Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.535
Filter
1.
J Am Chem Soc ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946087

ABSTRACT

Noncentrosymmetric nanostructures are an attractive synthetic target as they can exhibit complex interparticle interactions useful for numerous applications. However, generating uniform, colloidally stable, noncentrosymmetric nanoparticles with low aspect ratios is a significant challenge using solution self-assembly approaches. Herein, we outline the synthesis of noncentrosymmetric multiblock co-nanofibers by subsequent living crystallization-driven self-assembly of block co-polymers, spatially confined attachment of nanoparticles, and localized nanofiber fragmentation. Using this strategy, we have fabricated uniform diblock and triblock noncentrosymmetric π-conjugated nanofiber-nanoparticle hybrid structures. Additionally, in contrast to Brownian motion typical of centrosymmetric nanoparticles, we demonstrated that these noncentrosymmetric nanofibers undergo ballistic motion in the presence of H2O2 and thus could be employed as nanomotors in various applications, including drug delivery and environmental remediation.

2.
Int J Biol Macromol ; 275(Pt 1): 133585, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960247

ABSTRACT

Protein materials gain new functions and applicability through redesigns in protein structure and engineering confer. However, the application and development of proteins for use in flexible devices that fit in flexible devices that fit the surface of human skin is hindered by their poor wet stability. Here, we described the design of wet-stable materials based on the reconstruction of silk fibroin (SF). The combination of polyamide-amine-epichlorohydrin (PAE) was used as a traction rope to bring SF molecular chains closer to each other, to facilitate the self-assembly of SF through branching and lengthening of molecular chains, and change its crystalline structure. SF/PAE composite films that exhibited huge improvement in ductility and wet stability were combined with flexible SF substrates via patterning and ion sputtering to prepare flexible sensors. In addition, the SF/PAE sensing system equipped with a microprocessor and Bluetooth module enabled the real-time remote acquisition of human health signals such as vocal cords, joints, pulse and meridians. This reconfiguration of the SF structure will advance the systematic exploration of protein structures and the development of protein materials for intelligent device applications.

3.
Environ Pollut ; 358: 124493, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960116

ABSTRACT

Metal exposure is associated with vascular endothelial inflammation, an early pathological phenotype of atherosclerotic cardiovascular events. However, the underlying mechanism linking exposure, metabolic changes, and outcomes remains unclear. We aimed to investigate the metabolic changes underlying the associations of chronic exposure to metal mixtures with vascular endothelial inflammation. We recruited 960 adults aged 20-75 years from residential areas surrounding rivers near abandoned lead-zinc mine and classified them into river area and non-river area exposure groups. Urine levels of 25 metals, Framingham risk score (FRS), and serum concentrations of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as biomarkers of vascular endothelial inflammation, were assessed. A "meet-in-the-middle" approach was applied to identify causal intermediate metabolites and metabolic pathways linking metal exposure to vascular endothelial inflammation in representative metabolic samples from 64 participants. Compared to the non-river area exposure group, the river area exposure group had significantly greater urine concentrations of chromium, copper, cadmium, and lead; lower urine concentrations of selenium; elevated FRS; and increased concentrations of ICAM-1 and VCAM-1. In total, 38 differentially abundant metabolites were identified between the river area and non-river area exposure groups. Among them, 25 metabolites were significantly associated with FRS, 8 metabolites with ICAM-1 expression, and 10 metabolites with VCAM-1 expression. Furthermore, fructose, ornithine, alpha-ketoglutaric acid, urea, and cytidine monophosphate, are potential mediators of the relationship between metal exposure and vascular endothelial inflammation. Additionally, the metabolic changes underlying these effects included changes in arginine and proline metabolism, pyrimidine metabolism, starch and sucrose metabolism, galactose metabolism, arginine biosynthesis, and alanine, aspartate, and glutamate metabolism, suggesting the disturbance of amino acid metabolism, the tricarboxylic acid cycle, nucleotide metabolism, and glycolysis. Overall, our results reveal biomechanisms that may link chronic exposure to multiple metals with vascular endothelial inflammation and elevated cardiovascular risk.

