Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.595
Filter
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38953449

ABSTRACT

In living and synthetic active matter systems, the constituents can self-propel and interact with each other and with the environment through various physicochemical mechanisms. Among these mechanisms, chemotactic and auto-chemotactic effects are widely observed. The impact of (auto-)chemotactic effects on achiral active matter has been a recent research focus. However, the influence of these effects on chiral active matter remains elusive. Here, we develop a Brownian dynamics model coupled with a diffusion equation to examine the dynamics of auto-chemotactic chiral active droplets in both quasi-two-dimensional (2D) and three-dimensional (3D) systems. By quantifying the droplet trajectory as a function of the dimensionless Péclet number and chemotactic strength, our simulations well reproduce the curling and helical trajectories of nematic droplets in a surfactant-rich solution reported by Krüger et al. [Phys. Rev. Lett. 117, 048003 (2016)]. The modeled curling trajectory in 2D exhibits an emergent chirality, also consistent with the experiment. We further show that the geometry of the chiral droplet trajectories, characterized by the pitch and diameter, can be used to infer the velocities of the droplet. Interestingly, we find that, unlike the achiral case, the velocities of chiral active droplets show dimensionality dependence: its mean instantaneous velocity is higher in 3D than in 2D, whereas its mean migration velocity is lower in 3D than in 2D. Taken together, our particle-based simulations provide new insights into the dynamics of auto-chemotactic chiral active droplets, reveal the effects of dimensionality, and pave the way toward their applications, such as drug delivery, sensors, and micro-reactors.

2.
Alzheimers Res Ther ; 16(1): 143, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951900

ABSTRACT

BACKGROUND: Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are associated with self-reported problems with cognition as well as risk for Alzheimer's disease and related dementias (ADRD). Overlapping symptom profiles observed in cognitive disorders, psychiatric disorders, and environmental exposures (e.g., head injury) can complicate the detection of early signs of ADRD. The interplay between PTSD, head injury, subjective (self-reported) cognitive concerns and genetic risk for ADRD is also not well understood, particularly in diverse ancestry groups. METHODS: Using data from the U.S. Department of Veterans Affairs (VA) Million Veteran Program (MVP), we examined the relationship between dementia risk factors (APOE ε4, PTSD, TBI) and subjective cognitive concerns (SCC) measured in individuals of European (n = 140,921), African (n = 15,788), and Hispanic (n = 8,064) ancestry (EA, AA, and HA, respectively). We then used data from the VA electronic medical record to perform a retrospective survival analysis evaluating PTSD, TBI, APOE ε4, and SCC and their associations with risk of conversion to ADRD in Veterans aged 65 and older. RESULTS: PTSD symptoms (B = 0.50-0.52, p < 1E-250) and probable TBI (B = 0.05-0.19, p = 1.51E-07 - 0.002) were positively associated with SCC across all three ancestry groups. APOE ε4 was associated with greater SCC in EA Veterans aged 65 and older (B = 0.037, p = 1.88E-12). Results of Cox models indicated that PTSD symptoms (hazard ratio [HR] = 1.13-1.21), APOE ε4 (HR = 1.73-2.05) and SCC (HR = 1.18-1.37) were positively associated with risk for ADRD across all three ancestry groups. In the EA group, probable TBI also contributed to increased risk of ADRD (HR = 1.18). CONCLUSIONS: The findings underscore the value of SCC as an indicator of ADRD risk in Veterans 65 and older when considered in conjunction with other influential genetic, clinical, and demographic risk factors.


