Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Cells ; 13(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38995011

ABSTRACT

Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.


Subject(s)
Axons , Glial Cell Line-Derived Neurotrophic Factor , Nerve Regeneration , Schwann Cells , Spinal Cord Injuries , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Schwann Cells/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Axons/metabolism , Rats , Rats, Sprague-Dawley , Female , Astrocytes/metabolism
2.
Int J Nanomedicine ; 19: 7473-7492, 2024.
Article in English | MEDLINE | ID: mdl-39071504

ABSTRACT

Background: Gigantocellular reticular nucleus (GRNs) executes a vital role in locomotor recovery after spinal cord injury. However, due to its unique anatomical location deep within the brainstem, intervening in GRNs for spinal cord injury research is challenging. To address this problem, this study adopted an extracorporeal magnetic stimulation system to observe the effects of selective magnetic stimulation of GRNs with iron oxide nanoparticles combined treadmill training on locomotor recovery after spinal cord injury, and explored the possible mechanisms. Methods: Superparamagnetic iron oxide (SPIO) nanoparticles were stereotactically injected into bilateral GRNs of mice with moderate T10 spinal cord contusion. Eight-week selective magnetic stimulation produced by extracorporeal magnetic stimulation system (MSS) combined with treadmill training was adopted for the animals from one week after surgery. Locomotor function of mice was evaluated by the Basso Mouse Scale, Grid-walking test and Treadscan analysis. Brain MRI, anterograde virus tracer and immunofluorescence staining were applied to observe the tissue compatibility of SPIO in GRNs, trace GRNs' projections and evaluate neurotransmitters' expression in spinal cord respectively. Motor-evoked potentials and H reflex were collected for assessing the integrity of cortical spinal tract and the excitation of motor neurons in anterior horn. Results: (1) SPIO persisted in GRNs for a minimum of 24 weeks without inducing apoptosis of GRN cells, and degraded slowly over time. (2) MSS-enabled treadmill training dramatically improved locomotor performances of injured mice, and promoted cortico-reticulo-spinal circuit reorganization. (3) MSS-enabled treadmill training took superimposed roles through both activating GRNs to drive more projections of GRNs across lesion site and rebalancing neurotransmitters' expression in anterior horn of lumbar spinal cord. Conclusion: These results indicate that selective MSS intervention of GRNs potentially serves as an innovative strategy to promote more spared fibers of GRNs across lesion site and rebalance neurotransmitters' expression after spinal cord injury, paving the way for the structural remodeling of neural systems collaborating with exercise training, thus ultimately contributing to the reconstruction of cortico-reticulo-spinal circuit.


Subject(s)
Magnetic Iron Oxide Nanoparticles , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Magnetic Iron Oxide Nanoparticles/chemistry , Mice , Locomotion/physiology , Recovery of Function/physiology , Spinal Cord , Physical Conditioning, Animal , Reticular Formation , Magnetic Field Therapy/methods , Mice, Inbred C57BL , Female , Evoked Potentials, Motor/physiology
3.
J Vis Exp ; (208)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38912798

ABSTRACT

Accurate measurement of urinary parameters in awake mice is crucial for understanding lower urinary tract (LUT) dysfunction, particularly in conditions like neurogenic bladder post-traumatic spinal cord injury (SCI). However, conducting cystometry recordings in mice presents notable challenges. When mice are in a prone and restricted position during recording sessions, urine tends to be absorbed by the fur and skin, leading to an underestimation of voided volume (VV). The goal of this study was to enhance the accuracy of cystometry and external urethral sphincter electromyography (EUS-EMG) recordings in awake mice. We developed a unique method utilizing cyanoacrylate adhesive to create a waterproof skin barrier around the urethral meatus and abdomen, preventing urine absorption and ensuring precise measurements. Results show that after applying the cyanoacrylate, the sum of VV and RV remained consistent with the infused saline volume, and there were no wet areas observed post-experiment, indicating successful prevention of urine absorption. Additionally, the method simultaneously stabilized the electrodes connected with the external urethral sphincter (EUS), ensured stable electromyography (EMG) signals, and minimized artifacts caused by the movement of the awakened mouse and manipulation of the experimenter. Methodological details, results, and implications are discussed, highlighting the importance of improving urodynamic techniques in preclinical research.


