Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 554
Filter
1.
Medicine (Baltimore) ; 103(27): e38666, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968513

ABSTRACT

Adenocarcinoma of the pancreas (PAAD) is one of the deadliest malignant tumors, and messenger ribonucleic acid vaccines, which constitute the latest generation of vaccine technology, are expected to lead to new ideas for the treatment of pancreatic cancer. The Cancer Genome Atlas-PAAD and Genotype-Tissue Expression data were merged and analyzed. Weighted gene coexpression network analysis was used to identify gene modules associated with tumor mutational burden among the genes related to both immunity and oxidative stress. Differentially expressed immune-related oxidative stress genes were screened via univariate Cox regression analysis, and these genes were analyzed via nonnegative matrix factorization. After immune infiltration analysis, least absolute shrinkage and selection operator regression combined with Cox regression was used to construct the model, and the usefulness of the model was predicted based on the receiver operating characteristic curve and decision curve analysis curves after model construction. Finally, metabolic pathway enrichment was analyzed using gene set enrichment analysis combined with Kyoto Encyclopedia of Genes and Genomes and gene ontology biological process analyses. This model consisting of the ERAP2, mesenchymal-epithelial transition factor (MET), CXCL9, and angiotensinogen (AGT) genes can be used to help predict the prognosis of pancreatic cancer patients more accurately than existing models. ERAP2 is involved in immune activation and is important in cancer immune evasion. MET binds to hepatocyte growth factor, leading to the dimerization and phosphorylation of c-MET. This activates various signaling pathways, including MAPK and PI3K, to regulate the proliferation, invasion, and migration of cancer cells. CXCL9 overexpression is associated with a poor patient prognosis and reduces the number of CD8 + cytotoxic T lymphocytes in the PAAD tumor microenvironment. AGT is cleaved by the renin enzyme to produce angiotensin 1, and AGT-converting enzyme cleaves angiotensin 1 to produce angiotensin 2. Exposure to AGT-converting enzyme inhibitors after pancreatic cancer diagnosis is associated with improved survival. The 4 genes identified in the present study - ERAP2, MET, CXCL9, and AGT - are expected to serve as targets for messenger ribonucleic acid vaccine development and need to be further investigated in depth.


Subject(s)
Oxidative Stress , Pancreatic Neoplasms , mRNA Vaccines , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Humans , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Angiotensinogen/genetics , Gene Expression Regulation, Neoplastic , Prognosis
2.
Transl Oncol ; 46: 102031, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861853

ABSTRACT

BACKGROUND: Although the use of anti-PD-1 antibodies has fundamentally changed traditional cancer treatment, most patients are resistant to anti-PD-1 treatment. Glucocorticoids (GCs) play an important role in tumorigenesis and tumor progression, but the role of endogenous GCs in resistance to anti-PD-1 antibody therapy remains unclear. METHODS: Single cell-derived cell lines (SCDCLs) were generated from a colorectal cancer cell line (CT26) using limiting dilution. We analyzed tumor tissues from anti-PD-1 antibody-treated and untreated mice inoculated with SCDCLs via transcriptome sequencing and flow cytometry to detect pathway activity and immune cell composition changes in the tumor microenvironment. RESULTS: Five SCDCLs were inoculated into wild-type BALB/c mice (all tumorigenic). Single-cell clone (SCC)-2 exhibited the slowest growth rates both in vivo and in vitro compared to other single-cell clones, and better long-term survival than SCC1 and CT26. Flow cytometry showed that SCC2 tumor-bearing mice exhibited significantly higher infiltration of T cells within the tumor tissue, and higher expression of PD-1 on these T cells than the other groups in vivo. However, the SCC2 group showed no response to anti-PD-1 therapy. Transcriptome analysis revealed that the SCC2 group exhibited increased expression of genes related to GC (Hsd11b1, Sgk3, Tgfbr2, and Il7r) compared to SCC2-anti-PD-1 treated tumors. CONCLUSIONS: GC pathway activation is related to resistance to anti-PD-1 therapy.

