Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 861
Filter
1.
Ageing Res Rev ; : 102373, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960046

ABSTRACT

Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.

2.
Ecotoxicol Environ Saf ; 281: 116662, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944008

ABSTRACT

OBJECTIVE: This study aimed to investigate the mechanism that Lactobacillus murinus (L. murinus) alleviated lung inflammation induced by polycyclic aromatic hydrocarbons (PAHs) exposure based on metabolomics. METHODS: Female mice were administrated with PAHs mix, L. murinus and indoleacrylic acid (IA) or indolealdehyde (IAId). Microbial diversity in feces was detected by 16 S rRNA gene sequencing. Non-targeted metabolomics analysis in urine samples and targeted analysis of tryptophan metabolites in serum by UPLC-Orbitrap-MS and short-chain fatty acids (SCFA) in feces by GC-MS were performed, respectively. Flow cytometry was used to determine T helper immune cell differentiation in gut and lung tissues. The levels of IgE, IL-4 and IL-17A in the bronchoalveolar lavage fluid (BALF) or serum were detected by ELISA. The expressions of aryl hydrocarbon receptor (Ahr), cytochrome P450 1A1 (Cyp1a1) and forkheadbox protein 3 (Foxp3) genes and the histone deacetylation activity were detected by qPCR and by ELISA in lung tissues, respectively. RESULTS: PAHs exposure induced lung inflammation and microbial composition shifts and tryptophan metabolism disturbance in mice. L. murinus alleviated PAHs-induced lung inflammation and inhibited T helper cell 17 (Th17) cell differentiation and promoted regulatory T cells (Treg) cell differentiation. L. murinus increased the levels of IA and IAId in the serum and regulated Th17/Treg imbalance by activating AhR. Additionally, L. murinus restored PAHs-induced decrease of butyric acid and valeric acid which can reduce the histone deacetylase (HDAC) level in the lung tissues, enhancing the expression of the Foxp3 gene and promoting Treg cell differentiation. CONCLUSION: our study illustrated that L. murinus alleviated PAHs-induced lung inflammation and regulated Th17/Treg cell differentiation by regulating host tryptophan metabolism and SCFA levels. The study provided new insights into the reciprocal influence between gut microbiota, host metabolism and the immune system, suggesting that L. murinus might have the potential as a novel therapeutic strategy for lung diseases caused by environmental pollution in the future.

3.
JMIR Res Protoc ; 13: e55357, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904990

ABSTRACT

BACKGROUND: Emergency departments (EDs) are complex and fast-paced clinical settings where a diagnosis is made in a time-, information-, and resource-constrained context. Thus, it is predisposed to suboptimal diagnostic outcomes, leading to errors and subsequent patient harm. Arriving at a timely and accurate diagnosis is an activity that occurs after an effective collaboration between the patient or caregiver and the clinical team within the ED. Interventions such as novel sociotechnical solutions are needed to mitigate errors and risks. OBJECTIVE: This study aims to identify challenges that frontline ED health care providers and patients face in the ED diagnostic process and involve them in co-designing technological interventions to enhance diagnostic excellence. METHODS: We will conduct separate sessions with ED health care providers and patients, respectively, to assess various design ideas and use a participatory design (PD) approach for technological interventions to improve ED diagnostic safety. In the sessions, various intervention ideas will be presented to participants through storyboards. Based on a preliminary interview study with ED patients and health care providers, we created intervention storyboards that illustrate different care contexts in which ED health care providers or patients experience challenges and show how each intervention would address the specific challenge. By facilitating participant group discussion, we will reveal the overlap between the needs of the design research team observed during fieldwork and the needs perceived by target users (ie, participants) in their own experience to gain their perspectives and assessment on each idea. After the group discussions, participants will rank the ideas and co-design to improve our interventions. Data sources will include audio and video recordings, design sketches, and ratings of intervention design ideas from PD sessions. The University of Michigan Institutional Review Board approved this study. This foundational work will help identify the needs and challenges of key stakeholders in the ED diagnostic process and develop initial design ideas, specifically focusing on sociotechnological ideas for patient-, health care provider-, and system-level interventions for improving patient safety in EDs. RESULTS: The recruitment of participants for ED health care providers and patients is complete. We are currently preparing for PD sessions. The first results from design sessions with health care providers will be reported in fall 2024. CONCLUSIONS: The study findings will provide unique insights for designing sociotechnological interventions to support ED diagnostic processes. By inviting frontline health care providers and patients into the design process, we anticipate obtaining unique insights into the ED diagnostic process and designing novel sociotechnical interventions to enhance patient safety. Based on this study's collected data and intervention ideas, we will develop prototypes of multilevel interventions that can be tested and subsequently implemented for patients, health care providers, or hospitals as a system. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/55357.