Subject(s)
Electromyography , Urodynamics , Animals , Mice , Urodynamics/physiology , Electromyography/methods , Urethra/physiology , Female
4.
Chem Biodivers ; 21(7): e202400900, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713316

ABSTRACT

A new compound xylarkarynone A (1), a first reported natural product compound xylarkarynone B (2) and eight known compounds (3-10) were isolated from Xylaria sp. HHY-2. Their structures were elucidated by spectroscopic methods, DP4+ probability analyses and electronic circular dichroism (ECD) calculations. The bioactivities of isolated compounds were assayed. Compound 1 exhibited obvious activity against A549 cells with an IC50 value of 6.12±0.28 µM. Additionally, compound 1 showed moderate antifungal activities against Plectosphaerella cucumerina and Aspergillus niger with minimum inhibitory concentrations (MICs) of both 16 µg/mL, which was at the same grade with positive control nystatin. Most compounds exhibited varying degrees of inhibitory activity against P. cucumerina, indicating that Xylaria sp. has potential as inhibitors against P. cucumerina.


Subject(s)
Antifungal Agents , Aspergillus niger , Microbial Sensitivity Tests , Sesquiterpenes , Xylariales , Humans , Xylariales/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Aspergillus niger/drug effects , A549 Cells , Drug Screening Assays, Antitumor , Ascomycota/chemistry , Molecular Structure , Molecular Conformation , Structure-Activity Relationship , Dose-Response Relationship, Drug
5.
Heart Lung ; 66: 9-15, 2024.
Article in English | MEDLINE | ID: mdl-38518405

ABSTRACT

BACKGROUND: Global nonvalvular AF rises, impacting health severely. In Qinghai, China's diverse setting, studying AF among varied ethnic groups is crucial OBJECTIVES: The purpose of this study was to compares cardiac features in AF among Tibetan, Han, and Hui patients to develop tailored prevention and treatment strategies for this region, the goal was to enhance the understanding of AF and provide an empirical basis for developing prevention and treatment strategies specific to this region METHODS: This study included a total of 3445 Tibetan, Han, and Hui patients diagnosed with nonvalvular atrial fibrillation and treated at the Qinghai Cardiovascular and Cerebrovascular Specialist Hospital, China, between January 2019 and January 2021. We analyzed the differences in cardiac structure, comorbidities, and other influencing factors among the different ethnic groups RESULTS: We found significant differences in gender, age, smoking history, lone atrial fibrillation, left heart failure, dilated cardiomyopathy, and diabetes between Tibetan, Han, and Hui patients (P < 0.05). Tibetan, Han, and Hui patients also differed with regard to left ventricular end-diastolic volume, left ventricular ejection fraction, fractional shortening, NT-proBNP, glycated hemoglobin, red blood cell distribution width, platelet count, platelet hematocrit, platelet distribution width, homocysteine (Hcy), C-reactive protein, and superoxide dismutase (SOD) (P < 0.05) CONCLUSION: Our study revealed variations in comorbidities, cardiac structure, and blood indexes among Tibetan, Han, and Hui AF patients, highlighting distinct patterns in complications and biomarker levels across ethnic groups.


Subject(s)
Atrial Fibrillation , Aged , Female , Humans , Male , Middle Aged , Atrial Fibrillation/epidemiology , Atrial Fibrillation/ethnology , Atrial Fibrillation/complications , China/epidemiology , Ethnicity/statistics & numerical data , Retrospective Studies , Risk Factors , Tibet/epidemiology , Tibet/ethnology , East Asian People
6.
Sci Total Environ ; 914: 169919, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199361