Subject(s)
Apolipoprotein E4 , Dementia , Stress Disorders, Post-Traumatic , Veterans , Humans , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/epidemiology , Male , Female , Aged , Apolipoprotein E4/genetics , Dementia/genetics , Dementia/epidemiology , Risk Factors , United States/epidemiology , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/psychology , Aged, 80 and over , Retrospective Studies
5.
Adv Sci (Weinh) ; : e2401095, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946578

ABSTRACT

Conventional androgen deprivation therapy (ADT) targets the androgen receptor (AR) inhibiting prostate cancer (PCa) progression; however, it can eventually lead to recurrence as castration-resistant PCa (CRPC), which has high mortality rates and lacks effective treatment modalities. The study confirms the presence of high glutathione peroxidase 4 (GPX4) expression, a key regulator of ferroptosis (i.e., iron-dependent program cell death) in CRPC cells. Therefore, inducing ferroptosis in CRPC cells might be an effective therapeutic modality for CRPC. However, nonspecific uptake of ferroptosis inducers can result in undesirable cytotoxicity in major organs. Thus, to precisely induce ferroptosis in CRPC cells, a genetic engineering strategy is proposed to embed a prostate-specific membrane antigen (PSMA)-targeting antibody fragment (gy1) in the macrophage membrane, which is then coated onto mesoporous polydopamine (MPDA) nanoparticles to produce a biomimetic nanoplatform. The results indicate that the membrane-coated nanoparticles (MNPs) exhibit high specificity and affinity toward CRPC cells. On further encapsulation with the ferroptosis inducers RSL3 and iron ions, MPDA/Fe/RSL3@M-gy1 demonstrates superior synergistic effects in highly targeted ferroptosis therapy eliciting significant therapeutic efficacy against CRPC tumor growth and bone metastasis without increased cytotoxicity. In conclusion, a new therapeutic strategy is reported for the PSMA-specific, CRPC-targeting platform for ferroptosis induction with increased efficacy and safety.

6.
Nutr Diabetes ; 14(1): 48, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951151

ABSTRACT

BACKGROUND: This study aimed to assess whether the Haptoglobin (Hp) genotype influences the relationship between hemoglobin (Hb) levels and the development of gestational diabetes mellitus (GDM). Additionally, it sought to evaluate the interaction and joint association of Hb levels and Hp genotype with GDM risk. METHODS: This retrospective study involved 358 women with GDM and 1324 women with normal glucose tolerance (NGT). Peripheral blood leukocytes were collected from 360 individuals at 14-16 weeks' gestation for Hp genotyping. GDM was diagnosed between 24-28 weeks' gestation. Interactive moderating effect, joint analysis, and mediation analysis were performed to evaluate the crosslink of Hb levels and Hp genotype with GDM risk. RESULTS: Women who developed GDM had significantly higher Hb levels throughout pregnancy compared to those with NGT. Increase first-trimester Hb concentration was associated with a progressive rise in GDM incidence, glucose levels, glycosylated hemoglobin levels, Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) values, cesarean delivery rates, and composite neonatal outcomes. Spline regression showed a significant linear association of GDM incidence with continuous first-trimester Hb level when the latter exceeded 122 g/L. Increased first-trimester Hb concentration was an independent risk factor for GDM development after adjusting for potential confounding factors in both the overall population and a matched case-control group. The Hp2-2 genotype was more prevalent among pregnant women with GDM when first-trimester Hb exceeded 122 g/L. Significant multiplicative and additive interactions were identified between Hb levels and Hp genotype for GDM risk, adjusted for age and pre-pregnancy BMI. The odds ratio (OR) for GDM development increased incrementally when stratified by Hb levels and Hp genotype. Moreover, first-trimester Hb level partially mediated the association between Hp genotype and GDM risk. CONCLUSION: Increased first-trimester Hb levels were closely associated with the development of GDM and adverse pregnancy outcomes, with this association moderated by the Hp2-2 genotype.


Subject(s)
Diabetes, Gestational , Genotype , Haptoglobins , Hemoglobins , Pregnancy Trimester, First , Humans , Female , Pregnancy , Diabetes, Gestational/genetics , Diabetes, Gestational/blood , Diabetes, Gestational/epidemiology , Haptoglobins/genetics , Retrospective Studies , Adult , Hemoglobins/analysis , China/epidemiology , Risk Factors , Asian People/genetics , Glycated Hemoglobin/analysis , Blood Glucose/analysis , Blood Glucose/metabolism , Insulin Resistance/genetics , East Asian People
7.
Alzheimers Dement (Amst) ; 16(3): e12613, 2024.
Article in English | MEDLINE | ID: mdl-38966622