Subject(s)
Emergency Service, Hospital , Patient Safety , Humans , Research Design
4.
Sci Total Environ ; 945: 173772, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38871313

ABSTRACT

Nanoplastics (NPs) and polycyclic aromatic hydrocarbons (PAHs) are recognized as persistent organic pollutant (POPs) with demonstrated physiological toxicity. When present in aquatic environments, the two pollutants could combine with each other, resulting in cumulative toxicity to organisms. However, the combined impact of NPs and PAHs on microorganisms in seawater is not well understood. In this study, we conducted an exposure experiment to investigate the individual and synergistic effects of NPs and PAHs on the composition, biodiversity, co-occurrence networks of microbial communities in seawater. Exposure of individuals to PAHs led to a reduction in microbial community richness, but an increase in the relative abundance of species linked to PAHs degradation. These PAHs-degradation bacteria acting as keystone species, maintained a microbial network complexity similar to that of the control treatment. Exposure to individual NPs resulted in a reduction in the complexity of microbial networks. Furthermore, when PAHs and NPs were simultaneously present, the toxic effect of NPs hindered the presence of keystone species involved in PAHs degradation, subsequently limiting the degradation of PAHs by marine microorganisms, resulting in a decrease in community diversity and symbiotic network complexity. This situation potentially poses a heightened threat to the ecological stability of marine ecosystems. Our work strengthened the understanding of the combined impact of NPs and PAHs on microorganisms in seawater.


Subject(s)
Microbiota , Polycyclic Aromatic Hydrocarbons , Seawater , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Seawater/chemistry , Seawater/microbiology , Water Pollutants, Chemical/toxicity , Microbiota/drug effects , Bacteria/drug effects , Water Microbiology , Microplastics/toxicity , Biodiversity , Environmental Monitoring
6.
Acta Pharm Sin B ; 14(6): 2732-2747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828144

ABSTRACT

The progression of ulcerative colitis (UC) is associated with immunologic derangement, intestinal hemorrhage, and microbiota imbalance. While traditional medications mainly focus on mitigating inflammation, it remains challenging to address multiple symptoms. Here, a versatile gas-propelled nanomotor was constructed by mild fusion of post-ultrasonic CaO2 nanospheres with Cu2O nanoblocks. The resulting CaO2-Cu2O possessed a desirable diameter (291.3 nm) and a uniform size distribution. It could be efficiently internalized by colonic epithelial cells and macrophages, scavenge intracellular reactive oxygen/nitrogen species, and alleviate immune reactions by pro-polarizing macrophages to the anti-inflammatory M2 phenotype. This nanomotor was found to penetrate through the mucus barrier and accumulate in the colitis mucosa due to the driving force of the generated oxygen bubbles. Rectal administration of CaO2-Cu2O could stanch the bleeding, repair the disrupted colonic epithelial layer, and reduce the inflammatory responses through its interaction with the genes relevant to blood coagulation, anti-oxidation, wound healing, and anti-inflammation. Impressively, it restored intestinal microbiota balance by elevating the proportions of beneficial bacteria (e.g., Odoribacter and Bifidobacterium) and decreasing the abundances of harmful bacteria (e.g., Prevotellaceae and Helicobacter). Our gas-driven CaO2-Cu2O offers a promising therapeutic platform for robust treatment of UC via the rectal route.