ABSTRACT

Di-2-ethylhexyl phthalate (DEHP), a widely utilized plasticizer, has been described as a potential obesogen based on in vivo disruption of hepatic lipid homeostasis and in vitro promotion of lipid accumulation. However, limited literature exists regarding the specific ramifications of DEHP exposure on obese individuals, and the precise mechanisms underlying the adverse effects of DEHP exposure remain unclear. This study aimed to assess the impact of DEHP on hepatic lipid metabolism in obese mice by comparing them to normal mice. Following a 10-week DEHP exposure period, the obese mice exhibited higher blood lipid levels, more severe hepatic steatosis, and more infiltrations of inflammatory cells in liver tissue than normal mice. Interestingly, the body weight of the mice exhibited no significant alteration. In addition, transcriptomic analyses revealed that both lipogenesis and fatty acid oxidation contributed to hepatic lipid metabolism dysregulation following DEHP exposure. More specifically, alterations in the transcription of genes associated with hepatic lipid metabolism were linked to the different responses to DEHP exposure observed in normal and obese mice. Additionally, the outcomes of in vitro experiments validated the in vivo findings and demonstrated that DEHP exposure could modify hepatic lipid metabolism in normal mice by activating the LXR/SREBP-1c signaling pathway to promote lipogenesis. At the same time, DEHP exposure led to inhibition of the Camkkß/AMPK pathway to suppress ß-fatty acid oxidation. Conversely, in obese mice, DEHP exposure was found to be associated with the stimulation of both lipogenesis and fatty acid oxidation via activation of the LXR/SREBP-1c and PPAR-α signaling pathways, respectively. The findings presented in this study first elucidate the contrasting mechanisms underlying DEHP-induced liver damage in obese and normal mice, thereby offering valuable insights into the pathogenesis of DEHP-induced liver damage in individuals with obesity.


Subject(s)
Diethylhexyl Phthalate , Lipid Metabolism , Phthalic Acids , Animals , Mice , Diethylhexyl Phthalate/metabolism , Fatty Acids/metabolism , Lipids , Liver/metabolism , Mice, Obese , Obesity/chemically induced , Obesity/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 1/metabolism
7.
Nat Prod Res ; 38(1): 85-90, 2024.
Article in English | MEDLINE | ID: mdl-35913407

ABSTRACT

Nine diterpenoid alkaloids were isolated from Aconitum georgei Comber belonging to the genus Aconitum in Ranunculaceae family. Their structures were determinated by using HR-ESI-MS and 1 D/2D NMR spectra as geordine (1), yunaconitine (2), chasmanine (3), crassicauline A (4), forestine (5), pseudaconine (6), 14-acetylalatisamine (7), austroconitine B (8), and talatisamine (9). Among them, compound 1 is a previously undescribed aconitine-type C19-diterpenoid alkaloid, and compounds 3, and 5-9 have not previously been isolated from this species. The results of in vitro experiments indicated that new compound 1 possesses mild anti-inflammatory activity, which inhibited the production of NO in LPS-activated RAW 264.7 cells with an inhibition ratio of 29.75% at 50 µM.


Subject(s)
Aconitum , Alkaloids , Diterpenes , Drugs, Chinese Herbal , Aconitum/chemistry , Alkaloids/chemistry , Magnetic Resonance Spectroscopy , Drugs, Chinese Herbal/chemistry , Diterpenes/chemistry , Molecular Structure , Plant Roots/chemistry
8.
Water Res ; 246: 120741, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37864882

ABSTRACT

Anticancer drugs have raised worldwide concern owing to their ubiquitous occurrence and ecological risks, necessitating the development of efficient removal strategies in water and wastewater treatment. Although peroxymonosulfate (PMS) is known to be a promising chemical in water decontamination, limited information is available regarding the removal efficiency of anticancer drugs by PMS and solar/PMS systems. This study first reports the moiety-specific reaction kinetics and mechanisms of methotrexate (MTX), an anticancer drug with widespread attention, by PMS (unactivated) and solar-activated PMS in water. It was found that MTX abatement by the direct PMS oxidation followed second-order kinetics, and the pH-dependent rate constants increased from 0.4 M-1 s-1 (pH 5.0) to 1.3 M-1 s-1 (pH 8.0), with a slight decrease to 1.1 M-1 s-1 at pH 9.0. The presence of chloride and bromide exerted no obvious influence on the removal of MTX by PMS. Furthermore, the chemical reactivity of MTX and its seven substructures with different reactive species was evaluated, and the degradation contributions of the reactive species involved were quantitatively analyzed in the solar/PMS system. The product analysis suggested similar reaction pathways of MTX by PMS and solar/PMS systems. The persistence, bioaccumulation, and toxicity of the transformation products were investigated, indicating treatment-driven risks. Notably, MTX can be removed efficiently from both municipal and hospital wastewater effluents by the solar/PMS system, suggesting its great potential in wastewater treatment applications. Overall, this study systematically evaluated the elimination of MTX by the unactivated PMS and solar/PMS treatment processes in water. The obtained findings may have implications for the mechanistic understanding and development of PMS-based processes for the degradation of such micropollutants in wastewater.


