Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.296
1.
BMC Med Genomics ; 17(1): 121, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702698

BACKGROUND: Kidney renal papillary cell carcinoma (KIRP) is the second most prevalent malignant cancer originating from the renal epithelium. Nowadays, cancer stem cells and stemness-related genes (SRGs) are revealed to play important roles in the carcinogenesis and metastasis of various tumors. Consequently, we aim to investigate the underlying mechanisms of SRGs in KIRP. METHODS: RNA-seq profiles of 141 KIRP samples were downloaded from the TCGA database, based on which we calculated the mRNA expression-based stemness index (mRNAsi). Next, we selected the differentially expressed genes (DEGs) between low- and high-mRNAsi groups. Then, we utilized weighted gene correlation network analysis (WGCNA) and univariate Cox analysis to identify prognostic SRGs. Afterwards, SRGs were included in the multivariate Cox regression analysis to establish a prognostic model. In addition, a regulatory network was constructed by Pearson correlation analysis, incorporating key genes, upstream transcription factors (TFs), and downstream signaling pathways. Finally, we used Connectivity map analysis to identify the potential inhibitors. RESULTS: In total, 1124 genes were characterized as DEGs between low- and high-RNAsi groups. Based on six prognostic SRGs (CCKBR, GPR50, GDNF, SPOCK3, KC877982.1, and MYO15A), a prediction model was established with an area under curve of 0.861. Furthermore, among the TFs, genes, and signaling pathways that had significant correlations, the CBX2-ASPH-Notch signaling pathway was the most significantly correlated. Finally, resveratrol might be a potential inhibitor for KIRP. CONCLUSIONS: We suggested that CBX2 could regulate ASPH through activation of the Notch signaling pathway, which might be correlated with the carcinogenesis, development, and unfavorable prognosis of KIRP.


Carcinoma, Renal Cell , Kidney Neoplasms , Neoplastic Stem Cells , Humans , Prognosis , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Male , Biomarkers, Tumor/genetics , Female , Gene Expression Profiling , Middle Aged , Signal Transduction/genetics
2.
BMC Biol ; 22(1): 104, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702712

BACKGROUND: Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS: Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS: Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.


Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Gonadotropin-Releasing Hormone , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/genetics , Animals , Gonadotropins/metabolism , Mice , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA Methylation
3.
Chin Herb Med ; 16(2): 227-230, 2024 Apr.
Article En | MEDLINE | ID: mdl-38706817

Objective: To study the compounds isolated from Penicillium HDS-Z-1E, an endophytic fungal strain isolated from Taxus cuspidata and their activation effect of catalase (CAT). Methods: The chemical constituents were isolated from Penicillium HDS-Z-1E, by using silica gel, Sephadex LH-20 and HPLC. The structural elucidations of five metabolites were elucidated on the basis of spectroscopic including 1H-NMR, 13C-NMR, HMBC and HSQC. Their activation sites of catalase have been investigated by molecular docking. Results: Five metabolites, compounds (1-5) were isolated from Penicillium HDS-Z-1E and identified as 4-hydroxy-4-methyltetrahydro-2H-pyran-2-one (1), 4-hydroxymethyl-5, 6-dihydro-pyran-2-one (2), 5, 6-dihydro-2-oxo-2H-pyran-4-carboxylic (3), N-acetyl-hydrazinobenzoic acid (4), and methyl 2-(2, 5-dihydroxyphenyl) acetate (5). Conclusion: Compound 3 is a new compound. Compounds 3 and 4 may have potential activators of catalase, providing a theoretical basis for the development of CAT activators.