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is often misclassified in electronic health records (EHRs) when relying solely on diagnosis codes. This study aimed to develop a more accurate, computable phenotype (CP) for identifying AD patients using structured and unstructured EHR data. METHODS: We used EHRs from the University of Florida Health (UFHealth) system and created rule-based CPs iteratively through manual chart reviews. The CPs were then validated using data from the University of Texas Health Science Center at Houston (UTHealth) and the University of Minnesota (UMN). RESULTS: Our best-performing CP was "patient has at least 2 AD diagnoses and AD-related keywords in AD encounters," with an F1-score of 0.817 at UF, 0.961 at UTHealth, and 0.623 at UMN, respectively. DISCUSSION: We developed and validated rule-based CPs for AD identification with good performance, which will be crucial for studies that aim to use real-world data like EHRs. Highlights: Developed a computable phenotype (CP) to identify Alzheimer's disease (AD) patients using EHR data.Utilized both structured and unstructured EHR data to enhance CP accuracy.Achieved a high F1-score of 0.817 at UFHealth, and 0.961 and 0.623 at UTHealth and UMN.Validated the CP across different demographics, ensuring robustness and fairness.

8.
Article in English | MEDLINE | ID: mdl-38968001

ABSTRACT

There is an urgent need to develop phototherapeutic agents with imaging capabilities to assess the treatment process and efficacy in real-time during cancer phototherapy for precision cancer therapy. The safe near-infrared (NIR) fluorescent dyes have garnered significant attention and are desirable for theranostics agents. However, until now, achieving excellent photostability and fluorescence (FL) imaging capability in aggregation-caused quenching (ACQ) dyes remains a big challenge. Here, for the only FDA-approved NIR dye, indocyanine green (ICG), we developed a dual-ferrocene (Fc) chimeric nanonetwork ICG@HFFC based on the rigid-flexible strategy through one-step self-assembly, which uses rigid Fc-modified hyaluronic acid (HA) copolymer (HA-Fc) and flexible octadecylamine (ODA) bonded Fc (Fc-C18) as the delivery system. HA-Fc reserved the ability of HA to target the CD44 receptor of the tumor cell surface, and the dual-Fc region provided a rigid space for securely binding ICG through metal-ligand interaction and π-π conjugation, ensuring excellent photostability. Additionally, the alkyl chain provided flexible confinement for the remaining ICG through hydrophobic forces, preserving its FL. Thereby, a balance is achieved between outstanding photostability and FL imaging capability. In vitro studies showed improved photobleaching resistance, enhanced FL stability, and increased singlet oxygen (1O2) production efficiency in ICG@HFFC. Further in vivo results display that ICG@HFFC had good tumor tracing ability and significant tumor inhibition which also exhibited good biocompatibility.. Therefore, ICG@HFFC provides an encouraging strategy to realize simultaneous enhanced tumor tracing and photothermal/photodynamic therapy (PTT/PDT) and offers a novel approach to address the limitations of ACQ dyes.

9.
Front Microbiol ; 15: 1377763, 2024.
Article in English | MEDLINE | ID: mdl-38962139

ABSTRACT

Introduction: Arbuscular mycorrhizal fungi (AMF) are vital in terrestrial ecosystems. However, the community structure characteristics and influencing factors of AMF in the forest ecosystems of arid desert grassland areas require further investigation. Methods: Therefore, we employed high-throughput sequencing technology to analyze the soil AMF community characteristics at different elevations in the Helan mountains. Results: The results revealed that significant differences (P < 0.05) were observed in the soil physicochemical properties among different elevations, and these properties exhibited distinct trends with increasing elevation. Through high-throughput sequencing, we identified 986 operational taxonomic units (OTUs) belonging to 1 phylum, 4 classes, 6 orders, 12 families, 14 genera, and 114 species. The dominant genus was Glomus. Furthermore, significant differences (P < 0.05) were observed in the α-diversity of the soil AMF community across different elevations. Person correlation analysis, redundancy analysis (RDA), and Monte Carlo tests demonstrated significant correlations between the diversity and abundance of AMF communities with soil organic matter (OM) (P < 0.01) and soil water content (WC) (P < 0.05). Discussion: This study provides insights into the structural characteristics of soil AMF communities at various altitudes on the eastern slope of Helan mountain and their relationships with soil physicochemical properties. The findings contribute to our understanding of the distribution pattern of soil AMF and its associations with environmental factors in the Helan mountains, as well as the stability of forest ecosystems in arid desert grassland areas.