3.
Angew Chem Int Ed Engl ; : e202407665, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837634

ABSTRACT

Bismuth-based materials have emerged as promising catalysts in the electrocatalytic reduction of CO2 to formate. However, the reasons for the reconstruction of Bi-based precursors to form bismuth nanosheets are still puzzling, especially the formation of defective bismuth sites. Herein, we prepare bismuth nanosheets with vacancy-rich defects (V-Bi NS) by rapidly reconstructing Bi19Cl3S27 under negative potential. Theoretical analysis reveals that the introduction of chlorine induces the generation of intrinsic electric field in the precursor, thereby increasing the electron transfer rate and further promoting the metallization of trivalent bismuth. Meanwhile, in situ Raman and ex situ XRD tests verify that Bi19Cl3S27 has a faster reconstruction rate than Bi2S3. The formed V-Bi NS exhibits up to 96% HCOO- Faraday efficiency and 400 mA cm-2 HCOO- partial current densities, and its ECSA normalized formate current density and yield are 2.2 times higher than those of intact bismuth nanosheets (I-Bi NS). Density functional theory (DFT) calculations indicate that bismuth vacancies with electron-rich aggregation reduce the activation energy of CO2 to *CO2- radicals and stabilize the adsorption of the key intermediate *OCHO, thus facilitating the reaction kinetics of formate production.

4.
Brain Behav ; 14(6): e3593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898610

ABSTRACT

BACKGROUND: Gut microbiota alterations in multiple sclerosis (MS) patients have been reported in observational studies, but whether these associations are causal is unclear. OBJECTIVE: We performed a Mendelian randomization study (MR) to assess the causal effects of gut microbiota on MS. METHODS: Independent genetic variants associated with 211 gut microbiota phenotypes were selected as instrumental variables from the largest genome-wide association studies (GWAS) previously published by the MiBioGen study. GWAS data for MS were obtained from the International Multiple Sclerosis Genetics Consortium (IMSGC) for primary analysis and the FinnGen consortium for replication and collaborative analysis. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. RESULTS: After inverse-variance-weighted and sensitivity analysis filtering, seven gut microbiota with potential causal effects on MS were identified from the IMSGC. Only five metabolites remained significant associations with MS when combined with the FinnGen consortium, including genus Anaerofilum id.2053 (odds ratio [OR] = 1.141, 95% confidence interval [CI]: 1.021-1.276, p = .021), Ruminococcus2 id.11374 (OR = 1.190, 95% CI: 1.007-1.406, p = .042), Ruminococcaceae UCG003 id.11361 (OR = 0.822, 95% CI: 0.688-0.982, p = .031), Ruminiclostridium5 id.11355 (OR = 0.724, 95% CI: 0.585-0.895, p = .003), Anaerotruncus id.2054 (OR = 0.772, 95% CI: 0.634-0.940, p = .010). CONCLUSION: Our MR analysis reveals a potential causal relationship between gut microbiota and MS, offering promising avenues for advancing mechanistic understanding and clinical investigation of microbiota-mediated MS.


Subject(s)
Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Multiple Sclerosis , Humans , Multiple Sclerosis/microbiology , Multiple Sclerosis/genetics , Gastrointestinal Microbiome/physiology
5.
Inorg Chem ; 63(25): 11572-11582, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38866714

ABSTRACT

Recently synthesized two-dimensional (2D) monolayer quasi-hexagonal-phase fullerene (qHPC60) demonstrates excellent thermodynamic stability. Within this monolayer, each fullerene cluster is surrounded by six adjacent C60 cages along an equatorial plane and is connected by both C-C single bonds and [2 + 2] cycloaddition bonds that serve as bridges. In this study, we investigate the stability mechanism of the 2D qHPC60 monolayer by examining the electronic structure and chemical bonding through state-of-the-art theoretical methodologies. Density functional theory (DFT) studies reveal that 2D qHPC60 possesses a moderate direct electronic band gap of 1.46 eV, close to the experimental value (1.6 eV). It is found that the intermolecular bridge bonds play a crucial role in enhancing the charge flow and redistribution among C60 cages, leading to the formation of dual π-aromaticity within the C60 sphere and stabilizing the 2D framework structure. Furthermore, we identify a series of delocalized superatom molecular orbitals (SAMOs) within the 2D qHPC60 monolayer, exhibiting atomic orbital-like behavior and hybridization to form nearly free-electron (NFE) bands with σ/π bonding and σ*/π* antibonding properties. Our findings provide insights into the design and potential applications of NFE bands derived from SAMOs in 2D qHPC60 monolayers.