4.
Small ; : e2401485, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712455

Dual channel photo-driven H2O2 production in pure water on small-scale on-site setups is a promising strategy to provide low-concentrated H2O2 whenever needed. This process suffers, however, strongly from the fast recombination of photo-generated charge carriers and the sluggish oxidation process. Here, insoluble Keggin-type cesium phosphomolybdate Cs3PMo12O40 (abbreviated to Cs3PMo12) is introduced to carbonized cellulose (CC) to construct S-scheme heterojunction Cs3PMo12/CC. Dual channel H2O2 photosynthesis from both H2O oxidation and O2 reduction in pure water has been thus achieved with the production rate of 20.1 mmol L-1 gcat. -1 h-1, apparent quantum yield (AQY) of 2.1% and solar-to-chemical conversion (SCC) efficiency of 0.050%. H2O2 accumulative concentration reaches 4.9 mmol L-1. This high photocatalytic activity is guaranteed by unique features of Cs3PMo12/CC, namely, S-scheme heterojunction, electron reservoir, and proton reservoir. The former two enhance the separation of photo-generated charge carriers, while the latter speeds up the torpid oxidation process. In situ experiments reveal that H2O2 is formed via successive single-electron transfer in both channels. In real practice, exposing the reaction system under natural sunlight outdoors successfully results in 0.24 mmol L-1 H2O2. This work provides a key practical strategy for designing photocatalysts in modulating redox half-reactions in photosynthesis.

5.
Small ; : e2402823, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712472

Perovskite oxides are proven as a striking platform for developing high-performance electrocatalysts. Nonetheless, a significant portion of them show CO2 electroreduction (CO2RR) inertness. Here a simple but effective strategy is reported to activate inert perovskite oxides (e.g., SrTiO3) for CO2RR through slight Cu2+ doping in B-sites. For the proof-of-concept catalysts of SrTi1-xCuxO3 (x = 0.025, 0.05, and 0.1), Cu2+ doping (even in trace amount, e.g., x = 0.025) can not only create active, stable CuO6 octahedra, increase electrochemical active surface area, and accelerate charge transfer, but also significantly regulate the electronic structure (e.g., up-shifted band center) to promote activation/adsorption of reaction intermediates. Benefiting from these merits, the stable SrTi1-xCuxO3 catalysts feature great improvements (at least an order of magnitude) in CO2RR activity and selectivity for high-order products (i.e., CH4 and C2+), compared to the SrTiO3 parent. This work provides a new avenue for the conversion of inert perovskite oxides into high-performance electrocatalysts toward CO2RR.

6.
IUBMB Life ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38721892

Low back pain is a common clinical symptom of intervertebral disc degeneration (IVDD), which seriously affects the quality of life of the patients. The abnormal apoptosis and senescence of nucleus pulposus cells (NPCs) play important roles in the pathogenesis of IVDD. PHLDA2 is an imprinted gene related to cell apoptosis and tumour progression. However, its role in NPC degeneration is not yet clear. Therefore, this study was set to explore the effects of PHLDA2 on NPC senescence and apoptosis and the underlying mechanisms. The expression of PHLDA2 was examined in human nucleus pulposus (NP) tissues and NPCs. Immunohistochemical staining, magnetic resonance imaging imaging and western blot were performed to evaluate the phenotypes of intervertebral discs. Senescence and apoptosis of NPCs were assessed by SA-ß-galactosidase, flow cytometry and western blot. Mitochondrial function was investigated by JC-1 staining and transmission electron microscopy. It was found that the expression level of PHLDA2 was abnormally elevated in degenerated human NP tissues and NPCs. Furthermore, knockdown of PHLDA2 can significantly inhibit senescence and apoptosis of NPCs, whereas overexpression of PHLDA2 can reverse senescence and apoptosis of NPCs in vitro. In vivo experiment further confirmed that PHLDA2 knockdown could alleviate IVDD in rats. Knockdown of PHLDA2 could also reverse senescence and apoptosis in IL-1ß-treated NPCs. JC-1 staining indicated PHLDA2's knockdown impaired disruption of the mitochondrial membrane potential and also ameliorated superstructural destruction of NPCs as showed by transmission electron microscopy. Finally, we found the PHLDA2 knockdown promoted Collagen-II expression and suppressed MMP3 expression in NPCs by repressing wnt/ß-catenin pathway. In conclusion, the results of the present study showed that PHLDA2 promotes IL-1ß-induced apoptosis and senescence of NP cells via mitochondrial route by activating the Wnt/ß-catenin pathway, and suggested that therapy targeting PHLDA2 may provide valuable insights into possible IVDD therapies.