4.
Front Med (Lausanne) ; 11: 1403020, 2024.
Article in English | MEDLINE | ID: mdl-38975053

ABSTRACT

Background: The purpose of this study was to analyze the imaging risk factors for the development of 2-3 cm ground-glass nodules (GGN) for invasive lung adenocarcinoma and to establish a nomogram prediction model to provide a reference for the pathological prediction of 2-3 cm GGN and the selection of surgical procedures. Methods: We reviewed the demographic, imaging, and pathological information of 596 adult patients who underwent 2-3 cm GGN resection, between 2018 and 2022, in the Department of Thoracic Surgery, Second Affiliated Hospital of the Air Force Medical University. Based on single factor analysis, the regression method was used to analyze multiple factors, and a nomogram prediction model for 2-3 cm GGN was established. Results: (1) The risk factors for the development of 2-3 cm GGN during the invasion stage of the lung adenocarcinoma were pleural depression sign (OR = 1.687, 95%CI: 1.010-2.820), vacuole (OR = 2.334, 95%CI: 1.222-4.460), burr sign (OR = 2.617, 95%CI: 1.008-6.795), lobulated sign (OR = 3.006, 95%CI: 1.098-8.227), bronchial sign (OR = 3.134, 95%CI: 1.556-6.310), diameter of GGN (OR = 3.118, 95%CI: 1.151-8.445), and CTR (OR = 172.517, 95%CI: 48.023-619.745). (2) The 2-3 cm GGN risk prediction model was developed based on the risk factors with an AUC of 0.839; the calibration curve Y was close to the X-line, and the decision curve was drawn in the range of 0.0-1.0. Conclusion: We analyzed the risk factors for the development of 2-3 cm GGN during the invasion stage of the lung adenocarcinoma. The predictive model developed based on the above factors had some clinical significance.

5.
Angew Chem Int Ed Engl ; : e202405920, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945829

ABSTRACT

The practical application of lithium-sulfur batteries with high theoretical energy density and readily available cathode active materials is hampered by problems such as sulfur insulation, dramatic volume changes, and polysulfide shuttling. The targeted development of novel binders is the most industrialized solution to the problem of sulfur cathodes. Herein, an aqueous conductive emulsion binder with the sulfonate-containing hard elastic copolymer core and the conjugate polymer shell, which is capable of forming a bicontinuous mesoscopic interpenetrating polymer network, is synthesized and investigated. Not only can the elastic skeleton formed by the copolymer bind the active substance under drastic volume changes, but also the rich ester and cyanide groups in it can effectively capture lithium polysulfide. Meanwhile, the conducting skeleton consisting of poly(3,4-ethylenedioxythiophene) both provides the additional charge conduction pathways and acts as the redox intermediates, significantly accelerating the kinetic process of lithium polysulfide conversion. Based on the synergistic effect of the above mechanisms, the use of the prepared binder on the sulfur carbon cathode significantly improves the rate performance and cycle stability of lithium sulfur batteries.

