Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.161
Filter
1.
Adv Sci (Weinh) ; : e2406333, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981044

ABSTRACT

Mortality rates due to lung cancer are high worldwide. Although PD-1 and PD-L1 immune checkpoint inhibitors boost the survival of patients with non-small-cell lung cancer (NSCLC), resistance often arises. The Warburg Effect, which causes lactate build-up and potential lysine-lactylation (Kla), links immune dysfunction to tumor metabolism. The role of non-histone Kla in tumor immune microenvironment and immunotherapy remains to be clarified. Here, global lactylome profiling and metabolomic analyses of samples from patients with NSCLC is conducted. By combining multi-omics analysis with in vitro and in vivo validation, that intracellular lactate promotes extracellular lipolysis through lactyl-APOC2 is revealed. Mechanistically, lactate enhances APOC2 lactylation at K70, stabilizing it and resulting in FFA release, regulatory T cell accumulation, immunotherapy resistance, and metastasis. Moreover, the anti-APOC2K70-lac antibody that sensitized anti-PD-1 therapy in vivo is developed. This findings highlight the potential of anti lactyl-APOC2-K70 approach as a new combination therapy for sensitizing immunotherapeutic responses.

2.
Cell Biosci ; 14(1): 88, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956702

ABSTRACT

This study investigates NADPH oxidase 4 (NOX4) involvement in iron-mediated astrocyte cell death in Alzheimer's Disease (AD) using single-cell sequencing data and transcriptomes. We analyzed AD single-cell RNA sequencing data, identified astrocyte marker genes, and explored biological processes in astrocytes. We integrated AD-related chip data with ferroptosis-related genes, highlighting NOX4. We validated NOX4's role in ferroptosis and AD in vitro and in vivo. Astrocyte marker genes were enriched in AD, emphasizing their role. NOX4 emerged as a crucial player in astrocytic ferroptosis in AD. Silencing NOX4 mitigated ferroptosis, improved cognition, reduced Aß and p-Tau levels, and alleviated mitochondrial abnormalities. NOX4 promotes astrocytic ferroptosis, underscoring its significance in AD progression.

3.
Chemistry ; : e202401487, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963680

ABSTRACT

Vitamin D deficiency affects nearly half the population, with many requiring or opting for supplements with vitamin D3(VD3), the precursor of vitamin D (1α,25-dihydroxyVD3). 25-HydroxyVD3, the circulating form of vitamin D, is a more effective supplement than VD3 but its synthesis is complex. We report here the engineering of cytochrome P450BM3(CYP102A1) for the selective oxidation of VD3 to 25-hydroxyVD3. Long-range effects of the substrate-channel mutation Glu435Ile promoted binding of the VD3 side chain close to the heme, enhancing VD3 oxidation activity that reached 6.62 g of 25-hydroxyVD3 isolated from a 1-litre scale reaction (69.1% yield; space-time-yield 331 mg/L/h).

4.
Front Plant Sci ; 15: 1409194, 2024.
Article in English | MEDLINE | ID: mdl-38966142

ABSTRACT

Introduction: Cotton yield estimation is crucial in the agricultural process, where the accuracy of boll detection during the flocculation period significantly influences yield estimations in cotton fields. Unmanned Aerial Vehicles (UAVs) are frequently employed for plant detection and counting due to their cost-effectiveness and adaptability. Methods: Addressing the challenges of small target cotton bolls and low resolution of UAVs, this paper introduces a method based on the YOLO v8 framework for transfer learning, named YOLO small-scale pyramid depth-aware detection (SSPD). The method combines space-to-depth and non-strided convolution (SPD-Conv) and a small target detector head, and also integrates a simple, parameter-free attentional mechanism (SimAM) that significantly improves target boll detection accuracy. Results: The YOLO SSPD achieved a boll detection accuracy of 0.874 on UAV-scale imagery. It also recorded a coefficient of determination (R2) of 0.86, with a root mean square error (RMSE) of 12.38 and a relative root mean square error (RRMSE) of 11.19% for boll counts. Discussion: The findings indicate that YOLO SSPD can significantly improve the accuracy of cotton boll detection on UAV imagery, thereby supporting the cotton production process. This method offers a robust solution for high-precision cotton monitoring, enhancing the reliability of cotton yield estimates.

