Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39064429

ABSTRACT

This paper presents a gesture-controlled robotic arm system designed for agricultural harvesting, utilizing a data glove equipped with bending sensors and OptiTrack systems. The system aims to address the challenges of labor-intensive fruit harvesting by providing a user-friendly and efficient solution. The data glove captures hand gestures and movements using bending sensors and reflective markers, while the OptiTrack system ensures high-precision spatial tracking. Machine learning algorithms, specifically a CNN+BiLSTM model, are employed to accurately recognize hand gestures and control the robotic arm. Experimental results demonstrate the system's high precision in replicating hand movements, with a Euclidean Distance of 0.0131 m and a Root Mean Square Error (RMSE) of 0.0095 m, in addition to robust gesture recognition accuracy, with an overall accuracy of 96.43%. This hybrid approach combines the adaptability and speed of semi-automated systems with the precision and usability of fully automated systems, offering a promising solution for sustainable and labor-efficient agricultural practices.

2.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850215

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is primarily characterized by progressive cerebellar degeneration, including gray matter atrophy and disrupted anatomical and functional connectivity. The alterations of cerebellar white matter structural network in SCA3 and the underlying neurobiological mechanism remain unknown. Using a cohort of 20 patients with SCA3 and 20 healthy controls, we constructed cerebellar structural networks from diffusion MRI and investigated alterations of topological organization. Then, we mapped the alterations with transcriptome data from the Allen Human Brain Atlas to identify possible biological mechanisms for regional selective vulnerability to white matter damage. Compared with healthy controls, SCA3 patients exhibited reduced global and nodal efficiency, along with a widespread decrease in edge strength, particularly affecting edges connected to hub regions. The strength of inter-module connections was lower in SCA3 group and negatively correlated with the Scale for the Assessment and Rating of Ataxia score, International Cooperative Ataxia Rating Scale score, and cytosine-adenine-guanine repeat number. Moreover, the transcriptome-connectome association study identified the expression of genes involved in synapse-related and metabolic biological processes. These findings suggest a mechanism of white matter vulnerability and a potential image biomarker for the disease severity, providing insights into neurodegeneration and pathogenesis in this disease.


Subject(s)
Cerebellum , Connectome , Machado-Joseph Disease , Transcriptome , Humans , Male , Female , Cerebellum/diagnostic imaging , Cerebellum/pathology , Middle Aged , Adult , Machado-Joseph Disease/genetics , Machado-Joseph Disease/diagnostic imaging , Machado-Joseph Disease/pathology , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Magnetic Resonance Imaging
3.
Small ; : e2402116, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923774

ABSTRACT

Interference colors hold significant importance in optics and arts. Current methods for printing interference colors entail complex procedures and large-scale printing systems for the scarcity of inks that exhibit both sensitivity and tunability to external fields. The production of highly transparent inks capable of rendering transmissive colors has presented ongoing challenges. Here, a type of paramagnetic ink based on 2D materials that exhibit polychrome in one magnetic field is invented. By precisely manipulating the doping ratio of magnetic elements within titanate nanosheets, the magneto-optical sensitivity named Cotton-Mouton coefficient is engineerable from 728 to a record high value of 3272 m-1 T-2, with negligible influence on its intrinsic wide optical bandgap. Combined with the sensitive and controllable magneto-responsiveness of the ink, modulate and non-invasively print transmissive interference colors using small permanent magnets are precised. This work paves the way for preparing transmissive interference colors in an energy-saving and damage-free manner, which can expand its use in widespread areas.

4.
Am J Transl Res ; 16(3): 897-904, 2024.
Article in English | MEDLINE | ID: mdl-38586102

ABSTRACT

AIM: Precision liver resection is considered the gold standard in liver surgery. Therefore, optimizing the resection of lesions and minimizing unnecessary time of liver ischemia and hypoxia have become focal points. METHODS: A total of 96 patients with primary liver cancer admitted to Cangzhou People's Hospital from January 2017 and December 2019 were included in this retrospective study, and divided into two groups according to the different surgical treatment, with 50 cases in the control group (conventional hepatic resection) and 46 cases in the observation group (precision liver resection). The surgical indicators, liver function, alpha-fetoprotein (AFP), complications, and three-year follow-up results were analyzed in the two groups. RESULTS: The operation time, intraoperative bleeding, hospital stay, and time of anal venting in the observation group were shorter than those in the control group (P<0.05). One week after surgery, AST, TBiL, ALT, and γ-GT levels decreased in both groups, with more significant decreases in the observation group than those in the control group (P<0.05). PCT and hs-CRP levels in the observation group were significantly lower than those in the control group (P<0.05) observation. The incidences of pleural effusion, bile leak, abdominal infection, pulmonary infection, as well as the total complication rates in the observation group were lower in the observation group than those in the control group (P<0.05). The follow-up data revealed that the observation group exhibited a lower recurrence rate observationand higher survival rate than the control group within 3 years, but these differences were not significant (P>0.05). CONCLUSION: Precision liver resection can effectively treat primary liver cancer, reduce the incidence of complications, and promote patient recovery after surgery.