Subject(s)
Antineoplastic Agents , Water Pollutants, Chemical , Methotrexate/analysis , Water/analysis , Wastewater , Peroxides/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Kinetics
9.
Nat Prod Res ; : 1-10, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732607

ABSTRACT

A new benzophenone derivative, 8'-hydroxymonomethylsulochrin (1), together with eighteen known compounds (2-19) were produced by the endophytic fungus Aspergillus fumigatus WJ-131, isolated from the stem of Gardenia jasminoides. The structure of 1 was determined by extensive spectroscopic analysis and X-ray crystallography. Under the condition of concentration of 20.0 µM, the splenic lymphocytes proliferation rates of compounds 1 and 7 induced by LPS were 39.4% and 38.1% (LPS, the splenic lymphocytes cell proliferation rates of 21.3%), and the splenic lymphocytes proliferation rate of compounds 7 induced by ConA is 44.6% (ConA, the splenic lymphocytes proliferation rates of 28.9%). Therefore, compounds 1 and 7 promoted the proliferation of ConA/LPS-stimulated splenic lymphocytes at 20.0 µM in vitro. In addition, compound 1 showed weak antibacterial activity against Fusarium oxysporum.

10.
Waste Manag ; 170: 270-277, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37729844

ABSTRACT

As a class of organic micropollutants of global concern, pharmaceuticals have prevalent distributions in the aqueous environment (e.g., groundwater and surface water) and solid matrices (e.g., soil, sediments, and dried sludge). Their contamination levels have been further aggravated by the annually increased production of expired drugs as emerging harmful wastes worldwide. Sulfate radicals (SO4•-)-based oxidation has attracted increasing attention for abating pharmaceuticals in the environment, whereas the transformation mechanisms of solid-phase pharmaceuticals remain unknown thus far. This investigation presented for the first time that SO4•-, individually produced by mechanical force-activated and heat-activated persulfate treatments, could effectively oxidize three model pharmaceuticals (i.e., methotrexate, sitagliptin, and salbutamol) in both solid and liquid phases. The high-resolution mass spectrometric analysis suggested their distinct transformation products formed by different phases of SO4•- oxidation. Accordingly, the SO4•--mediated mechanistic differences between the solid-phase and liquid-phase pharmaceuticals were proposed. It is noteworthy that the products from both systems were predicted with the remaining persistence, bioaccumulation, and multi-endpoint toxicity. Therefore, some post-treatment strategies need to be considered during practical applications of SO4•--based technologies in remediating different phases of micropollutants. This work has environmental implications for understanding the comparative transformation mechanisms of pharmaceuticals by SO4•- oxidation in remediating the contaminated solid and aqueous matrices.

11.
Dalton Trans ; 52(31): 10817-10827, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37485687

ABSTRACT

Currently, Pt based materials are still the most efficient oxygen reduction reaction (ORR) catalysts. However, their poor stability obstructs the commercial viability of fuel cells. To lower the reaction potential barrier and enhance the stability, we constructed alloy PtNi nanoparticles (NPs) with a Pt-rich surface supported on nitrogen-doped carbon (NC) via a simple one-step solvothermal method using easily accessible reagents. The synthesized PtNi/NC exhibits enhanced mass activity (MA), specific activity (SA), and positive onset potential compared with commercial Pt/C catalysts. Meanwhile, the half-wave potential shifted negatively to only 18 mV after 5000 cycles for PtNi/NC, indicating excellent stability. The enhanced ORR performance can be ascribed to the introduction of Ni into Pt optimizing the adsorption energy of Pt towards oxygen by adjusting the d band center of the Pt atom and stronger interaction between the metal NPs and support. Our work provides a potential synthesis strategy for developing a Pt-based catalyst with a low Pt loading and high ORR performance.

