fat weight were recorded to evaluate the therapeutic efficacy of XZF. H&E and Oil Red O staining were applied to observe the extent of hepatic steatosis. Liver damage, lipid metabolism, and glucose metabolism were detected by relevant assay kits. Moreover, the intraperitoneal insulin tolerance test and the intraperitoneal glucose tolerance test were employed to evaluate the efficacy of XZF in insulin homeostasis. Hepatocyte oxidative damage markers were detected to assess the efficacy of XZF in preventing oxidative stress. Label-free proteomics was used to investigate the underlying mechanism of XZF in NAFLD. RT-qPCR was used to calculate the expression levels of lipid metabolism genes. Western blot analysis was applied to detect the hepatic protein expression of AMPK, p-AMPK, PPARɑ, CPT1, and PPARγ. RESULTS: 120 compounds were preliminarily identified from XZF by UHPLC-Q-Orbitrap HRMS. XZF could alleviate HFD-induced obesity, white adipocyte size, lipid accumulation, and hepatic steatosis in mice. Additionally, XZF could normalize glucose levels, improve glucolipid metabolism disorders, and prevent oxidative stress damage induced by HFD. Furthermore, the proteomic analysis showed that the major pathways in fatty acid metabolism and the PPAR signaling pathway were significantly impacted by XZF treatment. The expression levels of several lipolytic and ß-oxidation genes were up-regulated, while the expression of fatty acid synthesis genes declined in the HFD + XZF group. Mechanically, XZF treatment enhanced the expression of p-AMPK, PPARɑ, and CPT-1 and suppressed the expression of PPARγ in the livers of NAFLD mice, indicating that XZF could activate the AMPK and PPAR pathways to attenuate NALFD progression. CONCLUSION: XZF could attenuate NAFLD by moderating lipid metabolism by activating AMPK and PPAR signaling pathways.


Subject(s)
AMP-Activated Protein Kinases , Diet, High-Fat , Drugs, Chinese Herbal , Lipid Metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Drugs, Chinese Herbal/pharmacology , Lipid Metabolism/drug effects , AMP-Activated Protein Kinases/metabolism , Male , Mice , Diet, High-Fat/adverse effects , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptors/metabolism , Disease Models, Animal
9.
Small ; 20(10): e2302943, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38319020

ABSTRACT

Herein, an integrated solar-thermal-power protocol is presented at a micro-nanoscopic level to maximize the energy utilization efficiency involving utilization period and utilization patterns, and the nexus of freshwater production and nanogeneration is realized. This sophisticated vaporization device is constructed with the merits of thermally confined evaporation space in favor of recycling latent heat of condensation and optimizing light absorption based on the local sunlight angle of incidence. Inspired by a bird's nest, Sb2 WO6 /D-Fructose composites are prepared as photothermal absorbers to achieve a superior water evaporation rate of 2.78 kg m-2  h-1 in the Multi-stage evaporator. In addition, a synergistic tandem photo thermal-electric device with a combination of solar-driven water evaporation and further waterflow-driven hydrovoltaic generation, which can output a stable voltage of up to 360.8 mV with effective utilization of steam energy and a limited water source, is exploited. Such integrated configurations pave a pathway for clean water production and renewable power generation simultaneously toward energy issues.

10.
J Investig Med ; 72(1): 57-66, 2024 01.
Article in English | MEDLINE | ID: mdl-37804164

ABSTRACT

This study intended to delineate the mechanism and functional role of integrin α2 (ITGA2) in non-small-cell lung cancer (NSCLC) cell immune escape. Bioinformatics analysis was utilized to analyze ITGA2 expression in NSCLC tissues, and correlations between ITGA2 expression and patient survival time, ITGA2 expression and programmed cell death ligand 1 (PD-L1; CD274) expression, and ITGA2 expression and CD8+ T-cell infiltration. Quantitative real-time polymerase chain reaction detected ITGA2 expression. Transmission electron microscopy was applied to examine the morphology of exosomes, and western blot measured CD9, CD63, and PD-L1 levels. CCK-8 measured cell viability. Cell toxicity experiment measured the killing effect of CD8+ T cells on cancer cells. Enzyme-linked immunosorbent assay assessed secretion levels of interleukin-2, interferon-gamma, tumor necrosis factor-alpha, and PD-L1 expression in exosomes. Immunohistochemistry detected ITGA2, CD8, and PD-L1 expression in patient tissue samples. ITGA2 was highly expressed in NSCLC, and Pearson correlation analysis showed a negative correlation of ITGA2 with CD8+ T-cell infiltration and a positive correlation of ITGA2 with PD-L1 expression. Cell experiments showed that silencing ITGA2 hindered NSCLC cell progression and increased levels of CD8+ T-cell secretory factors. Further mechanism studies found that ITGA2 reduced CD8+ T-cell-mediated antitumor immunity via the increase in PD-L1 expression. Clinical sample testing unveiled that ITGA2 was upregulated in NSCLC tissues. PD-L1 upregulation was seen in exosomes separated from patient blood, and correlation analysis showed a positive correlation of exosomal PD-L1 expression in blood with ITGA2 expression in tissues. This study displays a novel mechanism and role of ITGA2 in NSCLC immune escape, providing directions for the clinical therapy of NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Tumor Escape , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Exosomes/metabolism , Integrin alpha2/metabolism , Integrin alpha2/therapeutic use , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Tumor Escape/genetics
SELECTION OF CITATIONS
SEARCH DETAIL