7.
Curr Microbiol ; 81(8): 232, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898312

ABSTRACT

Delftia has been separated from freshwater, sludge, and soil and has emerged as a novel opportunistic pathogen in the female vagina. However, the genomic characteristics, pathogenicity, and biotechnological properties still need to be comprehensively investigated. In this study, a Delftia strain was isolated from the vaginal discharge of a 43-year-old female with histologically confirmed cervical intraepithelial neoplasm (CIN III), followed by whole-genome sequencing. Phylogenetic analysis and average nucleotide identity (ANI) analysis demonstrated that it belongs to Delftia lacustris, named D. lacustris strain LzhVag01. LzhVag01 was sensitive to ß-lactams, macrolides, and tetracyclines but exhibited resistance to lincoamines, nitroimidazoles, aminoglycosides, and fluoroquinolones. Its genome is a single, circular chromosome of 6,740,460 bp with an average GC content of 66.59%. Whole-genome analysis identified 16 antibiotic resistance-related genes, which match the antimicrobial susceptibility profile of this strain, and 11 potential virulence genes. These pathogenic factors may contribute to its colonization in the vaginal environment and its adaptation and accelerate the progression of cervical cancer. This study sequenced and characterized the whole-genome of Delftia lacustris isolated from vaginal discharge, which provides investigators and clinicians with valuable insights into this uncommon species.


Subject(s)
Delftia , Genome, Bacterial , Vaginal Discharge , Delftia/classification , Delftia/drug effects , Delftia/genetics , Delftia/pathogenicity , Genome, Bacterial/genetics , Vaginal Discharge/microbiology , Humans , Female , Adult , Phylogeny , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Virulence Factors/genetics , Species Specificity
8.
Zhongguo Gu Shang ; 37(6): 5835-90, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38910381

ABSTRACT

OBJECTIVE: To compare clinical effect between open reduction and fixation with cannulated screw and threaded rivet via posteromedial approach versus arthroscopic Endobutton plate fixation in treating posterior cruciate ligament avulsion fractures. METHODS: Clinical data of 38 patients with posterior cruciate ligament avulsion fractures from July 2020 to December 2021 were analyzed retrospectively, and divided into open reduction and internal fixation group (posterior medial approach hollow anchor system fixation) and arthroscopic fixation group (Endobutton with loop plate fixation under arthroscopy). There were 20 patients in open reduction and internal fixation group, including 16 males and 4 females, aged from 26 to 74 years old with an average of (42.9±18.8) years old;13 patients on the left side and 7 patients on the right side;12 patients were classified to typeⅡand 8 patiens with type Ⅲ according to Meyers-McKeever fractures classification;14 patients were gradeⅡand 6 patients were grade Ⅲ in back drawer test. There were 18 patients in arthroscopic fixation group, including 11 males and 7 females;aged from 24 to 70 years old with an average of (53.5±13.4) years old;11 patients on the left side and 7 patients on the right side;10 patients were classified to typeⅡand 8 patiens with type Ⅲ according to Meyers-McKeever fractures classification;11 patients were gradeⅡand 7 patients were grade Ⅲ in back drawer test. Operation time, blood loss, and quality of immediate reduction were compared between two groups. Knee range of motion, knee back drawer test, and International Knee Documentation Committee(IKDC) grading, KT2000 stability evaluation and Lysholm function score of knee joint were compared at 6 months after operation. RESULTS: All patients were followed up for 8 to 16 months with an average of (12.3±1.9) months. There were no complications such as incision infection, fracture malunion or non-union, and internal fixation loosening occurred. The avulsion fractures of knee joint were reached to imaging healing standard at 6 months after operation. Operation time and blood loss in open reduction and internal fixation group were (56.4±7.1) min and (63.2±10.2) ml, while (89.9±7.4) min and (27.7±8.7) ml in arthroscopic fixation group, respectively, and had significant difference between two groups (P<0.05). There were no differences in immediate reduction quality (χ2=0.257, P=0.612), knee joint range of motion at 6 months after opertaion (t=0.492, P=0.626), knee joint rear drawer test ( χ2=0.320, P=0.572), IKDC classification of knee joint (χ2=0.127, P=0.938), KT2000 stability evaluation (χ2=0.070, P=0.791), and knee Lysholm function score (t=0.092, P=0.282) between two groups. CONCLUSION: Posterior medial approach with hollow anchoring system fixation and arthroscopic Endobutton with loop plate fixation for the treatment of posterior cruciate ligament tibial occlusion avulsion fracture could achieve satisfactory clinical results, and arthroscopic surgery has less bleeding, but also has a longer learning curve and longer operation time than traditional incision surgery. The surgeon needs to make a choice according to clinical situation of patient and their own surgical inclination.