6.
Mol Carcinog ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860604

ABSTRACT

The incidence and mortality rates of gastric cancer (GC) remain alarmingly high worldwide, imposing a substantial healthcare burden. In this study, we utilized data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A 4-gene prognostic model was developed to predict patient prognosis, and its accuracy was validated across multiple datasets. Patients with a low-risk score exhibited improved prognosis, elevated tumor mutation burden, heightened sensitivity to both immunotherapy and conventional chemotherapy. Notably, our investigation revealed that the key gene RGS5 positively modulates the expression of mismatch repair proteins via c-Myc. Furthermore, co-immunoprecipitation (COIP) assays demonstrated the interaction between RGS5 and c-Myc. Additionally, we confirmed that RGS5 regulates c-Myc through the ubiquitin-proteasome pathway. Moreover, RGS5 was identified as a positive regulator of PD-L1 expression and exhibited a negative correlation with the majority of immune cells. These findings underscore the potential of RGS5 as a novel biomarker and therapeutic target in the context of GC.

7.
Front Pharmacol ; 15: 1372094, 2024.
Article in English | MEDLINE | ID: mdl-38910888

ABSTRACT

Cisplatin-induced acute kidney injury (AKI) increases the patient mortality dramatically and results in an unfavorable prognosis. A strong correlation between AKI and ferroptosis, which is a notable type of programmed cell death, was found in recent studies. Myricitrin is a natural flavonoid compound with diverse pharmacological properties. To investigate the protective effect of myricitrin against cisplatin induced human tubular epithelium (HK-2) cell injury and the underlying anti-ferroptic mechanism by this study. Firstly, a pharmacology network analysis was proposed to explore the myricitrin's effect. HK-2 cells were employed for in vitro experiments. Ferroptosis was detected by cell viability, quantification of iron, malondialdehyde, glutathione, lipid peroxidation fluorescence, and glutathione peroxidase (GPX4) expression. Ferritinophagy was detected by related protein expression (NCOA4, FTH, LC3II/I, and SQSTM1). In our study, GO enrichment presented that myricitrin might be effective in eliminating ferroptosis. The phenomenon of ferroptosis regulated by ferritinophagy was observed in cisplatin-activated HK-2 cells. Meanwhile, pretreatment with myricitrin significantly rescued HK-2 cells from cell death, reduced iron overload and lipid peroxidation biomarkers, and improved GPX4 expression. In addition, myricitrin downregulated the expression of LC3II/LC3I and NCOA4 and elevated the expression of FTH and SQTM. Furthermore, myricitrin inhibited ROS production and preserved mitochondrial function with a lower percentage of green JC-1 monomers. However, the protection could be reserved by the inducer of ferritinophagy rapamycin. Mechanically, the Hub genes analysis reveals that AKT and NF-κB are indispensable mediators in the anti-ferroptic process. In conclusion, myricitrin ameliorates cisplatin induced HK-2 cells damage by attenuating ferritinophagy mediated ferroptosis.

8.
Nat Commun ; 15(1): 5172, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890306

ABSTRACT

The carbon-carbon coupling at the Cu/Cu2O Schottky interface has been widely recognized as a promising approach for electrocatalytic CO2 conversion into value-added alcohols. However, the limited selectivity of C2+ alcohols persists due to the insufficient control over rectifying interface characteristics required for precise bonding of oxyhydrocarbons. Herein, we present an investigation into the manipulation of the coordination environment of Cu sites through an in-situ electrochemical reconstruction strategy, which indicates that the construction of low-coordinated Cu sites at the Cu/Cu2O interface facilitates the enhanced rectifying interfaces, and induces asymmetric electronic perturbation and faster electron exchange, thereby boosting C-C coupling and bonding oxyhydrocarbons towards the nucleophilic reaction process of *H2CCO-CO. Impressively, the low-coordinated Cu sites at the Cu/Cu2O interface exhibit superior faradic efficiency of 64.15 ± 1.92% and energy efficiency of ~39.32% for C2+ alcohols production, while maintaining stability for over 50 h (faradic efficiency >50%, total current density = 200 mA cm-2) in a flow-cell electrolyzer. Theoretical calculations, operando synchrotron radiation Fourier transform infrared spectroscopy, and Raman experiments decipher that the low-coordinated Cu sites at the Cu/Cu2O interface can enhance the coverage of *CO and adsorption of *CH2CO and CH2CHO, facilitating the formation of C2+ alcohols.