12.
Front Mol Neurosci ; 16: 1214294, 2023.
Article in English | MEDLINE | ID: mdl-37492521

ABSTRACT

Spinal cord injury (SCI) starts with a mechanical and/or bio-chemical insult, followed by a secondary phase, leading progressively to severe collapse of the nerve tissue. Compared to the peripheral nervous system, injured spinal cord is characterized by weak axonal regeneration, which leaves most patients impaired or paralyzed throughout lifetime. Therefore, confining, alleviating, or reducing the expansion of secondary injuries and promoting functional connections between rostral and caudal regions of lesion are the main goals of SCI therapy. Interleukin 10 (IL-10), as a pivotal anti-inflammatory and immunomodulatory cytokine, exerts a wide spectrum of positive effects in the treatment of SCI. The mechanisms underlying therapeutic effects mainly include anti-oxidative stress, limiting excessive inflammation, anti-apoptosis, antinociceptive effects, etc. Furthermore, IL-10 displays synergistic effects when combined with cell transplantation or neurotrophic factor, enhancing treatment outcomes. This review lists pleiotropic mechanisms underlying IL-10-mediated neuroprotection after SCI, which may offer fresh perspectives for clinical translation.

13.
J Biochem Mol Toxicol ; 37(8): e23380, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37132394

ABSTRACT

Chemoresistance remains a major obstacle to the treatment of esophageal cancer (EC). Exosome-mediated transfer of long noncoding RNAs (lncRNAs) has recently been unveiled to correlate with the regulation of drug resistance in EC. This study aimed to investigate the physiological mechanisms by which exosome-encapsulated lncRNA myocardial infarction-associated transcript (MIAT) derived from tumor cells might mediate the paclitaxel (PTX) resistance of EC cells. First, MIAT was experimentally determined to be upregulated in PTX nonresponders and PTX-resistant EC cells. Silencing of MIAT in PTX-resistant EC cells decreased cell viability and enhanced apoptosis, corresponding to a reduced half-maximal inhibitory concentration (IC50 ) value. Next, exosomes were isolated from EC109 and EC109/T cells, and EC109 cells were cocultured with EC109/T-cell-derived exosomes. Accordingly, MIAT was revealed to be transmitted through exosomes from EC109/T cells to EC109 cells. Tumor-derived exosomes carrying MIAT increased the IC50 value of PTX and suppressed apoptosis in EC109 cells to promote PTX resistance. Furthermore, MIAT promoted the enrichment of TATA-box binding protein-associated Factor 1 (TAF1) in the promoter region of sterol regulatory element binding transcription factor 1 (SREBF1), as shown by a chromatin immunoprecipitation assay. This might be the mechanism by which MIAT could promote PTX resistance. Finally, in vivo experiments further confirmed that the knockdown of MIAT attenuated the resistance of EC cells to PTX. Collectively, these results indicate that tumor-derived exosome-loaded MIAT activates the TAF1/SREBF1 axis to induce PTX resistance in EC cells, providing a potential therapeutic target for overcoming PTX resistance in EC.


Subject(s)
Esophageal Neoplasms , Exosomes , MicroRNAs , Myocardial Infarction , RNA, Long Noncoding , Humans , Paclitaxel/pharmacology , Exosomes/metabolism , Cell Line, Tumor , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Cell Proliferation , Sterol Regulatory Element Binding Protein 1
14.
Nanomaterials (Basel) ; 13(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37049386