5.
Water Res ; 261: 122012, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968737

ABSTRACT

The complex hydrological conditions caused by the backwater effect at the confluence inevitably modify the geochemical processes of elements. However, there is still a lack of comprehensive understanding regarding the precise transformation mechanisms of nutrients in large river systems. This study aimed to investigate the hydrodynamic characteristics and their impact on phosphorus transfer in the lower Han River, which is influenced by backwater from the Yangtze River (the largest river in China). By establishing a hydrodynamic-water quality model, we have determined that the discharge ratio (the ratio of flow between the Han River discharge and the Yangtze River discharge) can be utilized as a representative indicator of the backwater effect from the Yangtze River on the Han River. Three distinct patterns were identified in this study: mixing, backwater, and intrusion. The corresponding discharge ratio values were categorized as >0.08, 0.01∼0.08, and <0.01 respectively. Additionally, the extent of the backwater zone was determined, revealing that the length of the backwater zone increased from 50 km (XG) to 100 km (FS) as the discharge ratio decreased from 0.08 to 0.01. Furthermore, it was observed that the water level at the confluence rose from 2.52 m to 6.83 m in accordance with these changes in discharge ratio values. The migration pattern of phosphorus primarily involved the settling and retention of particulate phosphorus, particularly the labile particulate organic phosphorus (LOP) and dissolved organic phosphorus (DOP). When the confluent patterns became the intrusion pattern, the backwater zone expanded to 150 m (XT), causing a 10.40 m increase in water level at the confluence. An intrusion zone formed, and its phosphorus concentrations were same as Yangtze River's. Above the intrusion area, a backwater region formed and its concentrations of LOP and DOP decreased, while the concentration of PO43- increased due to the release from resuspended particles. This release was induced by higher velocity of bottom water brought about by the water exchange of two rivers. The discharge ratio of 0.01-0.08 resulted in the sedimentation of LOP and DOP, causing the lower Han River to act as a "sink" for phosphorus, potentially exacerbating phosphorus pollution. Higher discharge ratios in spring led to phosphorus release from sediment, increasing dissolved phosphorus concentrations and raising the risk of algal blooms in the lower Han River. These findings have significant implications for larger rivers worldwide and provide insights into strategies for ecological management and prevention of algal blooms.

6.
Lancet Planet Health ; 8(7): e463-e475, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969474

ABSTRACT

BACKGROUND: Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS: In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS: 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION: The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING: The Key Research and Development Program of China.


Subject(s)
Henipavirus Infections , Nipah Virus , Nipah Virus/physiology , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Humans , Animals , Chiroptera/virology , Asia, Southeastern/epidemiology , Phylogeny , Zoonoses/epidemiology , Zoonoses/virology
7.
Zhongguo Zhen Jiu ; 44(7): 856-8, 2024 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-38986601

ABSTRACT

A kind of disposable self-destructed and sheath-encased sterile acupuncture needle is designed to efficiently solve the issues of safety and sterilization encountered in the routine operation of acupuncture. The needle consists of three components, i.e. the needle body, the sheath and the locker. The needle body is movable and rotatable in the sheath, but can not be separated from the sheath. It is convenient for the operator to perform the lifting-thrusting and twisting techniques, and to prevent the non-punctured portion of the body from being out off the sheath so that a sterile confined room is formed between the needle and the skin of the operated area. With a locker installed between the sheath and the needle handle, after needle removal, the needle body can be returned and locked in the sheath, avoiding the exposure of needle tip, obtaining the self-destruction of needle and preventing from needling accident and reuse of needle. The devise is operated easily, which is effectively reduce the risk of infection and ensure the safety of medical staffs in practice.


Subject(s)
Acupuncture Therapy , Disposable Equipment , Needles , Acupuncture Therapy/instrumentation , Acupuncture Therapy/methods , Humans , Equipment Design , Sterilization/instrumentation , Sterilization/methods
8.
Huan Jing Ke Xue ; 45(7): 4164-4176, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022963

ABSTRACT

Studying the response relationship and spatial distribution characteristics of carbon reserve and land use change and predicting the change trend of carbon reserve caused by the change of land use type in the future can provide some reference for watershed policy formulation, land use structure adjustment, and the realization of the "two-carbon" goal. Based on the land use data from 2000, 2010, and 2020, the InVEST model was used to calculate carbon reserves and analyze the change characteristics and to simulate the land use change and its impact on carbon reserves in natural development, urban development, and ecological protection in 2030 with the help of the PLUS model. The study found that ① the main land types in the Shiyang River Basin from 2000 to 2020 were cultivated land, grassland, and unused land. The area of cultivated land, water area, and construction land in the Shiyang River Basin showed a significant increasing trend, and the construction land area increased the most. ② In the natural development scenario of 2030, cultivated land, water area, and construction all increased by 6.15%, 9.56%, and 29.9%, respectively. In the urban development scenario, the area of construction land increased the most. Compared with that in the other two scenarios, the area of forest land and grassland increased in the ecological protection scenarios. ③ The carbon reserves of the Shiyang River Basin from 2000 to 2020 showed a steady increase, with an overall increase of 0.035×108 t. The increased carbon reserves were mainly due to the increase in cultivated land area. ④ In 2030, the carbon reserves of the Shiyang River Basin showed an increasing trend in all three scenarios. The carbon reserves in the three scenarios were 5.65×108, 5.64×108,and 5.73×108 t, respectively, with the largest increase in carbon reserves in the ecological conservation scenario, mainly due to the increase in grassland and woodland. The results showed that the expansion of construction land was the main cause of the loss of carbon reserves. If effective ecological protection measures are taken, the carbon reserves in the Shiyang River Basin will be improved, and the problem of the loss of carbon reserves caused by economic development can be solved.