6.
Sci Rep ; 14(1): 14751, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926518

ABSTRACT

Air pollution poses a major threat to both the environment and public health. The air quality index (AQI), aggregate AQI, new health risk-based air quality index (NHAQI), and NHAQI-WHO were employed to quantitatively evaluate the characterization of air pollution and the associated health risk in Gansu Province before (P-I) and after (P-II) COVID-19 pandemic. The results indicated that AQI system undervalued the comprehensive health risk impact of the six criteria pollutants compared with the other three indices. The stringent lockdown measures contributed to a considerable reduction in SO2, CO, PM2.5, NO2 and PM10; these concentrations were 43.4%, 34.6%, 21.4%, 17.4%, and 14.2% lower in P-II than P-I, respectively. But the concentration of O3 had no obvious improvement. The higher sandstorm frequency in P-II led to no significant decrease in the ERtotal and even resulted in an increase in the average ERtotal in cities located in northwestern Gansu from 0.78% in P-I to 1.0% in P-II. The cumulative distribution of NHAQI-based population-weighted exposure revealed that 24% of the total population was still exposed to light pollution in spring during P-II, while the air quality in other three seasons had significant improvements and all people were under healthy air quality level.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Particulate Matter , China/epidemiology , Humans , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19/epidemiology , Air Pollutants/analysis , Air Pollutants/adverse effects , Particulate Matter/analysis , Particulate Matter/adverse effects , SARS-CoV-2/isolation & purification , Environmental Monitoring/methods , Environmental Exposure/adverse effects , Public Health , Sulfur Dioxide/analysis , Sulfur Dioxide/adverse effects , Risk Assessment , Ozone/analysis
7.
Chemosphere ; 362: 142640, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901697

ABSTRACT

Exogenous quorum sensing (QS) molecular can regulate the activity and granulation process of anaerobic sludge in anaerobic digestion process, but would be impractical as a standalone operation. Here we demonstrated that application of 1 mg L-1 boric acid assisted in an upflow anaerobic sludge blanket (UASB) reactor recovery from volatile fatty acids (VFAs) accumulation. After VFAs accumulation, the chemical oxygen demand (COD) removal suddenly reduced from 78.98% to 55.86%. The relative abundance of acetoclastic methanogens decreased from 55.79% to 68.28%-23.14%∼25.41%, and lead to the acetate accumulate as high as 1317.03 mg L-1. Granular sludge disintegrated and the average size of sludge decreased to 586.38 ± 42.45 µm. Application of 1 mg L-1 boric acid activated the interspecies QS signal (AI-2) and then induced the secretion of intraspecies QS signal (N-acyl-homoserine lactones, AHLs). AHLs were then stimulated the growth of syntrophic acetate oxidizing bacteria and hydrogenotrophic methanogen. Moreover, the concentration of acetate decreased to 224.50 mg‧L-1, and the COD removal increased to 75.10% after application of 1 mg L-1 boric acid. The activated AI-2 may induce multiple quorum-sensing circuits enhance the level of AI-2 and AHLs in parallel, and in turn assisted in anaerobic digestion recovery from VFAs accumulation.

8.
Article in English | MEDLINE | ID: mdl-38837927

ABSTRACT

Moving object detection in satellite videos (SVMOD) is a challenging task due to the extremely dim and small target characteristics. Current learning-based methods extract spatio-temporal information from multi-frame dense representation with labor-intensive manual labels to tackle SVMOD, which needs high annotation costs and contains tremendous computational redundancy due to the severe imbalance between foreground and background regions. In this paper, we propose a highly efficient unsupervised framework for SVMOD. Specifically, we propose a generic unsupervised framework for SVMOD, in which pseudo labels generated by a traditional method can evolve with the training process to promote detection performance. Furthermore, we propose a highly efficient and effective sparse convolutional anchor-free detection network by sampling the dense multi-frame image form into a sparse spatio-temporal point cloud representation and skipping the redundant computation on background regions. Coping these two designs, we can achieve both high efficiency (label and computation efficiency) and effectiveness. Extensive experiments demonstrate that our method can not only process 98.8 frames per second on 1024 ×1024 images but also achieve state-of-the-art performance.

9.
ACS Sens ; 9(6): 2728-2776, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38828988

ABSTRACT

The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.