7.
Small ; : e2400244, 2024 May 09.
Article En | MEDLINE | ID: mdl-38721969

Practical applications of the hydrogen evolution reaction (HER) rely on the development of highly efficient, stable, and low-cost catalysts. Tuning the electronic structure, morphology, and architecture of catalysts is an important way to realize efficient and stable HER electrocatalysts. Herein, Co-doped Cu3P-based sugar-gourd structures (Co─Cu3P/CF) are prepared on copper foam as active electrocatalysts for hydrogen evolution. This hierarchical structure facilitates fast mass transport during electrocatalysis. Notably, the introduction of Co not only induces a charge redistribution but also leads to lattice-mismatch on the atomic scale, which creates defects and performs as additional active sites. Therefore, Co─Cu3P/CF requires an overpotential of only 81, 111, 185, and 230 mV to reach currents of 50, 100, 500, and 1000 mA cm-2 in alkaline media and remains stable after 10 000 CV cycles in a row and up to 110 h i-t stability tests. In addition, it also shows excellent HER performance in water/seawater electrolytes of different pH values. Experimental and DFT show that the introduction of Co modulates the electronic and energy level structures of the catalyst, optimizes the adsorption and desorption behavior of the intermediate, reduces the water dissociation energy barrier during the reaction, accelerates the Volmer step reaction, and thus improves the HER performance.

8.
Food Chem ; 452: 139536, 2024 May 06.
Article En | MEDLINE | ID: mdl-38723569

Eating food contaminated by foodborne pathogens can lead to illness. The development of electrochemical sensors for pathogen detection has received widespread attention. However, the analytical performance of electrochemical sensors is inevitably affected by the non-specific adsorption of molecules in the sample. Moreover, the external signal probes might be affected by the complex components in the sample accompanied with signal suppression. This work presents an electrochemical aptasensor for Salmonella typhimurium detection based on the self-signal of poly-xanthurenic acid and the antifouling ability of chondroitin sulfate. The detection time was 60 min. The linear range was from 101 to 107 CFU/mL, and the detection limit was 3 CFU/mL. The biosensors presented good repeatability and storage stability. And the biosensors has been successfully applied in milk and orange juice. This strategy is expected to be applied in the design of other antifouling biosensors, to achieve rapid detection of pathogens and ensure food safety.

10.
Small ; : e2400927, 2024 May 10.
Article En | MEDLINE | ID: mdl-38726949

Due to the presence of spatial barriers, persistent bacteria, and excessive inflammation in bacteria biofilm-infected wounds, current nanoplatforms cannot effectively address these issues simultaneously during the therapeutic process. Herein, a novel biomimetic photothermal nanoplatform integrating silver and polydopamine nanoparticles (Ag/PDAs) that can damage biofilms, kill bacterial persisters, and reduce inflammation for wound treatment is presented. These findings reveal that Ag/PDAs exhibit a broad-spectrum antimicrobial activity through direct damage to the bacterial membrane structure. Additionally, Ag/PDAs demonstrate a potent photothermal conversion efficiency. When combined with near-infrared (NIR) irradiation, Ag/PDAs effectively disrupt the spatial structure of biofilms and synergistically eradicate the resident bacteria. Furthermore, Ag/PDAs show remarkable anti-inflammatory properties in counteracting bacterium-induced macrophage polarization. The in vivo results confirm that the topical application of Ag/PDAs significantly suppress Staphylococcus aureus biofilm-infected wounds in murine models, concurrently facilitating wound healing. This research provides a promising avenue for the eradication of bacterial biofilms and the treatment of biofilm-infected wounds.