9.
Kaohsiung J Med Sci ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023189

ABSTRACT

The human gut microbiota significantly impacts health, including liver conditions like liver cirrhosis (LC) and spontaneous bacterial peritonitis (SBP). Immunoglobulin A (IgA) plays a central role in maintaining gut microbial balance. Understanding IgA's interplay with gut microbiota and liver health is crucial. This study explores the relationship between fecal IgA levels, gut microbiota, and liver injury severity. A total of 69 LC patients and 30 healthy controls were studied. Fecal IgA levels were measured using ELISA, and IgA-coated bacteria were quantified via flow cytometry. Microbiota diversity and composition were assessed through 16S rRNA sequencing. Liver injury severity was graded using the Child-Pugh score. Statistical analyses determined correlations. LC patients had higher fecal IgA levels than controls, correlating positively with liver injury severity. Microbiota diversity decreased with severity, accompanied by shifts in composition favoring pro-inflammatory species. Ralstonia abundance positively correlated with liver injury, whereas Faecalibacterium showed a negative correlation. Specific microbial markers for SBP were identified. Functional profiling revealed altered microbial functionalities in LC and SBP. Elevated fecal IgA levels, coupled with microbiota alterations, correlate with liver injury severity in LC patients. Modulating gut microbiota could be a promising strategy for managing liver-related conditions. Further research is needed to understand underlying mechanisms and translate findings into clinical practice, potentially improving patient outcomes.

10.
Front Cell Infect Microbiol ; 14: 1402329, 2024.
Article in English | MEDLINE | ID: mdl-38947125

ABSTRACT

Introduction: In infants with cholestasis, variations in the enterohepatic circulation of bile acids and the gut microbiota (GM) characteristics differ between those with biliary atresia (BA) and non-BA, prompting a differential analysis of their respective GM profiles. Methods: Using 16S rDNA gene sequencing to analyse the variance in GM composition among three groups: infants with BA (BA group, n=26), non-BA cholestasis (IC group, n=37), and healthy infants (control group, n=50). Additionally, correlation analysis was conducted between GM and liver function-related indicators. Results: Principal component analysis using Bray-Curtis distance measurement revealed a significant distinction between microbial samples in the IC group compared to the two other groups. IC-accumulated co-abundance groups exhibited positive correlations with aspartate aminotransferase, alanine aminotransferase, total bilirubin, direct bilirubin, and total bile acid serum levels. These correlations were notably reinforced upon the exclusion of microbial samples from children with BA. Conclusion: The varying "enterohepatic circulation" status of bile acids in children with BA and non-BA cholestasis contributes to distinct GM structures and functions. This divergence underscores the potential for targeted GM interventions tailored to the specific aetiologies of cholestasis.


Subject(s)
Bile Acids and Salts , Biliary Atresia , Cholestasis , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Humans , Biliary Atresia/microbiology , Cholestasis/microbiology , Infant , Bile Acids and Salts/metabolism , Bile Acids and Salts/blood , Male , Female , RNA, Ribosomal, 16S/genetics , Bilirubin/blood , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , DNA, Ribosomal/genetics , Feces/microbiology
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 653-661, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948274