Subject(s)
Gases , Gases/analysis , Gases/chemistry , Smell , Industry , Odorants/analysis
10.
ACS Appl Mater Interfaces ; 16(26): 33093-33105, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38884171

ABSTRACT

The morphological features of materials significantly influence their interactions with cells, consequently affecting the cellular uptake of these materials. In this study, we examine the cellular uptake behavior of spherical metal-organic frameworks (MOFs) and petaloid MOFs, both possessing similar sizes and compositions. In comparison to spherical MOFs, dendritic cells (DCs) and macrophages exhibit superior phagocytic uptake of petaloid MOFs. Next, the results demonstrate that R848@petaloid MOFs more effectively promote the repolarization of tumor-associated macrophages (TAMs) from the M2 to M1 phenotype and the maturation of DCs. More importantly, the R848-loaded petaloid MOFs are found to significantly enhance the therapeutic effects of radiotherapy (RT) by eliciting antitumor responses. Furthermore, R848@petaloid MOFs combined with RT and αPD-L1 elicit a potent abscopal effect, effectively suppressing tumor metastasis. Therefore, this work proposes a new strategy to enhance the uptake of immunomodulators by immune cells through modulating the morphology of drug delivery carriers.


Subject(s)
Imidazoles , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Animals , Imidazoles/chemistry , Imidazoles/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Drug Carriers/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , RAW 264.7 Cells , Cell Line, Tumor , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Female , B7-H1 Antigen/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/immunology
11.
Arch Microbiol ; 206(7): 291, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849576

ABSTRACT

Biomass-degrading enzymes produced by microorganisms have a great potential in the processing of agricultural wastes. In order to produce suitable biomass-degrading enzymes for releasing sugars and aroma compounds from tobacco scraps, the feasibility of directly using the scraps as a carbon source for enzyme production was investigated in this study. By comparative studies of ten fungal strains isolated from tobacco leaves, Aspergillus brunneoviolaceus Ab-10 was found to produce an efficient enzyme mixture for the saccharification of tobacco scraps. Proteomic analysis identified a set of plant biomass-degrading enzymes in the enzyme mixture, including amylases, hemicellulases, cellulases and pectinases. At a substrate concentration of 100 g/L and enzyme dosage of 4 mg/g, glucose of 17.6 g/L was produced from tobacco scraps using the crude enzyme produced by A. brunneoviolaceus Ab-10. In addition, the contents of 23 volatile molecules, including the aroma compounds 4-ketoisophorone and benzyl alcohol, were significantly increased after the enzymatic treatment. The results provide a strategy for valorization of tobacco waste by integrating the production of biomass-degrading enzymes into the tobacco scrap processing system.


Subject(s)
Aspergillus , Biomass , Nicotiana , Nicotiana/microbiology , Nicotiana/metabolism , Aspergillus/enzymology , Aspergillus/metabolism , Sugars/metabolism , Odorants/analysis , Fungal Proteins/metabolism , Glycoside Hydrolases/metabolism , Amylases/metabolism , Volatile Organic Compounds/metabolism , Plant Leaves/microbiology , Cellulases/metabolism , Polygalacturonase/metabolism
12.
Sci Rep ; 14(1): 13543, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866996

ABSTRACT

The objective of this study was to investigate spleen pathology and immune cell subset alterations in mice exposed to acute and chronic restraint stress over various timeframes. A deeper understanding of stress-induced spleen injuries can provide new insights into the mechanisms underlying stress-induced disorders. C57BL/6N mice were restrained for different durations (1, 3, 7, 14 and 21 days) for 6-8 h daily. The control mice were observed at the same time points. Post restraint, behavioural experiments were conducted to assess spleen weight, gross morphology and microscopic histological changes. Immunohistochemical staining was used to detect changes in glucocorticoid receptor (GR) expression, immune cell subsets and cell proliferation in response to stress. Our analysis revealed significant behavioural abnormalities in the stressed mice. In particular, there was an increase in the nuclear expression of GR beginning on Day 3, and it peaked on Day 14. The spleens of stressed mice displayed a reduction in size, disordered internal tissue structure and reduced cell proliferation. NK cells and M2-type macrophages exhibited immune cell subset alterations under stress, whereas T or B cells remained unaltered. Restraint stress can lead to pathomorphological alterations in spleen morphology, cell proliferation and immune cell counts in mice. These findings suggest that stress-induced pathological changes can disrupt immune regulation during stress.