ABSTRACT

As one of the widely studied semiconductor materials, titanium dioxide (TiO2) exhibits high photoelectrochemical (PEC) water-splitting performance as well as high chemical and photo stability. However, limited by a wide band gap and fast electron-hole recombination rate, the low solar-to-hydrogen conversion efficiency remains a bottleneck for the practical application of TiO2-based photoelectrodes. To improve the charge separation and water oxidation efficiency of TiO2 photoanodes, antimonene, a two-dimensional (2D) material obtained by liquid-phase exfoliation, was assembled onto TiO2 nanorod arrays (TNRAs) by a simple drop-coating assembly process. PEC measurements showed that the resulting 2D Sb/TiO2 photoelectrode displayed an enhanced photocurrent density of about 1.32 mA cm-2 in 1.0 M KOH at 0.3 V vs. Hg/HgO, which is ~1.65 times higher than that of the pristine TNRAs. Through UV-Vis absorption and electrochemical impedance spectroscopy measurements, it was possible to ascribe the enhanced PEC performances of the 2D Sb/TiO2 photoanode to increased absorption intensity in the visible light region, and improved interfacial charge-transfer kinetics in the 2D Sb/TiO2 heterojunction, which promotes electron-hole separation, transfer, and collection.

15.
Fitoterapia ; 165: 105429, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36649761

ABSTRACT

Two previous unreported fusicoccane diterpenoids macrostines A and B, together with seven known compounds were isolated from an extract of the fungus Periconia macrospinosa WTG-10. Their structures were elucidated by detailed analysis of spectroscopic data, NMR calculations with DP4+, and their absolute configurations were further determined by quantum chemical calculations of ECD spectra or X-crystallography. Macrostines A and B showed no cytotoxicity, antimicrobial activity and inhibitory effect on nitric oxide production in LPS-activated RAW264.7 macrophages. Compound 9 showed moderate activity against Bacillus subtilis.


Subject(s)
Ascomycota , Diterpenes , Molecular Structure , Ascomycota/chemistry , Magnetic Resonance Spectroscopy , Nitric Oxide
16.
Phytochemistry ; 206: 113554, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36496005

ABSTRACT

Two undescribed polyketides canecines A-B, one unreported cyclopentenone canecine C, together with 12 known compounds were isolated from an extract of the fungus Penicillium canescens DJJ-1. Their structures were elucidated by detailed analysis of spectroscopic data, NMR calculations with dJ-DP4 or DP4+, and their absolute configurations were further determined by quantum chemical calculations of ECD spectra or X-crystallography. Canecine A was a grisan polyketide featuring a dimethyltetrahydro-4H-furo[2,3-b]pyran. Canecine A exhibited significant inhibitory activity against Candida albicans with an MIC value of 1 µg/mL and showed inhibitory effect on nitric oxide production in LPS-activated RAW264.7 macrophages. These results enrich the structural diversities of polyketides from endophytic fungi.


Subject(s)
Anti-Infective Agents , Penicillium , Polyketides , Molecular Structure , Polyketides/chemistry , Penicillium/chemistry , Magnetic Resonance Spectroscopy
17.
J Environ Sci (China) ; 124: 187-197, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182129

ABSTRACT

The temporal and spatial characteristics of urban river bacterial communities help us understand the feedback mechanism of bacteria to changes in the aquatic environment. The Fuhe River plays an important role in determining the water ecological environment of Baiyangdian Lake. 16S rRNA gene sequencing was used to study the microbial distribution characteristics in the Fuhe River in different seasons. The results showed that some environmental factors of the surface water (ammonia nitrogen (NH3-N), total nitrogen (TN), and total phosphorus (TP)) were different on the spatial and temporal scales. Moreover, there were no seasonal differences in the contents of TN, TP, total organic carbon (TOC), or heavy metals in the sediments. The distributions of Cyanobacteria, Actinomycetes and Firmicutes in the water and Actinomycetes and Planctomycetes in the sediments differed significantly among seasons (P < 0.05). There were significant spatial differences in bacteria in the surface water, with the highest abundance of Proteobacteria recorded in the river along with the highest nutrient concentration, while the abundance of Bacteroidetes was higher in the upstream than the downstream. Microbial communities in the water were most sensitive to temperature (T) and the TP concentration (P < 0.01). Moreover, differences in the bacterial community were better explained by the content of heavy metals in the sediments than by the chemical characteristics. A PICRUSt metabolic inference analysis showed that the effect of high summer temperatures on the enzyme action led to an increase in the abundances of the metabolic-related genes of the river microorganisms.