ABSTRACT

Objective: Non-alcoholic fatty liver disease (NAFLD) and alcohol-associated fatty liver disease (ALD) are the most common chronic liver diseases. Hepatic steatosis is an early histological subtype of both NAFLD and ALD. Excessive alcohol consumption is widely known to lead to hepatic steatosis and subsequent liver damage. However, reported findings concerning the association between moderate alcohol consumption and hepatic steatosis remain inconsistent. Notably, alcohol consumption as a modifiable lifestyle behavior is likely to change over time, but most previous studies covered alcohol intake only once at baseline. These inconsistent findings from existing studies do not inform decision-making concerning policies and clinical guidelines, which are of greater interest to health policymakers and clinician-scientists. Additionally, recommendations on the types of alcoholic beverages are not available. Usually, assessing the effects of two or more hypothetical alcohol consumption interventions on hepatic steatosis provides answers to questions concerning the population risk of hepatic steatosis if everyone changes from heavy drinking to abstinence, or if everyone keeps on drinking moderately, or if everyone of the drinking population switches from red wine to beer? Thus, we simulated a target trial to estimate the effects of several hypothetical interventions, including changes in the amount of alcohol consumption or the types of alcoholic beverages consumed, on hepatic steatosis using longitudinal data, to inform decisions about alcohol-related policymaking and clinical care. Methods: This longitudinal study included 12687 participants from the UK Biobank (UKB), all of whom participated in both baseline and repeat surveys. We excluded participants with missing data related to components of alcohol consumption and fatty liver index (FLI) in the baseline and the repeat surveys, as well as those who had reported liver diseases or cancer at the baseline survey. We used FLI as an outcome indicator and divided the participants into non-, moderate, and heavy drinkers. The surrogate marker FLI has been endorsed by many international organizations' guidelines, such as the European Association for the Study of the Liver. The calculation of FLI was based on laboratory and anthropometric data, including triglyceride, gamma-glutamyl transferase, body mass index, and waist circumference. Participants responded to questions about the types of alcoholic beverages, which were defined in 5 categories, including red wine, white wine/fortified wine/champagne, beer or cider, spirits, and mixed liqueurs, along with the average weekly or monthly amounts of alcohol consumed. Alcohol consumption was defined as pure alcohol consumed per week and was calculated according to the amount of alcoholic beverages consumed per week and the average ethanol content by volume in each alcoholic beverage. Participants were categorized as non-drinkers, moderate drinkers, and heavy drinkers according to the amount of their alcohol consumption. Moderate drinking was defined as consuming no more than 210 g of alcohol per week for men and 140 g of alcohol per week for women. We defined the following hypothetical interventions for the amount of alcohol consumed: sustaining a certain level of alcohol consumption from baseline to the repeat survey (e.g., none to none, moderate to moderate, heavy to heavy) and changing from one alcohol consumption level to another (e.g., none to moderate, moderate to heavy). The hypothetical interventions for the types of alcoholic beverages were defined in a similar way to those for the amount of alcohol consumed (e.g., red wine to red wine, red wine to beer/cider). We applied the parametric g-formula to estimate the effect of each hypothetical alcohol consumption intervention on the FLI. To implement the parametric g-formula, we first modeled the probability of time-varying confounders and FLI conditional on covariates. We then used these conditional probabilities to estimate the FLI value if the alcohol consumption level of each participant was under a specific hypothetical intervention. The confidence interval was obtained by 200 bootstrap samples. Results: For the alcohol consumption from baseline to the repeat surveys, 6.65% of the participants were sustained non-drinkers, 63.68% were sustained moderate drinkers, and 14.74% were sustained heavy drinkers, while 8.39% changed from heavy drinking to moderate drinking. Regarding the types of alcoholic beverages from baseline to the repeat surveys, 27.06% of the drinkers sustained their intake of red wine. Whatever the baseline alcohol consumption level, the hypothetical interventions for increasing alcohol consumption from the baseline alcohol consumption were associated with a higher FLI than that of the sustained baseline alcohol consumption level. When comparing sustained non-drinking with the hypothetical intervention of changing from non-drinking to moderate drinking, the mean ratio of FLI was 1.027 (95% confidence interval [CI]: 0.997-1.057). When comparing sustained non-drinking with the hypothetical intervention of changing from non-drinking to heavy drinking, the mean ratio of FLI was 1.075 (95% CI: 1.042-1.108). When comparing sustained heavy drinking with the hypothetical intervention of changing from heavy drinking to moderate drinking, the mean ratio of FLI was 0.953 (95% CI: 0.938-0.968). The hypothetical intervention of changing to red wine in the UKB was associated with lower FLI levels, compared with sustained consumption of other types of alcoholic beverages. For example, when comparing sustaining spirits with the hypothetical intervention of changing from spirits to red wine, the mean ratio of FLI was 0.981 (95% CI: 0.948-1.014). Conclusions: Regardless of the current level of alcohol consumption, interventions that increase alcohol consumption could raise the risk of hepatic steatosis in Western populations. The findings of this study could inform the formulation of future practice guidelines and health policies. If quitting drinking is challenging, red wine may be a better option than other types of alcoholic beverages in Western populations.