9.
Nat Commun ; 15(1): 5169, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886390

ABSTRACT

The effectiveness of national policies for air pollution control has been demonstrated, but the relative effectiveness of short-term emission reduction measures in comparison with national policies has not. Here we show that short-term abatement measures during important international events substantially reduced PM2.5 concentrations, but air quality rebounded to pre-event levels after the measures ceased. Long-term adherence to strict emission reduction policies led to successful decreases of 54% in PM2.5 concentrations in Beijing, and 23% in atmospheric nitrogen deposition in China from 2012 to 2020. Incentivized by "blue skies" type campaigns, economic development and reactive nitrogen pollution are quickly decoupled, showing that a combination of inspiring but aggressive short-term measures and effective but durable long-term policies delivers sustainable air quality improvement. However, increased ammonia concentrations, transboundary pollutant flows, and the complexity to achieving reduction targets under climate change scenarios, underscore the need for the synergistic control of multiple pollutants and inter-regional action.

10.
Int J Biol Macromol ; 272(Pt 2): 132913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38851606

ABSTRACT

Nasal vaccine is a non-invasive vaccine that activates systemic and mucosal immunity in the presence of an adjuvant, thereby enhancing immune function. In this work, chitosan/oligochitosan/tween 80 (CS-COS-T80) co-stabilized emulsion was designed and further used as the nasal adjuvant. CS-COS-T80 emulsion exhibited outstanding stability under pH 6-8 with uniformly dispersed droplets and nano-scale particle size (<0.25 µm), and maintained stable at 4 °C for 150-day storage. Addition of model antigen ovalbumin (OVA) had no effect on the stability of CS-COS-T80 emulsion. In vivo nasal immunity indicated that CS-COS-T80 emulsion prolonged the retention time of OVA in the nasal cavity (from 4 to 8 h to >12 h), as compared to T80-emulsion. CS-COS-T80 emulsion produced a stronger mucosal immune response to OVA, with secretory IgA levels 5-fold and 2-fold higher than those of bare OVA and commercial adjuvant MF59, respectively. Compared to MF59, CS-COS-T80 induced a stronger humoral immune response and a mixed Th1/Th2 immune response of OVA after immunization. Furthermore, in the presence of CS-COS-T80 emulsion, the secretion of IL-4 and IFN-γ and the activation of splenocyte memory T-cell differentiation increased from 173.98 to 210.21 pg/mL and from 75.46 to 104.01 pg/mL, respectively. Therefore, CS-COS-T80 emulsion may serve as a promising adjuvant platform.


Subject(s)
Adjuvants, Immunologic , Chitosan , Emulsions , Immunity, Mucosal , Nasal Mucosa , Ovalbumin , Chitosan/chemistry , Animals , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Immunity, Mucosal/drug effects , Mice , Ovalbumin/immunology , Ovalbumin/chemistry , Nasal Mucosa/immunology , Female , Administration, Intranasal , Mice, Inbred BALB C , Cytokines/metabolism , Particle Size , Oligosaccharides
11.
J Hazard Mater ; 475: 134917, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889472

ABSTRACT

Crystal facet and defect engineering are crucial for designing heterogeneous catalysts. In this study, different solvents were utilized to generate NiO with distinct shapes (hexagonal layers, rods, and spheres) using nickel-based metal-organic frameworks (MOFs) as precursors. It was shown that the exposed crystal facets of NiO with different morphologies differed from each other. Various characterization techniques and density functional theory (DFT) calculations revealed that hexagonal-layered NiO (NiO-L) possessed excellent low-temperature reducibility and oxygen migration ability. The (111) crystal plane of NiO-L contained more lattice defects and oxygen vacancies, resulting in enhanced propane oxidation due to its highest O2 adsorption energy. Furthermore, the higher the surface active oxygen species and surface oxygen vacancy concentrations, the lower the C-H activation energy of the NiO catalyst and hence the better the catalytic activity for the oxidation of propane. Consequently, NiO-L exhibited remarkable catalytic activity and good stability for propane oxidation. This study provided a simple strategy for controlling NiO crystal facets, and demonstrated that the oxygen defects could be more easily formed on NiO(111) facets, thus would be beneficial for the activation of C-H bonds in propane. In addition, the results of this work can be extended to the other fields, such as propane oxidation to propene, fuel cells, and photocatalysis.