Subject(s)
Arthroscopy , Bone Plates , Fracture Fixation, Internal , Posterior Cruciate Ligament , Humans , Male , Female , Middle Aged , Arthroscopy/methods , Adult , Aged , Posterior Cruciate Ligament/surgery , Posterior Cruciate Ligament/injuries , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Retrospective Studies , Fractures, Avulsion/surgery , Bone Nails
9.
Biochem Biophys Res Commun ; 726: 150235, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38908345

ABSTRACT

BACKGROUND: Diabetic ulcers (DUs) are characterized by chronic inflammation and delayed re-epithelialization, with a high incidence and weighty economic burden. The primary therapeutic strategies for refractory wounds include surgery, non-invasive wound therapy, and drugs, while the optimum regimen remains controversial. Sirtuin-6 (SIRT6) is a histone deacetylase and a key epigenetic factor that exerts anti-inflammatory and pro-proliferatory effects in wound healing. However, the exact function of SIRT6 in DUs remains unclear. METHODS: We generated tamoxifen-inducible SIRT6 knockout mice by crossing SIRT6flox/flox homozygous mice with UBC-creERT2+ transgenic mice. Systemic SIRT6 null mice, under either normal or diabetic conditions, were utilized to assess the effects of SIRT6 in DUs treatment. Gene and protein expressions of SIRT6 and inflammatory cytokines were measured by Western blotting and RT-qPCR. Histopathological examination confirmed the altered re-epithelialization (PCNA), inflammation (NF-κB p50 and F4/80), and angiogenesis (CD31) markers during DUs restoration. RESULTS: Knockout of SIRT6 inhibited the healing ability of DUs, presenting attenuated re-epithelialization (PCNA), exacerbated inflammation responses (NF-κB p50, F4/80, Il-1ß, Tnf-α, Il-6, Il-10, and Il-4), and hyperplasia vascular (CD31) compared with control mice. CONCLUSIONS: SIRT6 could boost impaired wound healing through improving epidermal proliferation, inflammation, and angiogenesis. Our study highlighted the therapeutic potential of the SIRT6 agonist for DUs treatment.

10.
Front Microbiol ; 15: 1400079, 2024.
Article in English | MEDLINE | ID: mdl-38863747

ABSTRACT

Background and objectives: The oral and gut microbiota play significant roles in childhood asthma pathogenesis. However, the communication dynamics and pathogenic mechanisms by which oral microbiota influence gut microbiota and disease development remain incompletely understood. This study investigated potential mechanisms by which oral-originated gut microbiota, specifically Prevotella genus, may contribute to childhood asthma etiology. Methods: Oral swab and fecal samples from 30 asthmatic children and 30 healthy controls were collected. Microbiome composition was characterized using 16S rRNA gene sequencing and metagenomics. Genetic distances identified potential oral-originated bacteria in asthmatic children. Functional validation assessed pro-inflammatory properties of in silico predicted microbial mimicry peptides from enriched asthma-associated species. Fecal metabolome profiling combined with metagenomic correlations explored links between gut microbiota and metabolism. HBE cells treated with Prevotella bivia culture supernatant were analyzed for lipid pathway impacts using UPLC-MS/MS. Results: Children with asthma exhibited distinct oral and gut microbiota structures. Prevotella bivia, P. disiens, P. oris and Bacteroides fragilis were enriched orally and intestinally in asthmatics, while Streptococcus thermophilus decreased. P. bivia, P. disiens and P. oris in asthmatic gut likely originated orally. Microbial peptides induced inflammatory cytokines from immune cells. Aberrant lipid pathways characterized asthmatic children. P. bivia increased pro-inflammatory and decreased anti-inflammatory lipid metabolites in HBE cells. Conclusion: This study provides evidence of Prevotella transfer from oral to gut microbiota in childhood asthma. Prevotella's microbial mimicry peptides and effects on lipid metabolism contribute to disease pathogenesis by eliciting immune responses. Findings offer mechanistic insights into oral-gut connections in childhood asthma etiology.