Subject(s)
Alcohol Drinking , Non-alcoholic Fatty Liver Disease , Humans , Alcohol Drinking/adverse effects , Alcohol Drinking/epidemiology , Longitudinal Studies , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/epidemiology , Male , Female , Alcoholic Beverages/adverse effects , Fatty Liver, Alcoholic/etiology , Middle Aged , Fatty Liver/etiology , Cohort Studies
12.
Article in English | MEDLINE | ID: mdl-39003214

ABSTRACT

It is urgently necessary to clarify the effect of extraction of impacted mandibular third molar (IMTM) on the periodontal tissue of adjacent second molars (ASMs). In this study, the ASM periodontal condition and pathogenic microbes were assessed before IMTM extraction and at 1, 4, 8 and 12 weeks postoperatively. Based on the inclusion and exclusion criteria, our study revealed that IMTM extractions adversely affected distal - periodontal probing depth (dPPD), attachment loss (dAL), plaque index (dPLI) and bleeding on probing (dBOP) within 8 weeks, but these indices gradually normalize after 12 weeks. The subgingival pathogens near the ASMs distal surface, Porphyromonas and Pseudomonas, were significantly increased postoperatively. Moreover, relevance of ASMs clinical indices and subgingival microbes after IMTM extractions was found. In contrast to the situation in chronic periodontitis, the effects of IMTM extraction on dPPD, dAL, dPLI and dBOP of ASMs were mainly correlated with Pseudomonas. Additionally, while the IMTM extractions have adverse distal periodontal indices of ASMs within 8 weeks and increase subgingival pathogens, the modified triangular flap (MTF) had fewer distal periodontal indices and less Pseudomonas. Compared to the traditional envelope flap and triangular flap, the MTF benefits the periodontal health, which could be considered as the priority option for IMTM extractions.

13.
PLoS One ; 19(7): e0305612, 2024.
Article in English | MEDLINE | ID: mdl-38990915

ABSTRACT

Breast cancer (BC) cells have a high risk of metastasis due to epithelial-mesenchymal transition (EMT). Palbociclib (CDK4/6 inhibitor) is an approved drug for BC treatment. However, the drug resistance and metastasis can impair the treatment outcome of Palbociclib. Understanding the mechanisms of EMT and Palbociclib drug resistance in BC is conducive to the formulation of novel therapeutic strategy. Here, we investigated the role of circHIAT1/miR-19a-3p/CADM2 axis in modulating EMT and Palbociclib resistance in BC. circHIAT1 and CADM2 were down-regulated in BC tissues and cell lines, and miR-19a-3p showed an up-regulation. circHIAT1 could interact with miR-19a-3p and suppress its activity, while miR-19a-3p functioned to negatively regulate CADM2. Forced over-expression of circHIAT1 could impaired the EMT status and migratory ability of BC cells, and this effect was inhibited by miR-19a-3p mimic. In addition, we also generated Palbociclib resistant BC cells, and showed that circHIAT1 and CADM2 were down-regulated in the resistant BC cells while miR-19a-3p showed an up-regulation. Forced circHIAT1 over-expression re-sensitized BC cells to Palbociclib treatment. Quercetin, a bioactive flavonoid, could suppressed the migration and invasion of BC cells, and re-sensitized BC cells to Palbociclib. The anti-cancer effect of quercetin could be attributed to its regulatory effect on circHIAT1/miR-19a-3p/CADM2 axis. In vivo tumorigenesis experiment further revealed that quercetin administration enhanced the anti-cancer effect of Palbociclib, an effect was dependent on the up-regulation of circHIAT1 by quercetin. In summary, this study identified quercetin as a potential anti-cancer compound to reverse Palbociclib resistance and impair EMT in BC cells by targeting circHIAT1/miR-19a-3p/CADM2 axis.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase 6 , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , MicroRNAs , Piperazines , Pyridines , Quercetin , Epithelial-Mesenchymal Transition/drug effects , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Drug Resistance, Neoplasm/drug effects , Pyridines/pharmacology , Piperazines/pharmacology , Cell Line, Tumor , Quercetin/pharmacology , Animals , Mice , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/genetics , Gene Expression Regulation, Neoplastic/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cell Movement/drug effects , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice, Nude , Xenograft Model Antitumor Assays
14.
Ecotoxicol Environ Saf ; 281: 116673, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964070