Subject(s)
Mice, Inbred C57BL , Receptors, Glucocorticoid , Restraint, Physical , Spleen , Stress, Psychological , Animals , Spleen/pathology , Spleen/metabolism , Receptors, Glucocorticoid/metabolism , Mice , Male , Stress, Psychological/immunology , Cell Proliferation , Time Factors , Killer Cells, Natural/immunology , Stress, Physiological , Macrophages/immunology , Macrophages/metabolism
13.
Nanomaterials (Basel) ; 14(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38869590

ABSTRACT

Polyyne is an sp-hybridized linear carbon chain (LCC) with alternating single and triple carbon-carbon bonds. Polyyne is very reactive; thus, its structure can be easily damaged through a cross-linking reaction between the molecules. The longer the polyyne is, the more unstable it becomes. Therefore, it is difficult to directly synthesize long polyynes in a solvent. The encapsulation of polyynes inside carbon nanotubes not only stabilizes the molecules to avoid cross-linking reactions, but also allows a restriction reaction to occur solely at the ends of the polyynes, resulting in long LCCs. Here, by controlling the diameter of single-walled carbon nanotubes (SWCNTs), polyynes were filled with high yield below room temperature. Subsequent annealing of the filled samples promoted the reaction between the polyynes, leading to the formation of long LCCs. More importantly, single chiral (6,5) SWCNTs with high purity were used for the successful encapsulation of polyynes for the first time, and LCCs were synthesized by coalescing the polyynes in the (6,5) SWCNTs. This method holds promise for further exploration of the synthesis of property-tailored LCCs through encapsulation inside different chiral SWCNTs.

14.
Article in English | MEDLINE | ID: mdl-38880666

ABSTRACT

Cutaneous melanoma is an aggressive form of skin cancer derived from skin melanocytes and is associated with significant morbidity and mortality. A significant fraction of melanomas are associated with precursor lesions, benign clonal proliferations of melanocytes called nevi. Nevi can be either congenital or acquired later in life. Identical oncogenic driver mutations are found in benign nevi and melanoma. While much progress has been made in our understanding of nevus formation and the molecular steps required for transformation of nevi into melanoma, the clinical diagnosis of benign versus malignant lesions remains challenging.

15.
J Orthop Surg Res ; 19(1): 359, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880901

ABSTRACT

OBJECTIVE: A novel Proximal Femoral Bionic Nail (PFBN) has been developed by a research team for the treatment of femoral neck fractures. This study aims to compare the biomechanical properties of the innovative PFBN with those of the conventional Inverted Triangular Cannulated Screw (ITCS) fixation method through biomechanical testing. METHODS: Sixteen male femoral specimens preserved in formalin were selected, with the donors' age at death averaging 56.1 ± 6.3 years (range 47-64 years), and a mean age of 51.4 years. The femurs showed no visible damage and were examined by X-rays to exclude diseases affecting bone quality such as tumors, severe osteoporosis, and deformities. The 16 femoral specimens were randomly divided into an experimental group (n = 8) and a control group (n = 8). All femurs were prepared with Pauwels type III femoral neck fractures, fixed with PFBN in the experimental group and ITCS in the control group. Displacement and stress limits of each specimen were measured through cyclic compression tests and failure experiments, and vertical displacement and strain values under a 600 N vertical load were measured in all specimens through vertical compression tests. RESULTS: In the vertical compression test, the average displacement at the anterior head region of the femur was 0.362 mm for the PFBN group, significantly less than the 0.480 mm for the ITCS group (p < 0.001). At the fracture line area, the average displacement for the PFBN group was also lower than that of the ITCS group (0.196 mm vs. 0.324 mm, p < 0.001). The difference in displacement in the shaft area was smaller, but the average displacement for the PFBN group (0.049 mm) was still significantly less than that for the ITCS group (0.062 mm, p = 0.016). The situation was similar on the posterior side of the femur. The average displacements in the head area, fracture line area, and shaft area for the PFBN group were 0.300 mm, 0.168 mm, and 0.081 mm, respectively, while those for the ITCS group were 0.558 mm, 0.274 mm, and 0.041 mm, with significant differences in all areas (p < 0.001). The average strain in the anterior head area for the PFBN group was 4947 µm/m, significantly less than the 1540 µm/m for the ITCS group (p < 0.001). Likewise, in the fracture line and shaft areas, the average strains for the PFBN group were significantly less than those for the ITCS group (p < 0.05). In the posterior head area, the average strain for the PFBN group was 4861 µm/m, significantly less than the 1442 µm/m for the ITCS group (p < 0.001). The strain conditions in the fracture line and shaft areas also showed the PFBN group was superior to the ITCS group (p < 0.001). In cyclic loading experiments, the PFBN fixation showed smaller maximum displacement (1.269 mm vs. 1.808 mm, p < 0.001), indicating better stability. In the failure experiments, the maximum failure load that the PFBN-fixated fracture block could withstand was significantly higher than that for the ITCS fixation (1817 N vs. 1116 N, p < 0.001). CONCLUSION: The PFBN can meet the biomechanical requirements for internal fixation of femoral neck fractures. PFBN is superior in biomechanical stability compared to ITCS, particularly showing less displacement and higher failure resistance in cyclic load and failure experiments. While there are differences in strain performance in different regions between the two fixation methods, overall, PFBN provides superior stability.