11.
Br J Pharmacol ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38715438

BACKGROUND AND PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) commonly causes neuropathic pain, but its pathogenesis remains unclear, and effective therapies are lacking. Naringenin, a natural dihydroflavonoid compound, has anti-inflammatory, anti-nociceptive and anti-tumour activities. However, the effects of naringenin on chemotherapy-induced pain and chemotherapy effectiveness remain unexplored. EXPERIMENTAL APPROACH: Female and male mouse models of chemotherapy-induced pain were established using paclitaxel. Effects of naringenin were assessed on pain induced by paclitaxel or calcitonin gene-related peptide (CGRP) and on CGRP expression in dorsal root ganglia (DRG) and spinal cord tissue. Additionally, we examined peripheral macrophage infiltration, glial activation, c-fos expression, DRG neuron excitability, microglial M1/M2 polarization, and phosphorylation of spinal NF-κB. Furthermore, we investigated the synergic effect and related mechanisms of naringenin and paclitaxel on cell survival of cancer cells in vitro. KEY RESULTS: Systemic administration of naringenin attenuated paclitaxel-induced pain in both sexes. Naringenin reduced paclitaxel-enhanced CGRP expression in DRGs and the spinal cord, and alleviated CGRP-induced pain in naïve mice of both sexes. Naringenin mitigated macrophage infiltration and reversed paclitaxel-elevated c-fos expression and DRG neuron excitability. Naringenin decreased spinal glial activation and NF-κB phosphorylation in both sexes but influenced microglial M1/M2 polarization only in females. Co-administration of naringenin with paclitaxel enhanced paclitaxel's anti-tumour effect, impeded by an apoptosis inhibitor. CONCLUSION AND IMPLICATIONS: Naringenin's anti-nociceptive mechanism involves CGRP signalling and neuroimmunoregulation. Furthermore, naringenin facilitates paclitaxel's anti-tumour action, possibly involving apoptosis. This study demonstrates naringenin's potential as a supplementary treatment in cancer therapy by mitigating side effects and potentiating efficacy of chemotherapy.

12.
Aging Cell ; : e14187, 2024 May 08.
Article En | MEDLINE | ID: mdl-38716507

Behavioral changes or neuropsychiatric symptoms (NPSs) are common features in dementia and are associated with accelerated cognitive impairment and earlier deaths. However, how NPSs are intertwined with cognitive decline remains elusive. In this study, we identify that the basolateral amygdala (BLA) is a key brain region that is associated with mood disorders and memory decline in the AD course. During the process from pre- to post-onset in AD, the dysfunction of parvalbumin (PV) interneurons and pyramidal neurons in the amygdala leads to hyperactivity of pyramidal neurons in the basal state and insensitivity to external stimuli. We further demonstrate that serotonin (5-HT) receptors in distinct neurons synergistically regulate the BLA microcircuit of AD rather than 5-HT levels, in which both restrained inhibitory inputs by excessive 5-HT1AR signaling in PV interneurons and depolarized pyramidal neurons via upregulated 5-HT2AR contribute to aberrant neuronal hyperactivity. Downregulation of these two 5-HT receptors simultaneously enables neurons to resist ß-amyloid peptides (Aß) neurotoxicity and ameliorates the mood and cognitive defects. Therefore, our study reveals a crucial role of 5-HT receptors for regulating neuronal homeostasis in AD pathogenesis, and this would provide early intervention and potential targets for AD cognitive decline.

13.
Adv Mater ; : e2404493, 2024 May 08.
Article En | MEDLINE | ID: mdl-38718355

Optical waveguides fabricated in single crystals offer crucial passive/active optical components for photonic integrated circuits. Single crystals possess inherent advantages over their amorphous counterpart, such as lower optical losses in visible-to-mid-infrared band, larger peak emission cross-section, higher doping concentration. However, the writing of Type-I positive refractive index modified waveguides in single crystals using femtosecond laser technology presents significant challenges. Herein, we introduce a novel femtosecond laser direct writing technique that combines slit-shaping with an immersion oil objective to fabricate low-loss Type-I waveguides in single crystals. This approach allows for precise control of waveguide shape, size, mode-field and refractive index distribution, with a spatial resolution as high as 700 nm and a high positive refractive index variation on the order of 10-2, introducing new degrees of freedom to design and fabricate passive/active optical waveguide devices. As a proof-of-concept, we successfully produced a 7 mm-long circular-shaped gain waveguide (∼10 µm in diameter) in an Er3+-doped YAG single crystal, exhibiting a propagation loss as low as 0.23 dB/cm, a net gain of ∼3 dB and a polarization-insensitive character. The newly-developed technique is theoretically applicable to arbitrary single crystals, holding promising potential for various applications in integrated optics, optical communication, and photonic quantum circuits. This article is protected by copyright. All rights reserved.