ABSTRACT

Nitrite is one of the most common toxic pollutants in intensive aquaculture and is harmful to aquatic animals. Recovery mechanisms post exposure to nitrite in shrimp have rarely been investigated. This study focuses on the effect of nitrite exposure and post-exposure recovery on the histological and physiological aspects of Litopenaeus vannamei and utilizes transcriptome sequencing to analyze the molecular mechanisms of adaptation to nitrite exposure. The results showed that histopathological damage to the hepatopancreas and gills caused by short-term nitrite exposure resolved with recovery. The total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) of shrimp were significantly reduced during nitrite exposure and returned to the control level after recovery, malondialdehyde (MDA) levels were opposite to them. Restoration of the antioxidant system after exposure mitigated oxidative damage. Nitrite exposure results in reduced activity of the immuno-enzymes acid phosphatase (ACP) and alkaline phosphatase (AKP), which can be recovered to the control level. L. vannamei can adapt to nitrite exposure by regulating Na+/K+-ATPase (NKA) activity. Transcriptome analysis revealed that activation of glutathione metabolism and peroxisomal pathways facilitated the mitigation of oxidative damage in L. vannamei during the recovery period. Excessive oxidative damage activates the apoptosis and p53 pathways. Additionally, Sestrin2 and STEAP4 may have a positive effect on recovery in shrimp. These results provide evidence for the damage caused by nitrite exposure and the recovery ability of L. vannamei. This study can complement the knowledge of the mechanisms of adaptation and recovery of shrimp under nitrite exposure.


Subject(s)
Gene Expression Profiling , Gills , Nitrites , Penaeidae , Water Pollutants, Chemical , Animals , Penaeidae/drug effects , Penaeidae/genetics , Water Pollutants, Chemical/toxicity , Nitrites/toxicity , Gills/drug effects , Hepatopancreas/drug effects , Hepatopancreas/pathology , Oxidative Stress/drug effects , Transcriptome/drug effects , Antioxidants/metabolism
15.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000602

ABSTRACT

The application of intracerebroventricular injection of streptozotocin (ICV-STZ) is considered a useful animal model to mimic the onset and progression of sporadic Alzheimer's disease (sAD). In rodents, on day 7 of the experiment, the animals exhibit depression-like behaviors. Indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme catalyzing the conversion of tryptophan (Trp) to kynurenine (Kyn), is closely related to depression and AD. The present study aimed to investigate the pathophysiological mechanisms of preliminary depression-like behaviors in ICV-STZ rats in two distinct cerebral regions of the medial prefrontal cortex, the prelimbic cortex (PrL) and infralimbic cortex (IL), both presumably involved in AD progression in this model, with a focus on IDO-related Kyn pathways. The results showed an increased Kyn/Trp ratio in both the PrL and IL of ICV-STZ rats, but, intriguingly, abnormalities in downstream metabolic pathways were different, being associated with distinct biological effects. In the PrL, the neuroprotective branch of the Kyn pathway was attenuated, as evidenced by a decrease in the kynurenic acid (KA) level and Kyn aminotransferase II (KAT II) expression, accompanied by astrocyte alterations, such as the decrease in glial fibrillary acidic protein (GFAP)-positive cells and increase in morphological damage. In the IL, the neurotoxicogenic branch of the Kyn pathway was enhanced, as evidenced by an increase in the 3-hydroxy-kynurenine (3-HK) level and kynurenine 3-monooxygenase (KMO) expression paralleled by the overactivation of microglia, reflected by an increase in ionized calcium-binding adaptor molecule 1 (Iba1)-positive cells and cytokines with morphological alterations. Synaptic plasticity was attenuated in both subregions. Additionally, microinjection of the selective IDO inhibitor 1-Methyl-DL-tryptophan (1-MT) in the PrL or IL alleviated depression-like behaviors by reversing these different abnormalities in the PrL and IL. These results suggest that the antidepressant-like effects linked to Trp metabolism changes induced by 1-MT in the PrL and IL occur through different pathways, specifically by enhancing the neuroprotective branch in the PrL and attenuating the neurotoxicogenic branch in the IL, involving distinct glial cells.


Subject(s)
Antidepressive Agents , Depression , Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine , Streptozocin , Tryptophan , Animals , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Streptozocin/toxicity , Rats , Male , Kynurenine/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Tryptophan/metabolism , Tryptophan/pharmacology , Depression/drug therapy , Depression/metabolism , Depression/chemically induced , Injections, Intraventricular , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Disease Models, Animal , Rats, Sprague-Dawley
16.
Nat Commun ; 15(1): 5949, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009587

ABSTRACT

Bullous pemphigoid (BP) is a type 2 inflammation- and immunity-driven skin disease, yet a comprehensive understanding of the immune landscape, particularly immune-stromal crosstalk in BP, remains elusive. Herein, using single-cell RNA sequencing (scRNA-seq) and in vitro functional analyzes, we pinpoint Th2 cells, dendritic cells (DCs), and fibroblasts as crucial cell populations. The IL13-IL13RA1 ligand-receptor pair is identified as the most significant mediator of immune-stromal crosstalk in BP. Notably, fibroblasts and DCs expressing IL13RA1 respond to IL13-secreting Th2 cells, thereby amplifying Th2 cell-mediated cascade responses, which occurs through the specific upregulation of PLA2G2A in fibroblasts and CCL17 in myeloid cells, creating a positive feedback loop integral to immune-stromal crosstalk. Furthermore, PLA2G2A and CCL17 contribute to an increased titer of pathogenic anti-BP180-NC16A autoantibodies in BP patients. Our work provides a comprehensive insight into BP pathogenesis and shows a mechanism governing immune-stromal interactions, providing potential avenues for future therapeutic research.