10.
Food Chem ; 458: 140217, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38964106

ABSTRACT

Pretreatment steps of current rapid detection methods for mycotoxins in edible oils not only restrict detection efficiency, but also produce organic waste liquid to pollute environment. In this work, a pretreatment-free and eco-friendly rapid detection method for edible oil is established. This proposed method does not require pretreatment operation, and automated quantitative detection could be achieved by directly adding oil samples. According to polarity of target molecules, the content of surfactant in reaction solutions could be adjusted to achieve the quantitative detection of AFB1 in peanut oil and ZEN in corn oil. The recoveries are between 96.5%-110.7% with standard deviation <10.4%, and the limit of detection is 0.17 µg/kg for AFB1 and 4.91 µg/kg for ZEN. This method realizes full automation of the whole chain detection, i.e. sample in-result out, and is suitable for the on-site detection of batches of edible oils samples.

11.
J Immunol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967520

ABSTRACT

Stimulator of IFN genes (STING) is a critical component of the innate immune system, playing an essential role in defending against DNA virus infections. However, the mechanisms governing basal STING regulation remain poorly understood. In this study, we demonstrate that the basal level of STING is critically maintained by hypoxia-inducible factor 1 (HIF-1)α through transcription. Under normal conditions, HIF-1α binds constitutively to the promoter region of STING, actively promoting its transcription. Knocking down HIF-1α results in a decrease in STING expression in multiple cell lines and zebrafish, which in turn reduces cellular responses to synthetic dsDNAs, including cell signaling and IFN production. Moreover, this decrease in STING levels leads to an increase in cellular susceptibility to DNA viruses HSV-1 and pseudorabies virus. These findings unveil a (to our knowledge) novel role of HIF-1α in maintaining basal STING levels and provide valuable insights into STING-mediated antiviral activities and associated diseases.

12.
Cell Death Dis ; 15(7): 483, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969650

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and the expression and function of an uncharacterized protein RNF214 in HCC are still unknown. Phase separation has recently been observed to participate in the progression of HCC. In this study, we investigated the expression, function, and phase separation of RNF214 in HCC. We found that RNF214 was highly expressed in HCC and associated with poor prognosis. RNF214 functioned as an oncogene to promote the proliferation, migration, and metastasis of HCC. Mechanically, RNF214 underwent phase separation, and the coiled-coil (CC) domain of RNF214 mediated its phase separation. Furthermore, the CC domain was necessary for the oncogenic function of RNF214 in HCC. Taken together, our data favored that phase separation of RNF214 promoted the progression of HCC. RNF214 may be a potential biomarker and therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Disease Progression , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Humans , Cell Line, Tumor , Animals , Cell Movement/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Male , Mice, Nude , Mice , Gene Expression Regulation, Neoplastic , Female , Mice, Inbred BALB C , Middle Aged , Phase Separation
13.
J Extracell Vesicles ; 13(7): e12473, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965648

ABSTRACT

Extracellular vesicles (EVs) derived from dental pulp stem cells (DPSC) have been shown an excellent efficacy in a variety of disease models. However, current production methods fail to meet the needs of clinical treatment. In this study, we present an innovative approach to substantially enhance the production of 'Artificial Cell-Derived Vesicles (ACDVs)' by extracting and purifying the contents released by the DPSC lysate, namely intracellular vesicles. Comparative analysis was performed between ACDVs and those obtained through ultracentrifugation. The ACDVs extracted from the cell lysate meet the general standard of EVs and have similar protein secretion profile. The new ACDVs also significantly promoted wound healing, increased or decreased collagen regeneration, and reduced the production of inflammatory factors as the EVs. More importantly, the extraction efficiency is improved by 16 times compared with the EVs extracted using ultracentrifuge method. With its impressive attributes, this new subtype of ACDVs emerge as a prospective candidate for the future clinical applications in regenerative medicine.