5.
Risk Manag Healthc Policy ; 17: 549-557, 2024.
Article in English | MEDLINE | ID: mdl-38496372

ABSTRACT

Purpose: Coronary artery disease (CAD) patients frequently face readmissions due to suboptimal disease management. Prediction models are pivotal for detecting early unplanned readmissions. This review offers a unified assessment, aiming to lay the groundwork for enhancing prediction models and informing prevention strategies. Methods: A search through five databases (PubMed, Web of Science, EBSCOhost, Embase, China National Knowledge Infrastructure) up to September 2023 identified studies on prediction models for coronary artery disease patient readmissions for this review. Two independent reviewers used the CHARMS checklist for data extraction and the PROBAST tool for bias assessment. Results: From 12,457 records, 15 studies were selected, contributing 30 models targeting various CAD patient groups (AMI, CABG, ACS) from primarily China, the USA, and Canada. Models utilized varied methods such as logistic regression and machine learning, with performance predominantly measured by the c-index. Key predictors included age, gender, and hospital stay duration. Readmission rates in the studies varied from 4.8% to 45.1%. Despite high bias risk across models, several showed notable accuracy and calibration. Conclusion: The study highlights the need for thorough external validation and the use of the PROBAST tool to reduce bias in models predicting readmission for CAD patients.

6.
JCI Insight ; 9(6)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358805

ABSTRACT

Suppressor of fused (SUFU) is widely regarded as a key negative regulator of the sonic hedgehog (SHH) morphogenic pathway and a known tumor suppressor of medulloblastoma (MB). However, we report here that SUFU expression was markedly increased in 75% of specimens compiled in a tissue array comprising 49 unstratified MBs. The SUFU and GLI1 expression levels in this MB array showed strong positive correlation, which was also identified in a large public data set containing 736 MBs. We further report that increasing Sufu gene dosage in mice caused preaxial polydactyly, which was associated with the expansion of the Gli3 domain in the anterior limb bud and heightened Shh signaling responses during embryonic development. Increasing Sufu gene dosage also led to accelerated cerebellar development and, when combined with ablation of the Shh receptor encoded by Patched1 (Ptch1), promoted MB tumorigenesis. These data reveal multifaceted roles of SUFU in promoting MB tumorigenesis by enhancing SHH signaling. This revelation clarifies potentially counterintuitive clinical observation of high SUFU expression in MBs and may pave way for novel strategies to reduce or reverse MB progression.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Polydactyly , Mice , Animals , Medulloblastoma/genetics , Medulloblastoma/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Cell Transformation, Neoplastic/genetics , Transcription Factors , Cerebellar Neoplasms/genetics , Polydactyly/genetics
7.
Int J Biol Macromol ; 264(Pt 1): 130390, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403228

ABSTRACT

The process of lignin extraction often involves intricate chemical transformations, influencing its potential for high-value utilization. By investigating the process of lignin derivatives extraction from hemp fibers using supercritical CO2, ethanol, and water, we identified the relationship between the chemical structure of lignin derivatives and temperature. This discovery contributes to controlling the chemical structure of lignin derivatives through temperature modulation. We observed that lignin derivatives extracted within the temperature range of 100-120 °C exhibited the lowest average molecular weight and polydispersity index, presenting a disordered microstructure with the highest hydroxyl content. Lignin derivatives extracted between 140 and 160 °C showed an increase in average molecular weight and polydispersity index, decreased hydroxyl content, and a gradual transformation of microstructure into spherical particles. At 180 °C, the average molecular weight and polydispersity index of lignin derivatives decreased, the microstructure of lignin derivatives showed fewer spherical particles, while its hydroxyl content exhibited a partial recovery. Chemical analysis revealed a lower degree of condensation in lignin derivatives at 100-120 °C. Between 120 and 160 °C, the degree of condensation increased. At 180 °C, extensive degradation occurred in lignin derivatives. This research advances innovative techniques for lignin derivative separation, contributing to their utilization in higher-value applications.


Subject(s)
Cannabis , Lignin , Lignin/chemistry , Ethanol/chemistry , Water/chemistry , Carbon Dioxide , Temperature
8.
Adv Mater ; 36(23): e2314145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38339886

ABSTRACT

2D materials are promising for strain engineering due to their atomic thickness and exceptional mechanical properties. In particular, non-uniform and localized strain can be induced in 2D materials by generating out-of-plane deformations, resulting in novel phenomena and properties, as witnessed in recent years. Therefore, the locally strained 2D materials are of great value for both fundamental studies and practical applications. This review discusses techniques for introducing local strains to 2D materials, and their feasibility, advantages, and challenges. Then, the unique effects and properties that arise from local strain are explored. The representative applications based on locally strained 2D materials are illustrated, including memristor, single photon emitter, and photodetector. Finally, concluding remarks on the challenges and opportunities in the emerging field of locally strained 2D materials are provided.

SELECTION OF CITATIONS
SEARCH DETAIL