Subject(s)
Chemokine CCL17 , Dendritic Cells , Fibroblasts , Pemphigoid, Bullous , Single-Cell Analysis , Th2 Cells , Humans , Pemphigoid, Bullous/immunology , Pemphigoid, Bullous/genetics , Single-Cell Analysis/methods , Fibroblasts/metabolism , Fibroblasts/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Chemokine CCL17/genetics , Chemokine CCL17/metabolism , Th2 Cells/immunology , Autoantibodies/immunology , Transcriptome , Interleukin-13/metabolism , Interleukin-13/genetics , Interleukin-13/immunology , Non-Fibrillar Collagens/immunology , Non-Fibrillar Collagens/genetics , Non-Fibrillar Collagens/metabolism , Inflammation/immunology , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling/methods , Male , Female , Autoantigens/immunology , Autoantigens/metabolism , Autoantigens/genetics , Collagen Type XVII , Myeloid Cells/metabolism , Myeloid Cells/immunology , Stromal Cells/metabolism , Stromal Cells/immunology
17.
BMC Plant Biol ; 24(1): 684, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020284

ABSTRACT

Malus sieversii, commonly known as wild apples, represents a Tertiary relict plant species and serves as the progenitor of globally cultivated apple varieties. Unfortunately, wild apple populations are facing significant degradation in localized areas due to a myriad of factors. To gain a comprehensive understanding of the nutrient status and spatiotemporal variations of M. sieversii, green leaves were collected in May and July, and the fallen leaves were collected in October. The concentrations of leaf nitrogen (N), phosphorus (P), and potassium (K) were measured, and the stoichiometric ratios as well as nutrient resorption efficiencies were calculated. The study also explored the relative contributions of soil, topographic, and biotic factors to the variation in nutrient traits. The results indicate that as the growing period progressed, the concentrations of N and P in the leaves significantly decreased (P < 0.05), and the concentration of K in October was significantly lower than in May and July. Throughout plant growth, leaf N-P and N-K exhibited hyperallometric relationships, while P-K showed an isometric relationship. Resorption efficiency followed the order of N < P < K (P < 0.05), with all three ratios being less than 1; this indicates that the order of nutrient limitation is K > P > N. The resorption efficiencies were mainly regulated by nutrient concentrations in fallen leaves. A robust spatial dependence was observed in leaf nutrient concentrations during all periods (70.1-97.9% for structural variation), highlighting that structural variation, rather than random factors, dominated the spatial variation. Nutrient resorption efficiencies (NRE, PRE, and KRE) displayed moderate structural variation (30.2-66.8%). The spatial patterns of nutrient traits varied across growth periods, indicating they are influenced by multifactorial elements (in which, soil property showed the highest influence). In conclusion, wild apples manifested differentiated spatiotemporal variability and influencing factors across various leaf nutrient traits. These results provide crucial insights into the spatiotemporal patterns and influencing factors of leaf nutrient traits of M. sieversii at the permanent plot scale for the first time. This work is of great significance for the ecosystem restoration and sustainable management of degrading wild fruit forests.


Subject(s)
Malus , Nitrogen , Phosphorus , Plant Leaves , Potassium , Plant Leaves/metabolism , Malus/metabolism , Malus/growth & development , Malus/physiology , China , Phosphorus/metabolism , Phosphorus/analysis , Nitrogen/metabolism , Potassium/metabolism , Potassium/analysis , Forests , Nutrients/metabolism , Nutrients/analysis , Soil/chemistry , Fruit/growth & development , Fruit/metabolism , Spatio-Temporal Analysis
18.
Small ; : e2403570, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966891

ABSTRACT

In organic solar cells (OSCs), electron acceptors have undergone multiple updates, from the initial fullerene derivatives, to the later acceptor-donor-acceptor type non-fullerene acceptors (NFAs), and now to Y-series NFAs, based on which efficiencies have reached over 19%. However, the key property responsible for further improved efficiency from molecular structure design is remained unclear. Herein, the material properties are comprehensively scanned by selecting PC71BM, IT-4F, and L8-BO as the representatives for different development stages of acceptors. For comparison, asymmetric acceptor of BTP-H5 with desired loosely bounded excitons is designed and synthesized. It's identified that the reduction of intrinsically exciton binding energy (Eb) and the enhancement of exciton delocalization capability act as the key roles in boosting the performance. Notably, 100 meV reduction in Eb has been observed from PC71BM to BTP-H5, correspondingly, electron-hole pair distance of BTP-H5 is almost two times over PC71BM. As a result, efficiency is improved from 40% of S-Q limit for PC71BM-based OSC to 60% for BTP-H5-based one, which achieves an efficiency of 19.07%, among the highest values for binary OSCs. This work reveals the confirmed function of exciton delocalization capability quantitatively in pushing the efficiency of OSCs, thus providing an enlightenment for future molecular design.