11.
J Invest Dermatol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879155

ABSTRACT

Atopic dermatitis (AD), a chronic and recurrent inflammatory skin disorder, presents a high incidence and imposes a substantial economic burden. Preventing its recurrence remains a significant challenge in dermatological therapy due to poorly understood underlying mechanisms. In our study, we adopted a strategy of tracing the mechanisms of recurrence from clinical outcomes. We developed a mouse model of recurrent AD and applied clinically validated treatment regimens. Transcriptomic analyses revealed a pronounced enrichment in the glutathione metabolic pathway in the treated group. Through integrated bioinformatics and in vivo validation, we identified glutathione S-transferase alpha 4 (GSTA4) as a pivotal mediator in AD recurrence. Immunohistochemical analysis demonstrated decreased GSTA4 expression in lesions from AD patients. Functionally, in vitro overexpression of GSTA4 significantly curtailed AD-like inflammatory responses and reactive oxygen species (ROS) production. Moreover, we discovered that NRF2 transcriptional activity regulates GSTA4 expression and function. Our treatment notably augmented NRF2-mediated GSTA4 transcription, yielding pronounced anti-inflammatory and ROS-neutralizing effects. Conclusively, our findings implicate GSTA4 as a critical factor in the recurrence of AD, particularly in the context of oxidative stress and chronic inflammation. Targeting the NRF2-GSTA4 axis emerges as a promising anti-inflammatory and antioxidative strategy for preventing AD recurrence.

12.
Front Chem ; 12: 1425244, 2024.
Article in English | MEDLINE | ID: mdl-38933929

ABSTRACT

Development of low temperature catalytic pyrolysis technology for heated tobacco sheets is expected to increase the aroma of heated tobacco products and improve their overall smoking quality. In this study, the low temperature pyrolysis performances of heated tobacco sheets catalyzed by various anionic sodium salts were investigated using TG-DTG, Py-GC-MS technology and smoke routine chemical composition analysis. The results showed that the total weight loss between 100°C and 300°C increased by 7.8%-13.15% after adding various anionic sodium salts, among which, sodium acetate and sodium tartrate showed a relatively higher weight loss. The relative content of free hydroxyacetone, furfuryl alcohol, butyrolactone and megastigmatrienone in the pyrolysis gas increased, while the relative content of free nicotine decreased. With the change of anionic species, the catalytic decomposition ability of cellulose, lignin, and other substances may change, resulting in the distribution alteration of compounds in the pyrolysis gas. After adding sodium acetate and sodium citrate, the release of total particulate matter (TPM), glycerol, and nicotine in flue gas increased. Overall, the addition of sodium acetate and sodium citrate showed a higher low temperature pyrolysis performance of heated tobacco sheets. The research results in this paper provide data support for changing the low temperature catalytic pyrolysis performance of heated tobacco sheets by adjusting the type of anions in sodium salts.