Subject(s)
Dental Pulp , Extracellular Vesicles , Stem Cells , Dental Pulp/cytology , Dental Pulp/metabolism , Extracellular Vesicles/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Humans , Animals , Wound Healing , Regenerative Medicine/methods
14.
Cell Mol Life Sci ; 81(1): 284, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967794

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignancy that occurs worldwide and is generally associated with poor prognosis. The development of resistance to targeted therapies such as sorafenib is a major challenge in clinical cancer treatment. In the present study, Ten-eleven translocation protein 1 (TET1) was found to be highly expressed in sorafenib-resistant HCC cells and knockdown of TET1 can substantially improve the therapeutic effect of sorafenib on HCC, indicating the potential important roles of TET1 in sorafenib resistance in HCC. Mechanistic studies determined that TET1 and Yes-associated protein 1 (YAP1) synergistically regulate the promoter methylation and gene expression of DNA repair-related genes in sorafenib-resistant HCC cells. RNA sequencing indicated the activation of DNA damage repair signaling was extensively suppressed by the TET1 inhibitor Bobcat339. We also identified TET1 as a direct transcriptional target of YAP1 by promoter analysis and chromatin-immunoprecipitation assays in sorafenib-resistant HCC cells. Furthermore, we showed that Bobcat339 can overcome sorafenib resistance and synergized with sorafenib to induce tumor eradication in HCC cells and mouse models. Finally, immunostaining showed a positive correlation between TET1 and YAP1 in clinical samples. Our findings have identified a previously unrecognized molecular pathway underlying HCC sorafenib resistance, thus revealing a promising strategy for cancer therapy.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Hepatocellular , DNA Repair , Drug Resistance, Neoplasm , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Proto-Oncogene Proteins , Sorafenib , Transcription Factors , YAP-Signaling Proteins , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/drug effects , Animals , DNA Repair/drug effects , DNA Repair/genetics , YAP-Signaling Proteins/metabolism , Mice , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice, Nude , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Hippo Signaling Pathway , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , DNA Methylation/drug effects
15.
Front Pharmacol ; 15: 1361561, 2024.
Article in English | MEDLINE | ID: mdl-38974041

ABSTRACT

Background: Osteoarthritis (OA) is a chronic degenerative disease mainly characterized by cartilage damage and synovial inflammation. Si Miao Powder, an herbal formula, was recorded in ancient Chinese medicine prescription with excellent anti-inflammatory properties. Based on the classical formula, the modified Si Miao Powder (MSMP) was developed with the addition of two commonly Chinese orthopedic herbs, which had the efficacy of strengthening the therapeutic effect for OA. Methods: In the in vivo experiments, thirty-six 8-week-old male C57BL/6 mice were randomly divided into six groups: sham group, OA group, celecoxib group, low-MSMP group, middle-MSMP group, and high-MSMP group. OA mice were constructed by destabilization of medial meniscus (DMM) and treated with MSMP granules or celecoxib by gavage. The effects of MSMP on cartilage, synovitis and inflammatory factor of serum were tested. For in vitro experiments, control serum and MSMP-containing serum were prepared from twenty-five C57BL/6 mice. Macrophages (RAW264.7 cells) were induced by lipopolysaccharide (LPS) and then treated with MSMP-containing serum. The expression of inflammatory factors and the change of the NF-κB pathway were tested. Results: In vivo, celecoxib and MSMP alleviated OA progression in the treated groups compared with OA group. The damage was partly recovered in cartilage, the synovial inflammatory were reduced in synovium, and the concentrations of IL-6 and TNF-α were reduced and the expression of IL-10 was increased in serum. The function of the middle MSMP was most effective for OA treatment. The results of in vitro experiments showed that compared with the LPS group, the MSMP-containing serum significantly reduced the expression levels of pro-inflammatory (M1-type) factors, such as CD86, iNOS, TNF-α and IL-6, and promoted the expression levels of anti-inflammatory (M2-type) factors, such as Arg1 and IL-10. The MSMP-containing serum further inhibited NF-κB signaling pathway after LPS induction. Conclusion: The study demonstrated that MSMP alleviated OA progression in mice and MSMP-containing serum modulated macrophage M1/M2 phenotype by inhibiting the NF-κB signaling pathway. Our study provided experimental evidence and therapeutic targets of MSMP for OA treatment.