Subject(s)
Bone Nails , Bone Screws , Femoral Neck Fractures , Fracture Fixation, Intramedullary , Humans , Femoral Neck Fractures/surgery , Femoral Neck Fractures/diagnostic imaging , Middle Aged , Male , Biomechanical Phenomena , Fracture Fixation, Intramedullary/methods , Fracture Fixation, Intramedullary/instrumentation , Bionics/methods
16.
Animals (Basel) ; 14(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38891726

ABSTRACT

OBJECTIVE: The study aimed to investigate the effects of castration on performance, carcass characteristics, and meat quality in sheep, as well as explore the expression of key genes related to metabolic pathways and muscle growth following castration. METHODS: A meta-analysis approach was utilized to analyze data from multiple studies to compare the performance, carcass characteristics, and meat quality of castrated sheep (wethers) with intact rams. Additionally, protein-protein interaction (PPI) networks, differential gene expression (DEG) interactions, Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were examined to identify molecular mechanisms associated with fat metabolism and muscle development in sheep tails. RESULTS: The analysis revealed that castrated sheep (wethers) exhibited improved average daily gain, increased tenderness, lower backfat thickness, and a tendency for greater loin muscle area compared to intact rams. This suggests that castration promotes faster growth and results in leaner carcasses with potentially higher muscle content. Furthermore, the identification of downregulated DEGs like ACLY, SLC27A2, and COL1A1 and upregulated DEGs such as HOXA9, PGM2L1, and ABAT provides insights into the molecular mechanisms underlying fat deposition and muscle development in sheep. CONCLUSIONS: The findings support the practice of castration in sheep production as it enhances growth performance, leads to leaner carcasses with higher muscle content, and improves meat tenderness. The identified changes in gene expression offer valuable insights for further research into understanding the impact of castration on muscle development and fat metabolism in sheep. This meta-analysis contributes to the knowledge of molecular mechanisms involved in fat deposition in sheep, opening avenues for future investigations in livestock fat metabolism research.

17.
Mol Cell Biochem ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896202

ABSTRACT

The present study was designed to explore the function of FAM172A in liver regeneration and HCC. Mice were sacrificed after 70% partial hepatectomy (PH). RNA sequencing was performed on primary hepatocytes of WT and FAM172A-/- mice. We used HepG2 cells to construct cell lines with stably knockdown and overexpression of FAM172A. The expression of FAM172A in liver tissues was investigated by immunohistochemical staining, and we also used public database to perform survival analysis and prognostic model in HCC. Compared with WT mice after PH, normalized liver weight/body weight (LW/BW) ratio and the proliferating cell nuclear antigen (PCNA) protein level of FAM172A-/- mice elevated. The DEGs were mainly enriched in inflammatory response, tumor necrosis factor production, and wound healing. FAM172A knockdown enhanced the NFκB-TNFα and pERK-YAP1-Cyclin D1 axis. FAM172A peptide inhibited proliferation of primary hepatocytes. Moreover, the low expression of FAM172A in human HCC tissues implies a lower likelihood of survival and a valid diagnostic marker for HCC. Loss of FAM172A gene promotes cell proliferation by pERK-YAP1-Cyclin D1 and pNFκB-TNFα pathways during liver regeneration after PH. FAM172A may be a favorable diagnosis marker of HCC.