14.
Talanta ; 276: 126205, 2024 May 06.
Article En | MEDLINE | ID: mdl-38718649

Considering the high probability of recurrence or metastasis after thyroidectomy, it is meaningful to develop a rapid, sensitive and specific method for monitoring thyrophyma-related biomarkers. In this study, a homogeneous electrochemiluminescence immunoassay (HO-ECLIA) coupled with magnetic beads (MBs)-based enrichment tactic was established for the determination of thyrophyma-related thyroglobulin (Tg). Importantly, owing to the abundant surface groups and good biocompatibility of carbon quantum dots (CQDs), the incorporation of CQDs onto the Tg antigen surface was achieved, resulting in the formation of Tg-encapsulated CQDs (CQDs-Tg), which served not only as an ECL probe but as a biorecognition element. Under optimal experimental conditions, the proposed platform demonstrated a wide linear range from 0.01 to 100 ng·mL-1 with a detection limit of 6.9 pg·mL-1 (S/N = 3), and performed well in real serum sample analysis against interference. Collectively, the proposed platform exhibited the rapid response, satisfactory sensitivity and specificity toward Tg in complex serum milieu, and held a considerable potential for clinical prognosis monitoring of thyrophyma.

15.
Nano Lett ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38721805

We report that constructed Au nanoclusters (NCs) can afford amazing white emission synergistically dictated by the Au(0)-dominated core-state fluorescence and Au(I)-governed surface-state phosphorescence, with record-high absolute quantum yields of 42.1% and 53.6% in the aqueous solution and powder state, respectively. Moreover, the dynamic color tuning is achieved in a wide warm-to-cold white-light range (with the correlated color temperature varied from 3426 to 24 973 K) by elaborately manipulating the ratio of Au(0) to Au(I) species and thus the electron transfer rate from staple motif to metal kernel. This study not only exemplifies the successful integration of multiple luminescent centers into metal NCs to accomplish efficient white-light emission but also inspires a feasible pathway toward customizing the optical properties of metal NCs by regulating electron transfer kinetics.

16.
Adv Mater ; : e2313570, 2024 May 02.
Article En | MEDLINE | ID: mdl-38693828

Ternary copper (Cu) halides are promising candidates for replacing toxic lead halides in the field of perovskite light-emitting diodes (LEDs) toward practical applications. However, the electroluminescent performance of Cu halide-based LEDs remains a great challenge due to the presence of serious nonradiative recombination and inefficient charge transport in Cu halide emitters. Here, the rational design of host-guest [dppb]2Cu2I2 (dppb denotes 1,2-bis[diphenylphosphino]benzene) emitters and its utility in fabricating efficient Cu halide-based green LEDs that show a high external quantum efficiency (EQE) of 13.39% are reported. The host-guest [dppb]2Cu2I2 emitters with mCP (1,3-bis(N-carbazolyl)benzene) host demonstrate a significant improvement of carrier radiative recombination efficiency, with the photoluminescence quantum yield increased by nearly ten times, which is rooted in the efficient energy transfer and type-I energy level alignment between [dppb]2Cu2I2 and mCP. Moreover, the charge-transporting mCP host can raise the carrier mobility of [dppb]2Cu2I2 films, thereby enhancing the charge transport and recombination. More importantly, this strategy enables a large-area prototype LED with a record-breaking area up to 81 cm2, along with a decent EQE of 10.02% and uniform luminance. It is believed these results represent an encouraging stepping stone to bring Cu halide-based LEDs from the laboratory toward commercial lighting and display panels.

17.
Cell Death Discov ; 10(1): 223, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719811

Mechanical overloading can promote cartilage senescence and osteoarthritis (OA) development, but its impact on synovial macrophages and the interaction between macrophages and chondrocytes remain unknown. Here, we found that macrophages exhibited M1 polarization under mechanical overloading and secreted ectosomes that induced cartilage degradation and senescence. By performing miRNA sequencing on ectosomes, we identified highly expressed miR-350-3p as a key factor mediating the homeostatic imbalance of chondrocytes caused by M1-polarized macrophages, this result being confirmed by altering the miR-350-3p level in chondrocytes with mimics and inhibitor. In experimental OA mice, miR-350-3p was increased in synovium and cartilage, while intra-articular injection of antagomir-350-3p inhibited the increase of miR-350-3p and alleviated cartilage degeneration and senescence. Further studies showed that macrophage-derived ectosomal miR-350-3p promoted OA progression by inhibiting nuclear receptor binding SET domain protein 1(NSD1) in chondrocytes and regulating histone H3 lysine 36(H3K36) methylation. This study demonstrated that the targeting of macrophage-derived ectosomal miRNAs was a potential therapeutic method for mechanical overload-induced OA.