13.
Science ; 384(6703): 1447-1452, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38935718

ABSTRACT

Understanding the microscopic origin of the superior electromechanical response in relaxor ferroelectrics requires knowledge not only of the atomic-scale formation of polar nanodomains (PNDs) but also the rules governing the arrangements and stimulated response of PNDs over longer distances. Using x-ray coherent nanodiffraction, we show the staggered self-assembly of PNDs into unidirectional mesostructures that we refer to as polar laminates in the relaxor ferroelectric 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-0.32PT). We reveal the highly heterogeneous electric-field-driven responses of intra- and interlaminate PNDs and establish their correlation with the local strain and the nature of the PND walls. Our observations highlight the critical role of hierarchical lattice organizations on macroscopic material properties and provide guiding principles for the understanding and design of relaxors and a wide range of quantum and functional materials.

14.
Exp Ther Med ; 28(2): 320, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38939173

ABSTRACT

Aberrant expression of long non-coding RNAs (lncRNAs) serves a crucial role in the biological function of trophoblasts and contributes to preeclampsia (PE). lncRNA MIR193BHG expression is increased in PE placental tissues. In the present study, the effects of MIR193BHG on the function of trophoblasts were assessed to elucidate its underlying molecular mechanisms. The subcellular localization of MIR193BHG in HTR-8/SVneo human first-trimester extravillous trophoblast cells was determined using a fluorescent in situ hybridization assay and by conducting nucleocytoplasmic separation. The effect of MIR193BHG knockdown or overexpression on proliferation, migration, invasion and apoptosis was evaluated in vitro using Cell Counting Kit-8, wound healing, Transwell and flow cytometry assays. RNA-sequencing, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and protein-protein interaction network construction were subsequently performed to screen the downstream molecules regulated by MIR193BHG. Finally, rescue experiments were conducted to ascertain whether MIR193BHG influenced the biological function of trophoblasts via p53. MIR193BHG was predominantly localized in the nucleus of HTR-8/SVneo cells and overexpression of MIR193BHG significantly inhibited proliferation, migration and invasion, while increasing the rate of apoptosis of HTR-8/SVneo cells. Knockdown of MIR193BHG had the opposite effect. Furthermore, overexpression of MIR193BHG led to increases in both mRNA and protein levels of p53 compared with the control group, and knockdown of p53 rescued the effects induced by overexpression of MIR193BHG on cell proliferation, migration and invasion, while partially counteracting its effects on apoptosis of HTR-8/SVneo cells. In conclusion, the findings of the present study suggested that MIR193BHG served a critical role in progression of PE by regulating the expression of p53, and may be a novel therapeutic target for PE.

15.
Biol Direct ; 19(1): 49, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910243

ABSTRACT

BACKGROUND: Most patients with acute myeloid leukemia (AML) eventually develop drug resistance, leading to a poor prognosis. Dysregulated long gene non coding RNAs (lincRNAs) have been implicated in chemoresistance in AML. Unfortunately, the effects of lincRNAs which participate in regulating the Adriamycin (ADR) resistance in AML cells remain unclear. Thus, the purpose of this study is to determine LINC00987 function in ADR-resistant AML. METHODS: In this study, ADR-resistant cells were constructed. LINC00987, miRNAs, and HMGA2 mRNA expression were measured by qRT-PCR. P-GP, BCRP, and HMGA2 protein were measured by Western blot. The proliferation was analyzed by MTS and calculated IC50. Soft agar colony formation assay and TUNEL staining were used to analyze cell colony formation and apoptosis. Xenograft tumor experiment was used to analyze the xenograft tumor growth of ADR-resistant AML. RESULTS: We found that higher expression of LINC00987 was observed in AML patients and associated with poor overall survival in AML patients. LINC00987 expression was increased in ADR-resistant AML cells, including ADR/MOLM13 and ADR/HL-60 cells. LINC00987 downregulation reduces ADR resistance in ADR/MOLM13 and ADR/HL-60 cells in vitro and in vivo, while LINC00987 overexpression enhanced ADR resistance in MOLM13 and HL-60 cells. Additionally, LINC00987 functions as a competing endogenous RNA for miR-4458 to affect ADR resistance in ADR/MOLM13 and ADR/HL-60 cells. HMGA2 is a target of miR-4458. LINC00987 knockdown and miR-4458 overexpression reduced HMGA2 expression. HMGA2 overexpression enhanced ADR resistance, which reversed the function of LINC00987 silencing in suppressing ADR resistance of ADR/MOLM13 and ADR/HL-60 cells. CONCLUSIONS: Downregulation of LINC00987 weakens ADR resistance by releasing miR-4458 to deplete HMGA2 in ADR/MOLM13 and ADR/HL-60. Therefore, LINC00987 may act as the therapeutic target for treating chemoresistant AML.