12.
Chem Sci ; 15(25): 9733-9741, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38939145

ABSTRACT

Highly efficient degradation of antibiotics is a huge challenge due to the extremely stable molecules and the potential for biological resistance. However, conventional degradation methods are limited to lower degradation rate, higher energy consumption and secondary pollution. Herein, we report a new Cu-based metal-organic framework (MOF), featuring classical planar trinuclear [Cu3(µ3-O)]4+ clusters within the pores. The presence of the rich open metal sites and the large pore ratio, as well as the high catalytic activity of Cu2+ ions, are conducive to boosting the degradation of various antibiotics (>95%) under the activation of peroxymonosulfate. Remarkably, this is the first MOF to achieve such exceptional catalytic performance under neutral and even alkaline conditions, which exceeds those of most reported materials. Mechanism investigation demonstrates that multiple active species were produced and promoted the degradation synergistically during the advanced oxidation processes.

13.
Environ Sci Pollut Res Int ; 31(26): 38153-38179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795295

ABSTRACT

The Chinese government seeks to promote economic growth and sustainable development while achieving carbon neutrality by establishing phased smart city pilots. Therefore, it is important to study whether smart city pilots can promote carbon emission efficiency (CEE). This paper constructs a multi-period difference-in-difference (DID) model based on panel data from 241 prefecture-level cities in China from 2007 to 2019, aiming to investigate the mechanism of the impact of smart city pilot policies (SCPP) on CEE and whether there is a rebound effect. The study found that smart city construction (SCC) significantly improves carbon efficiency, with pilot cities increasing their CEE by 1.4% compared to non-pilot cities. The conclusions remain robust under a variety of scenarios including the introduction of placebo tests, counterfactual tests, sample data screening, and omitted variable tests. The results of the mechanism test show that although the rebound effect can inhibit the improvement of CEE, the environment can be improved and the CEE can be enhanced through green technology innovation, industrial structure upgrading, energy structure optimization, environmental regulation effect, information technology support, and resource allocation effect. The heterogeneity results indicate that the SCPP is more effective in promoting CEE in cities in the eastern region, southern cities, environmentally friendly cities, large cities, and medium-sized cities. This study contributes to the existing literature in clarifying the environmental benefits of SCPP and provides valuable policy insights for cities to address climate change and sustainable development.


Subject(s)
Carbon , Cities , China , Pilot Projects , Sustainable Development
14.
Plants (Basel) ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732451

ABSTRACT

DREB has been reported to be involved in plant growth and response to environmental factors. However, the function of DREB in growth and development has not been elucidated in alfalfa (Medicago sativa L.), a perennial tetraploid forage cultivated worldwide. In this study, an ortholog of MtDREB1C was characterized from alfalfa and named MsDREB1C accordingly. MsDREB1C was significantly induced by abiotic stress. The transcription factor MsDREB1C resided in the nucleus and had self-transactivation activity. The MsDREB1C overexpression (OE) alfalfa displayed growth retardation under both long-day and short-day conditions, which was supported by decreased MsGA20ox and upregulated MsGA2ox in the OE lines. Consistently, a decrease in active gibberellin (GA) was detected, suggesting a negative effect of MsDREB1C on GA accumulation in alfalfa. Interestingly, the forage quality of the OE lines was better than that of WT lines, with higher crude protein and lower lignin content, which was supported by an increase in the leaf-stem ratio (LSR) and repression of several lignin-synthesis genes (MsNST, MsPAL1, MsC4H, and Ms4CL). Therefore, this study revealed the effects of MsDREB1C overexpression on growth and forage quality via modifying GA accumulation and lignin synthesis, respectively. Our findings provide a valuable candidate for improving the critical agronomic traits of alfalfa, such as overwintering and feeding value of the forage.