19.
Clin Transplant ; 38(7): e15396, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967600

ABSTRACT

INTRODUCTION: Central nervous system leukemia (CNSL) remains a serious complication in patients with acute myeloid leukemia (AML) and an ambiguous prognostic factor for those receiving allo-geneic hematopoiesis stem cell transplantation (allo-HSCT). It is unknown whether using more sensitive tools, such as multiparameter flow cytometry (MFC), to detect blasts in the cerebrospinal fluid (CSF) would have an impact on outcome. METHODS: We retrospectively analyzed the clinical outcomes of 1472 AML patients with or without cytology or MFC positivity in the CSF before transplantation. Abnormal CSF (CSF+) was detected via conventional cytology and MFC in 44 patients at any time after diagnosis. A control group of 175 CSF-normal (CSF-) patients was generated via propensity score matching (PSM) analyses according to sex, age at transplant, and white blood cell count at diagnosis. RESULTS: Compared to those in the CSF-negative group, the conventional cytology positive and MFC+ groups had comparable 8-year nonrelapse mortality (NRM) (4%, 4%, and 6%, p = 0.82), higher cumulative incidence of relapse (CIR) (14%, 31%, and 32%, p = 0.007), lower leukemia-free survival (LFS) (79%, 63%, and 64%, p = 0.024), and overall survival (OS) (83%, 63%, and 68%, p = 0.021), with no significant differences between the conventional cytology positive and MFC+ groups. Furthermore, multivariate analysis confirmed that CSF involvement was an independent factor affecting OS and LFS. CONCLUSION: Our results indicate that pretransplant CSF abnormalities are adverse factors independently affecting OS and LFS after allotransplantation in AML patients.


Subject(s)
Flow Cytometry , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Transplantation, Homologous , Humans , Female , Male , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/cerebrospinal fluid , Leukemia, Myeloid, Acute/mortality , Retrospective Studies , Adult , Prognosis , Middle Aged , Follow-Up Studies , Adolescent , Hematopoietic Stem Cell Transplantation/adverse effects , Survival Rate , Young Adult , Graft vs Host Disease/etiology , Graft vs Host Disease/cerebrospinal fluid , Graft vs Host Disease/diagnosis , Graft vs Host Disease/mortality , Aged , Child , Cytology
20.
Am J Hematol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980207

ABSTRACT

Patients with steroid-resistant or relapsed immune thrombocytopenia (ITP) suffer increased bleeding risk and impaired quality of life. Baricitinib, an oral Janus-associated kinases (JAK) inhibitor, could alleviate both innate and adaptive immune disorders without inducing thrombocytopenia in several autoimmune diseases. Accordingly, an open-label, single-arm, phase 2 trial (NCT05446831) was initiated to explore the safety and efficacy of baricitinib in ITP. Eligible patients were adults with primary ITP who were refractory to corticosteroids and at least one subsequent treatment, and had platelet counts below 30 × 109/L at enrolment. Participants received baricitinib 4 mg daily for 6 months. The primary endpoint was durable response at the 6-month follow-up. A total of 35 patients were enrolled. Durable response was achieved in 20 patients (57.1%, 95% confidence interval, 39.9 to 74.4), and initial response in 23 (65.7%) patients. For patients responding to baricitinib, the median time to response was 12 (IQR 6-20) days, and the median peak platelet count was 94 (IQR 72-128) × 109/L. Among the 27 patients undergoing extend observation, 12 (44.4%) remained responsive for a median duration of approximately 20 weeks after baricitinib discontinuation. Adverse events were reported in 11 (31.4%) patients, including infections in 6 (17.1%) patients during the treatment period. Treatment discontinuation due to an adverse event was reported in 2 (5.7%) patients. Evidence from this pilot study suggested that baricitinib might be a novel candidate for the armamentarium of ITP-modifying agents. Future studies are warranted to validate the safety, efficacy, and optimal dosing of baricitinib in patients with ITP.

SELECTION OF CITATIONS
SEARCH DETAIL
...