16.
Front Plant Sci ; 15: 1410554, 2024.
Article in English | MEDLINE | ID: mdl-38974983

ABSTRACT

Introduction: Several studies of MADS-box transcription factors in flowering plants have been conducted, and these studies have indicated that they have conserved functions in floral organ development; MIKC-type MADS-box genes has been proved to be expanded in ferns, however, few systematic studies of these transcription factors have been conducted in non-seed plants. Although ferns and seed plants are sister groups, they exhibit substantial morphological differences. Methods: Here, we clarified the evolution of MADS-box genes across 71 extant fern species using available transcriptome, genome, and gene expression data. Results: We obtained a total of 2,512 MADS-box sequences, ranging from 9 to 89 per species. The most recent common ancestor (MRCA) of ferns contained approximately three type I genes and at least 5-6 type II MADS-box genes. The domains, motifs, expression of type I and type II proteins, and the structure of the both type genes were conserved in ferns as to other land plants. Within type II genes, MIKC*-type proteins are involved in gametophyte development in ferns; MIKCC-type proteins have broader expression patterns in ferns than in seed plants, and these protein sequences are likely conserved in extant seed plants and ferns because of their diverse roles in diploid sporophyte development. More than 90% of MADS-box genes are type II genes, and MIKCC genes, especially CRM1 and CRM6-like genes, have undergone a large expansion in leptosporangiate ferns; the diverse expression patterns of these genes might be related to the fuctional diversification and increased complexity of the plant body plan. Tandem duplication of CRM1 and CRM6-like genes has contributed to the expansion of MIKCC genes. Conclusion or Discussion: This study provides new insights into the diversity, evolution, and functions of MADS-box genes in extant ferns.

17.
Ann Lab Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953114

ABSTRACT

Background: The accurate measurement of α-fetoprotein (AFP) is critical for clinical diagnosis. However, different AFP immunoassays may yield different results. Appropriate AFP reference materials (RMs) were selected and assigned accurate values for applications with external quality assessment (EQA) programs to standardize AFP measurements. Methods: Forty individual clinical samples and six different concentrations of candidate RMs (Can-RMs, L1-L6) were prepared by the Beijing Center for Clinical Laboratories. The Can-RMs were assigned target values by performing five immunoassays, using WHO International Standard 72/225 as a calibrator, and sent to 45 clinical laboratories in Beijing for AFP measurements. The commutability of all RMs was assessed based on CLSI and the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) approaches. Analytical performance was assessed for compliance based on accuracy (total error, TE), trueness (bias), and precision (CV). Results: The Can-RMs were commutable for all immunoassays using the CLSI approach and for 6 of 10 assay combinations using the IFCC approach. RMs diluted in WHO RM 72/225 were commutable among all assays with the CLSI approach, except for serum matrix (Autolumo vs. Roche analyzer) and diluted water matrix (Abbott vs. Roche/Mindray analyzer), whereas some inconclusive and non-commutable results were found using the IFCC approach. The average pass rates based on the TE, bias, and CV were 91%, 81%, and 95%, respectively. Conclusions: The commutability of the RMs differed between both evaluation approaches. The Can-RMs exhibited good commutability with the CLSI approach, suggesting their suitability for use with that approach as commutable EQA materials with assigned values and for monitoring the performance of AFP measurements.