15.
Front Cell Infect Microbiol ; 14: 1363276, 2024.
Article in English | MEDLINE | ID: mdl-38707511

ABSTRACT

Introduction: Chronic kidney disease (CKD) is worldwide healthcare burden with growing incidence and death rate. Emerging evidence demonstrated the compositional and functional differences of gut microbiota in patients with CKD. As such, gut microbial features can be developed as diagnostic biomarkers and potential therapeutic target for CKD. Methods: To eliminate the outcome bias arising from factors such as geographical distribution, sequencing platform, and data analysis techniques, we conducted a comprehensive analysis of the microbial differences between patients with CKD and healthy individuals based on multiple samples worldwide. A total of 980 samples from six references across three nations were incorporated from the PubMed, Web of Science, and GMrepo databases. The obtained 16S rRNA microbiome data were subjected to DADA2 processing, QIIME2 and PICRUSt2 analyses. Results: The gut microbiota of patients with CKD differs significantly from that of healthy controls (HC), with a substantial decrease in the microbial diversity among the CKD group. Moreover, a significantly reduced abundance of bacteria Faecalibacterium prausnitzii (F. prausnitzii) was detected in the CKD group through linear discriminant analysis effect size (LEfSe) analysis, which may be associated with the alleviating effects against CKD. Notably, we identified CKD-depleted F. prausnitzii demonstrated a significant negative correlation with three pathways based on predictive functional analysis, suggesting its potential role in regulating systemic acidbase disturbance and pro-oxidant metabolism. Discussion: Our findings demonstrated notable alterations of gut microbiota in CKD patients. Specific gut-beneficial microbiota, especially F. prausnitzii, may be developed as a preventive and therapeutic tool for CKD clinical management.


Subject(s)
Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Renal Insufficiency, Chronic , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics , Renal Insufficiency, Chronic/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Feces/microbiology , Phylogeny , Faecalibacterium prausnitzii/genetics , Biodiversity , Dysbiosis/microbiology
16.
Integr Med Res ; 13(2): 101039, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38746044

ABSTRACT

Background: Chronic fatigue is a predominant symptom of post COVID-19 condition, or long COVID. We aimed to evaluate the efficacy and safety of Traditional, Complementary and Integrative Medicine (TCIM) for fatigue post COVID-19 infection. Methods: Ten English and Chinese language databases and grey literature were searched up to 12 April 2023 for randomized controlled trials (RCTs). Cochrane "Risk of bias" (RoB) tool was applied. Evidence certainty was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Effect estimates were presented as risk ratio (RR) or mean difference (MD) with 95% confidence interval (CI). Results: Thirteen RCTs with 1632 participants were included. One RCT showed that Bufei Huoxue herbal capsules reduced fatigue (n=129, MD -14.90, 95%CI -24.53 to -5.27), one RCT reported that Ludangshen herbal liquid lowered fatigue (n=184, MD -1.90, 95%CI -2.38 to -1.42), and the other one RCT shown that fatigue disappearance rate was higher with Ludangshen herbal liquid (n=184, RR 4.19, 95%CI 2.06 to 8.53). Compared to traditional Chinese medicine rehabilitation (TCM-rahab) alone, one RCT showed that fatigue symptoms were lower following Qingjin Yiqi granules plus TCM-rehab (n=388, MD -0.48, 95%CI -0.50 to -0.46). Due to concerns with RoB and/or imprecision, the certainty in this evidence was low to very low. No serious adverse events was reported. Conclusions: Limited evidence suggests that various TCIM interventions might reduce post COVID-19 fatigue. Larger, high quality RCTs of longer duration are required to confirm these preliminary findings. Study Registration: The protocol of this review has been registered at PROSPERO: CRD42022384136.

17.
Environ Sci Ecotechnol ; 21: 100423, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38693993

ABSTRACT

Evaluating the health of river surface water is essential, as rivers support significant biological resources and serve as vital drinking water sources. While the Water Quality Index (WQI) is commonly employed to evaluate surface water quality, it fails to consider biodiversity and does not fully capture the ecological health of rivers. Here we show a comprehensive assessment of the ecological health of surface water in the lower Yangtze River (LYR), integrating chemical and biological metrics. According to traditional WQI metrics, the LYR's surface water generally meets China's Class II standards. However, it also contains 43 high-risk emerging contaminants; nitrobenzenes are found at the highest concentrations, representing 25-90% of total detections, while polycyclic aromatic hydrocarbons present the most substantial environmental risks, accounting for 81-93% of the total risk quotient. Notably, the plankton-based index of biological integrity (P-IBI) rates the ecological health of the majority of LYR water samples (59.7%) as 'fair', with significantly better health observed in autumn compared to other seasons (p < 0.01). Our findings suggest that including emerging contaminants and P-IBI as additional metrics can enhance the traditional WQI analysis in evaluating surface water's ecological health. These results highlight the need for a multidimensional assessment approach and call for improvements to LYR's ecological health, focusing on emerging contaminants and biodiversity rather than solely on reducing conventional indicators.