18.
Nat Biomed Eng ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839928

ABSTRACT

The breakdown of the gut's mucosal barrier that prevents the infiltration of microorganisms, inflammatory cytokines and toxins into bodily tissues can lead to inflammatory bowel disease and to metabolic and autoimmune diseases. Here we show that the intestinal mucosal barrier can be reinforced via the oral administration of commensal bacteria coated with poly(ethylene glycol) (PEG) to facilitate their penetration into mucus. In mice with intestinal homoeostatic imbalance, mucus-penetrating PEGylated bacteria preferentially localized in mucus at the lower gastrointestinal tract, inhibited the invasion of pathogenic bacteria, maintained homoeostasis of the gut microbiota, stimulated the secretion of mucus and the expression of tight junctions, and prevented the mice from developing colitis and diabetes. Orally delivered PEGylated bacteria may help prevent and treat gastrointestinal disorders.

19.
Adv Mater ; : e2403151, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842511

ABSTRACT

Water electrolysis to produce hydrogen (H2) using renewable energy is one of the most promising candidates for realizing carbon neutrality, but its reaction kinetics is hindered by sluggish anodic oxygen evolution reaction (OER). Ruthenium (Ru) in its high-valence state (oxide) provides one of the most active OER sites and is less costly, but thermodynamically unstable. The strong interaction between Ru nanoparticles (NPs) and nickel hydroxide (Ni(OH)2) is leveraged to directly form Ru-Ni(OH)2 on the surface of a porous nickel foam (NF) electrode via spontaneous galvanic replacement reaction. The formation of Ru─O─Ni bonds at the interface of the Ru NPs and Ni(OH)2 (Ru-Ni(OH)2) on the surface oxidized NF significantly enhance stability of the Ru-Ni(OH)2/NF electrode. In addition to OER, the catalyst is active enough for the hydrogen evolution reaction (HER). As a result, it is able to deliver overpotentials of 228 and 15 mV to reach 10 mA cm-2 for OER and HER, respectively. An industry-scale evaluation using Ru-Ni(OH)2/NF as both OER and HER electrodes demonstrates a high current density of 1500 mA cm-2 (OER: 410 mV; HER: 240 mV), surpassing commercial RuO2 (OER: 600 mV) and Pt/C based performance (HER: 265 mV).

20.
Appl Opt ; 63(16): 4284-4292, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856604

ABSTRACT

The development of modern large-scale spectroscopic survey telescopes responds to the urgent demand for spectral information in astronomical research. Tsinghua University has previously proposed a 6.5 m MUltiplexed Survey Telescope consisting of a Ritchey-Chretien configuration and a 1.8 m multi-element wide-field corrector, achieving excellent performance and world-leading survey efficiency. However, an optimized 1.65 m multi-element corrector with five lenses is proposed to overcome the constraints on glass uniformity and verification in fabrication of the previous corrector design. It maintains outstanding image quality, with the 80% enclosed energy diameter not more than 0.559 arcsec within 3° FoV over up to a 55° zenith angle. The optimized optical system does not revise the working mode of the ADC or the curvature of the primary mirror while ensuring the reasonability and accuracy of manufacturing of large corrector elements. It provides a more feasible reference optical design for the MUltiplexed Survey Telescope in subsequent iterations and communications with manufacturers.

SELECTION OF CITATIONS
SEARCH DETAIL
...