Subject(s)
Doxorubicin , Drug Resistance, Neoplasm , HMGA2 Protein , Leukemia, Myeloid, Acute , MicroRNAs , RNA, Long Noncoding , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Humans , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Drug Resistance, Neoplasm/genetics , Doxorubicin/pharmacology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Animals , Cell Line, Tumor , HL-60 Cells , Gene Silencing , Apoptosis , Cell Proliferation , Female
16.
Environ Sci Technol ; 58(22): 9591-9600, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38759639

ABSTRACT

Methane is a major contributor to anthropogenic greenhouse gas emissions. Identifying large sources of methane, particularly from the oil and gas sectors, will be essential for mitigating climate change. Aircraft-based methane sensing platforms can rapidly detect and quantify methane point-source emissions across large geographic regions, and play an increasingly important role in industrial methane management and greenhouse gas inventory. We independently evaluate the performance of five major methane-sensing aircraft platforms: Carbon Mapper, GHGSat-AV, Insight M, MethaneAIR, and Scientific Aviation. Over a 6 week period, we released metered gas for over 700 single-blind measurements across all five platforms to evaluate their ability to detect and quantify emissions that range from 1 to over 1,500 kg(CH4)/h. Aircraft consistently quantified releases above 10 kg(CH4)/h, and GHGSat-AV and Insight M detected emissions below 5 kg(CH4)/h. Fully blinded quantification estimates for platforms using downward-facing imaging spectrometers have parity slopes ranging from 0.76 to 1.13, with R2 values of 0.61 to 0.93; the platform using continuous air sampling has a parity slope of 0.5 (R2 = 0.93). Results demonstrate that aircraft-based methane sensing has matured since previous studies and is ready for an increasingly important role in environmental policy and regulation.


Subject(s)
Aircraft , Greenhouse Gases , Methane , Methane/analysis , Greenhouse Gases/analysis , Environmental Monitoring/methods , Climate Change , Air Pollutants/analysis
17.
Int Immunopharmacol ; 135: 112244, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38776847

ABSTRACT

Psoriasis is a common and prevalent chronic papulosquamous cutaneous disorder characterized by sustained inflammation, uncontrolled keratinocyte proliferation, dysfunctional differentiation, and angiogenesis. Autophagy, an intracellular catabolic process, can be induced in response to nutrient stress. It entails the degradation of cellular constituents through the lysosomal machinery, and its association with psoriasis has been well-documented. Nevertheless, there remains a notable dearth of research concerning the involvement of autophagy in the pathogenesis of psoriasis within human skin. This review provides a comprehensive overview of autophagy in psoriasis pathogenesis, focusing on its involvement in two key pathological manifestations: sustained inflammation and uncontrolled keratinocyte proliferation and differentiation. Additionally, it discusses potential avenues for disease management.


Subject(s)
Autophagy , Cell Differentiation , Inflammation , Keratinocytes , Psoriasis , Humans , Psoriasis/immunology , Psoriasis/pathology , Keratinocytes/immunology , Keratinocytes/pathology , Keratinocytes/physiology , Inflammation/immunology , Animals , Cell Proliferation , Skin/pathology , Skin/immunology
18.
Sci Rep ; 14(1): 11300, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760377