18.
Open Life Sci ; 19(1): 20220886, 2024.
Article in English | MEDLINE | ID: mdl-38947764

ABSTRACT

Mulberry is a common crop rich in flavonoids, and its leaves (ML), fruits (M), and branches (Ramulus Mori, RM) have medicinal value. In the present study, a total of 118 flavonoid metabolites (47 flavone, 23 flavonol, 16 flavonoid, 8 anthocyanins, 8 isoflavone, 14 flavanone, and 2 proanthocyanidins) and 12 polyphenols were identified by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. The most abundant in ML were 8-C-hexosyl-hesperetin O-hexoside and astragalin, the most abundant in M were 8-C-hexosyl-hesperetin O-hexoside and naringenin, and the most abundant in RM were cyanidin 3-O-galactoside and gallocatechin-gallocatechin. The total flavonoid compositions of ML and RM were essentially the same, but the contents of flavonoid metabolite in more than half of them were higher than those in M. Compared with ML, the contents of flavone and flavonoid in RM and M were generally down-regulated. Each tissue part had a unique flavonoid, which could be used as a marker to distinguish different tissue parts. In this study, the differences between flavonoid metabolite among RM, ML, and M were studied, which provided a theoretical basis for making full use of mulberry resources.

19.
Article in English | MEDLINE | ID: mdl-38904416

ABSTRACT

OBJECTIVE: To investigate the demonstration in large language models (LLMs) for biomedical relation extraction. This study introduces a framework comprising three types of adaptive tuning methods to assess their impacts and effectiveness. MATERIALS AND METHODS: Our study was conducted in two phases. Initially, we analyzed a range of demonstration components vital for LLMs' biomedical data capabilities, including task descriptions and examples, experimenting with various combinations. Subsequently, we introduced the LLM instruction-example adaptive prompting (LEAP) framework, including instruction adaptive tuning, example adaptive tuning, and instruction-example adaptive tuning methods. This framework aims to systematically investigate both adaptive task descriptions and adaptive examples within the demonstration. We assessed the performance of the LEAP framework on the DDI, ChemProt, and BioRED datasets, employing LLMs such as Llama2-7b, Llama2-13b, and MedLLaMA_13B. RESULTS: Our findings indicated that Instruction + Options + Example and its expanded form substantially improved F1 scores over the standard Instruction + Options mode for zero-shot LLMs. The LEAP framework, particularly through its example adaptive prompting, demonstrated superior performance over conventional instruction tuning across all models. Notably, the MedLLAMA_13B model achieved an exceptional F1 score of 95.13 on the ChemProt dataset using this method. Significant improvements were also observed in the DDI 2013 and BioRED datasets, confirming the method's robustness in sophisticated data extraction scenarios. CONCLUSION: The LEAP framework offers a compelling strategy for enhancing LLM training strategies, steering away from extensive fine-tuning towards more dynamic and contextually enriched prompting methodologies, showcasing in biomedical relation extraction.

20.
Sci Rep ; 14(1): 14943, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942818

ABSTRACT

Gravitational wave telescope place extremely high demands on structural thermal deformation, making material selection a critical issue. Carbon fiber reinforced polymer (CFRP) is an ideal choice for the support structure of telescope due to its low coefficient of thermal expansion (CTE) and designable properties. However, current research on the optimization of the CTE of CFRP is scarce, and conventional methods struggle to find layups that meet the requirements. In this paper, an unconventional layup optimization method is proposed to solve this problem. Initially defining the characteristics of the telescope structure and using different layup material for the main and side support rods to minimize thermal deformation. Subsequently, the NSGA-II algorithm is used to optimize the layups which are divided into conventional and unconventional layups. Specimens are then produced from these results and tested to assess the impact of processing errors on practical applications. The results demonstrate that the optimized CFRP meet the CTE requirements and, when applied to the structure, significantly reduces the thermal deformation in the eccentric direction compared to conventional designs. Additionally, a numerical analysis evaluates the effect of ply orientation errors on the performance of unconventional layups, discussing the method's limitations within these contexts.

SELECTION OF CITATIONS
SEARCH DETAIL
...