18.
Small ; : e2401346, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700047

ABSTRACT

Transparent flexible energy storage devices are limited by the trade-off among flexibility, transparency, and charge storage capability of their electrode materials. Conductive polymers are intrinsically flexible, but limited by small capacitance. Pseudocapacitive MXene provides high capacitance, yet their opaque and brittle nature hinders their flexibility and transparency. Herein, the development of synergistically interacting conductive polymer Ti3C2Tx MXene/PEDOT:PSS composites is reported for transparent flexible all-solid-state supercapacitors, with an outstanding areal capacitance of 3.1 mF cm-2, a high optical transparency of 61.6%, and excellent flexibility and durability. The high capacitance and high transparency of the devices stem from the uniform and thorough blending of PEDOT:PSS and Ti3C2Tx, which is associated with the formation of O─H…O H-bonds in the composites. The conductive MXene/polymer composite electrodes demonstrate a rational means to achieve high-capacity, transparent and flexible supercapacitors in an easy and scalable manner.

19.
iScience ; 27(4): 109470, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38715934

ABSTRACT

The production of high-demand syngas with tunable ratios by CO2 electroreduction has attracted considerable research interest. However, it is challenging to balance the evolution performance of H2 and CO with wide H2/CO ratios, while maintaining high efficiency. Herein, nitrogen-coordinated hierarchical porous carbon spheres with varying phosphorus content (PxNC-T) are assembled to regulate syngas production performance. The precise introduction of P modulates the local charge distribution of nitrogen-coordinated carbons, thereby accelerating the protonation process of ∗CO2-to-∗COOH and promoting moderate H∗ adsorption. Specifically, syngas with wide H2/CO ratios (0.60-4.98) is obtained over a low potential range (-0.46 to -0.86 V vs. RHE). As a representative, P1.0NC-900 presents a remarkable current density (-152 mA cm-2) at -1.0 V vs. RHE in flow cells and delivers a decent peak power density (1.93 mW cm-2) in reversible Zn-CO2 batteries. Our work provides valuable insights into the rational design of carbon-based catalysts for CO2 reduction.

20.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731920

ABSTRACT

Expansins, a class of cell-wall-loosening proteins that regulate plant growth and stress resistance, have been studied in a variety of plant species. However, little is known about the Expansins present in alfalfa (Medicago sativa L.) due to the complexity of its tetraploidy. Based on the alfalfa (cultivar "XinjiangDaye") reference genome, we identified 168 Expansin members (MsEXPs). Phylogenetic analysis showed that MsEXPs consist of four subfamilies: MsEXPAs (123), MsEXPBs (25), MsEXLAs (2), and MsEXLBs (18). MsEXPAs, which account for 73.2% of MsEXPs, and are divided into twelve groups (EXPA-I-EXPA-XII). Of these, EXPA-XI members are specific to Medicago trunctula and alfalfa. Gene composition analysis revealed that the members of each individual subfamily shared a similar structure. Interestingly, about 56.3% of the cis-acting elements were predicted to be associated with abiotic stress, and the majority were MYB- and MYC-binding motifs, accounting for 33.9% and 36.0%, respectively. Our short-term treatment (≤24 h) with NaCl (200 mM) or PEG (polyethylene glycol, 15%) showed that the transcriptional levels of 12 MsEXPs in seedlings were significantly altered at the tested time point(s), indicating that MsEXPs are osmotic-responsive. These findings imply the potential functions of MsEXPs in alfalfa adaptation to high salinity and/or drought. Future studies on MsEXP expression profiles under long-term (>24 h) stress treatment would provide valuable information on their involvement in the response of alfalfa to abiotic stress.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Medicago sativa , Phylogeny , Plant Proteins , Stress, Physiological , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Multigene Family , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...