ABSTRACT

This study aims to enhance the safety and efficiency of port navigation by reducing ship collision accidents, minimizing environmental risks, and optimizing waterways to increase port throughput. Initially, a three-dimensional map of the port's waterway, including data on water depth, rocks, and obstacles, is generated through laser radar scanning. Visual perception technology is adopted to process and identify the data for environmental awareness. Single Shot MultiBox Detector (SSD) is utilized to position ships and obstacles, while point cloud data create a comprehensive three-dimensional map. In order to improve the optimal navigation approach of the Rapidly-Exploring Random Tree (RRT), an artificial potential field method is employed. Additionally, the collision prediction model utilizes K-Means clustering to enhance the Faster R-CNN algorithm for predicting the paths of other ships and obstacles. The results indicate that the RRT enhanced by the artificial potential field method reduces the average path length (from 500 to 430 m), average time consumption (from 30 to 22 s), and maximum collision risk (from 15 to 8%). Moreover, the accuracy, recall rate, and F1 score of the K-Means + Faster R-CNN collision prediction model reach 92%, 88%, and 90%, respectively, outperforming other models. Overall, these findings underscore the substantial advantages of the proposed enhanced algorithm in autonomous navigation and collision prediction in port waterways.

19.
Neurotherapeutics ; : e00373, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38749843

ABSTRACT

We evaluated the HIV-1 DNA reservoir in peripheral blood mononuclear cells (PBMC) and cerebrospinal fluid (CSF) in people with HIV (PWH) and associations to cognitive dysfunction. Using the intact proviral DNA assay (IPDA), an emerging technique to identify provirus that may be the source of viral rebound, we assessed HIV DNA in CSF and PBMC in PWH regardless of antiretroviral therapy (ART). CSF was used as a sampling surrogate for the central nervous system (CNS) as opposed to tissue. IDPA results (3' defective, 5' defective, and intact HIV DNA) were analyzed by compartment (Wilcoxon signed rank; matched and unmatched pairs). Cognitive performance, measured via a battery of nine neuropsychological (NP) tests, were analyzed for correlation to HIV DNA (Spearman's rho). 11 CSF and 8 PBMC samples from PWH were evaluated both unmatched and matched. Total CSF HIV DNA was detectable in all participants and was significantly higher than in matched PBMCs (p â€‹= â€‹0.0039). Intact CSF HIV DNA was detected in 7/11 participants and correlated closely with those in PBMCs but tended to be higher in CSF than in PBMC. CSF HIV DNA did not correlate with global NP performance, but higher values did correlate with worse executive function (p â€‹= â€‹0.0440). Intact HIV DNA is frequently present in the CSF of PWH regardless of ART. This further supports the presence of an HIV CNS reservoir and provides a method to study CNS reservoirs during HIV cure studies. Larger studies are needed to evaluate relationships with CNS clinical outcomes.

20.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793554

ABSTRACT

Monitoring the long-term changes in antibody and cellular immunity following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial for understanding immune mechanisms that prevent reinfection. In March 2023, we recruited 167 participants from the Changning District, Shanghai, China. A subset of 66 participants that were infected between November 2022 and January 2023 was selected for longitudinal follow-up. The study aimed to investigate the dynamics of the immune response, including neutralizing antibodies (NAbs), anti-spike (S)-immunoglobulin G (IgG), anti-S-IgM, and lymphocyte profiles, by analyzing peripheral blood samples collected three to seven months post infection. A gradual decrease in NAbs and IgG levels were observed from three to seven months post infection. No significant differences in NAbs and IgG titers were found across various demographics, including age, sex, occupation, and symptomatic presentation, across five follow-up assessments. Additionally, a strong correlation between NAbs and IgG levels was identified. Lymphocyte profiles showed a slight change at five months but had returned to baseline levels by seven months post infection. Notably, healthcare workers exhibited lower B-cell levels compared to police officers. Our study demonstrated that the immune response to SARS-CoV-2 infection persisted for at least seven months. Similar patterns in the dynamics of antibody responses and cellular immunity were observed throughout this period.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/epidemiology , China/epidemiology , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Adult , SARS-CoV-2/immunology , Immunoglobulin G/blood , Middle Aged , Longitudinal Studies , Immunoglobulin M/blood , Immunity, Cellular , Spike Glycoprotein, Coronavirus/immunology , Health Personnel
SELECTION OF CITATIONS
SEARCH DETAIL
...