18.
Chem Sci ; 15(18): 6608-6621, 2024 May 08.
Article En | MEDLINE | ID: mdl-38725513

Over the years, electrochemical reactors have evolved significantly, with modern reactors now able to achieve a high current density and power output in compact sizes. This leap in performance has not only greatly accelerated the rate of electrochemical reactions but also had a broader impact on the environment. Traditional research perspectives, focused primarily on the internal working systems of reactors, possibly overlook the potential of electrochemical systems in regulating their surrounding environment. A novel research perspective considering the interaction between electrochemical processes and their environmental context as a unified subject of study has gradually emerged alongside the dramatic development of electrochemical techniques. This viewpoint introduces a paradigm shift: electrochemical reactors are not isolated entities but rather are integral parts that interact with their surroundings. Correspondingly, this calls for an innovative research methodology that goes beyond studying the electrochemical processes in isolation. Rather, it integrates the design of the electrochemical system with its specific application environment, ensuring seamless integration for optimal performance under various practical conditions. Therefore, performance metrics should include not only the basic parameters of the electrochemical reactions but also the adaptability of the electrochemical system in real-world scenarios beyond the laboratory. By focusing on environmental integration and application-driven design, the applications of electrochemical technology can be more effectively leveraged. This perspective is exemplified by an electrochemical system based on coupled cathodic oxygen reduction and anodic oxygen evolution reactions. By adopting this new research paradigm, the applications of this electrochemical system can be extended to fields like medical treatment, food science, and microbial fermentation, with an emphasis on tailored designs for these specific application fields. This comprehensive and systematic new research approach aims to fully explore the potential applications of electrochemical technology and foster interdisciplinary collaboration in the electrochemical field.

19.
Food Chem ; 452: 139501, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38728887

To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.

20.
Food Res Int ; 186: 114321, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729691

Biogenic nanoparticles are promising carriers to deliver essential minerals. Here, calcium-enriched polyphosphate nanoparticles (CaPNPs) with a Ca/P molar ratio > 0.5 were produced by Synechococcus sp. PCC 7002 in the growth medium containing 1.08 g/L CaCl2, and had nearly spherical morphologies with a wide size distribution of 5-75 nm and strongly anionic surface properties with an average ζ-potential of -39 mV, according to dynamic light-scattering analysis, transmission and scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The ex-vivo ligated mouse ileal loop assays found that calcium in CaPNPs was readily available to intestinal absorption via both ion channel-mediated and endocytic pathways, specifically invoking macropinocytic internalization, lysosomal degradation, and transcytosis. Rat oral pharmacokinetics revealed that CaPNPs had a calcium bioavailability approximately 100 % relative to that of CaCl2 and more than 1.6 times of that of CaCO3. CaPNPs corrected the retinoic acid-induced increase in serum calcium, phosphorus, and bone-specific alkaline phosphatase, and decrease in serum osteocalcin, bone mineral content/density, and femoral geometric parameters with an efficacy equivalent to CaCl2 and markedly greater than CaCO3. In contrast to CaCl2, CaPNPs possessed desirable resistance against phytate's antagonistic action on calcium absorption in these ex vivo and in vivo studies. Overall, CaPNPs are attractive as a candidate agent for calcium supplementation, especially to populations on high-phytate diets.


Biological Availability , Calcium , Microalgae , Nanoparticles , Phytic Acid , Polyphosphates , Animals , Polyphosphates/chemistry , Mice , Phytic Acid/chemistry , Calcium/metabolism , Male , Rats , Intestinal Absorption/drug effects , Rats, Sprague-Dawley
...