Subject(s)
Metals, Heavy , Microbiota , Ammonia/analysis , Bacteria/genetics , Carbon/analysis , China , Environmental Monitoring/methods , Geologic Sediments/chemistry , Metals, Heavy/analysis , Nitrogen/analysis , Phosphorus/analysis , RNA, Ribosomal, 16S/genetics , Water/analysis
18.
Nat Prod Res ; 37(20): 3443-3451, 2023.
Article in English | MEDLINE | ID: mdl-35609146

ABSTRACT

A new bergamotane sesquiterpenoid, fumigatanol (1), along with nine known compounds (2-10) were isolated from the Aconitum-derived fungus Aspergillus fumigatus M1. Their structures were established on the basis of extensive spectroscopic analyses, ECD experiment and NMR computational method. Antibacterial and cytotoxic activities of compound 1 were evaluated and no obvious antibacterial and cytotoxic activities were observed at concentrations of 256 µg/mL and 40.00 µM, respectively.

19.
Chem Biodivers ; 19(12): e202200671, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36373236

ABSTRACT

A new highly oxygenated polyketide derivative, trichodersine (1), together with fourteen known compounds (2-15) were isolated from Trichoderma sp. MWTGP-04. The structure of trichodersine (1) was established based on comprehensive spectroscopic data analysis, and biogenesis argument. The results of double culture experiments indicated that the strain exhibited potential antifungal activity. The antifungal activities of all isolated compounds were evaluated, among them compound 1 exhibited remarkable antifungal activities against Fusarium solani, Plectosphaerella cucumerina, Alternaria panax, and Aspergillus niger, with minimum inhibitory concentrations (MICs) of 4, 4, 16, and 32 µg/mL, respectively. In addition, the antifungal experiments of polyketide derivatives (1-3) disclosed that their degree of oxidation was a key factor affecting the antifungal activity.


Subject(s)
Polyketides , Trichoderma , Antifungal Agents/chemistry , Trichoderma/chemistry , Polyketides/pharmacology , Aspergillus niger , Microbial Sensitivity Tests
20.
Mol Carcinog ; 61(12): 1177-1190, 2022 12.
Article in English | MEDLINE | ID: mdl-36239547

ABSTRACT

5-Fluorouracil (5-FU) resistance is one of the main causes for treatment failure in esophageal cancer (EC). Here, we intended to elucidate the mechanism of tumor-derived extracellular vesicles (TEVs)-encapsulated long noncoding RNAs (lncRNAs) AC116025.2 in 5-FU resistance in EC. EVs were isolated from the serum samples of EC patients and HEEC, TE-1, and TE-1/5-FU cells, followed by RT-qPCR detection of AC116025.2 expression in EVs. The relationship among AC116025.2, microRNA (miR)-4496, and SEMA5A was evaluated. Next, EC cells were cocultured with EVs, followed by lentivirus transduction and plasmid transfection for studying the role of TEVs-AC116025.2 in EC cells in relation to miR-4496 and SEMA5A. Tumor formation in nude mice was applied for in vivo confirmation. Elevated AC116025.2 expression was seen in the EVs from the serum of 5-FU insensitive patients and from 5-FU-resistant EC cells. Mechanistically, AC116025.2 bound to miR-4496 that inversely targeted SEMA5A in EC cells. EVs-oe-AC116025.2 augmented EC cell viability, colony formation, and 5-FU resistance, but diminished their apoptosis through miR-4496-mediated SEMA5A. Furthermore, EVs-oe-AC116025.2 augmented tumor formation and 5-FU resistance of EC cells in vivo. Conclusively, our data offered evidence of the promoting mechanism of TEVs in the 5-FU resistance of EC by delivering AC116025.2.


Subject(s)
Esophageal Neoplasms , Extracellular Vesicles , MicroRNAs , RNA, Long Noncoding , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Fluorouracil/pharmacology , Mice, Nude , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL