Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.136
Filter
1.
Clin Lab ; 70(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38965970

ABSTRACT

BACKGROUND: In this study, we aimed to identify the hub genes responsible for increased vascular endothelial cell permeability. METHODS: We applied the weighted Gene Expression Omnibus (GEO) database to mine dataset GSE178331 and ob-tained the most relevant high-throughput sequenced genes for an increased permeability of vascular endothelial cells due to inflammation. We constructed two weighted gene co-expression network analysis (WGCNA) networks, and the differential expression of high-throughput sequenced genes related to endothelial cell permeability were screened from the GEO database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the differential genes. Their degree values were obtained from the topological properties of protein-protein interaction (PPI) networks of differential genes, and the hub genes associated with an increased endothelial cell permeability were analyzed. Reverse transcription-polymerase chain reaction (RT-PCR) and western blotting techniques were used to detect the presence of these hub genes in TNF-α induced mRNA and the protein expression in endothelial cells. RESULTS: In total, 1,475 differential genes were mainly enriched in the cell adhesion and TNF-α signaling pathway. With TNF-α inducing an increase in the endothelial cell permeability and significantly increasing mRNA and protein expression levels, we identified three hub genes, namely PTGS2, ICAM1, and SNAI1. There was a significant difference in the high-dose TNF-α group and in the low-dose TNF-α group compared to the control group, in the endothelial cell permeability experiment (p = 0.008 vs. p = 0.02). Measurement of mRNA and protein levels of PTGS2, ICAM1, and SNAI1 by western blotting analysis showed that there was a significant impact on TNF-α and that there was a significant dose-dependent relationship (p < 0.05 vs. p < 0.01). CONCLUSIONS: The three hub genes identified through bioinformatics analyses in the present study may serve as biomarkers of increased vascular endothelial cell permeability. The findings offer valuable insights into the progress and mechanism of vascular endothelial cell permeability.


Subject(s)
Computational Biology , Endothelial Cells , Gene Regulatory Networks , Protein Interaction Maps , Tumor Necrosis Factor-alpha , Humans , Computational Biology/methods , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Endothelial Cells/metabolism , Gene Expression Profiling/methods , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Capillary Permeability , Signal Transduction , Databases, Genetic , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Gene Ontology
2.
Cancer Lett ; : 217105, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971490

ABSTRACT

Immune therapy has significantly improved the prognosis of hepatocellular carcinoma (HCC) patients, yet its efficacy remains limited, underscoring the urgency to identify new therapeutic targets and biomarkers. Here, we investigated the pathological and physiological roles of KIF20A and assess its potential in enhancing HCC treatment efficacy when combined with PD-1 inhibitors. We initially assess KIF20A's oncogenic function using liver-specific KIF20A knockout (Kif20a CKO) mouse models and orthotopic xenografts. Subsequently, we establish a regulatory axis involving KIF20A, FBXW7, and c-Myc, validated through construction of c-Myc splicing mutants. Large-scale clinical immunohistochemistry (IHC) analyses confirm the pathological relevance of the KIF20A-FBXW7-c-Myc axis in HCC. We demonstrate that KIF20A overexpression correlates with poor prognosis in HCC by competitively inhibiting FBXW7-mediated degradation of c-Myc, thereby promoting glycolysis and enhancing tumor proliferation. Conversely, KIF20A downregulation suppresses these effects, impairing tumor growth through c-Myc downregulation. Notably, KIF20A inhibition attenuates c-Myc-induced MMR expression, associated with improved prognosis in HCC patients receiving PD-1 inhibitor therapy. Furthermore, in Kif20a CKO HCC mouse models, we observe synergistic effects between Kif20a knockout and anti-PD-1 antibodies, significantly enhancing immunotherapeutic efficacy against HCC. Our findings suggest that targeting the KIF20A-c-Myc axis could identify HCC patients likely to benefit from anti-PD-1 therapy. In conclusion, we propose that combining KIF20A inhibitors with anti-PD-1 treatment represents a promising therapeutic strategy for HCC, offering new avenues for clinical development and patient stratification.

3.
BMC Plant Biol ; 24(1): 635, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971717

ABSTRACT

Excessive phosphorus (P) levels can disrupt nutrient balance in plants, adversely affecting growth. The molecular responses of Pennisetum species to high phosphorus stress remain poorly understood. This study examined two Pennisetum species, Pennisetum americanum × Pennisetum purpureum and Pennisetum americanum, under varying P concentrations (200, 600 and 1000 µmol·L- 1 KH2PO4) to elucidate transcriptomic alterations under high-P conditions. Our findings revealed that P. americanum exhibited stronger adaption to high-P stress compared to P. americanum× P. purpureum. Both species showed an increase in plant height and leaf P content under elevated P levels, with P. americanum demonstrating greater height and higher P content than P. americanum× P. purpureum. Transcriptomic analysis identified significant up- and down-regulation of key genes (e.g. SAUR, GH3, AHP, PIF4, PYL, GST, GPX, GSR, CAT, SOD1, CHS, ANR, P5CS and PsbO) involved in plant hormone signal transduction, glutathione metabolism, peroxisomes, flavonoid biosynthesis, amino acid biosynthesis and photosynthesis pathways. Compared with P. americanum× P. purpureum, P. americanum has more key genes in the KEGG pathway, and some genes have higher expression levels. These results contribute valuable insights into the molecular mechanisms governing high-P stress in Pennisetum species and offer implications for broader plant stress research.


Subject(s)
Gene Expression Profiling , Pennisetum , Phosphorus , Plant Leaves , Stress, Physiological , Pennisetum/genetics , Pennisetum/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Phosphorus/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Transcriptome , Genes, Plant
4.
Neuroscience ; 552: 54-64, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908506

ABSTRACT

The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in astrocytes has been found in the hypoxic-ischemic brain damage (HIBD) model. Cysteine rich angiogenic inducer 61 (CYR61) is secreted by reactive astrocytes. However, the effects of CYR61 on HIBD and its related mechanisms remain unclear. This study sought to explore the role of CYR61 in the activation of astrocytes and the NLRP3 inflammasome in neonatal HIBD. HIBD models were established in 7-day Sprague-Dawley rat pups. Neurobehavioral evaluation and 2,3,5-triphenyl-tetrazolium chloride staining were performed. In addition, rat primary astrocytes were used to establish the cell model of HIBD in vitro by oxygen-glucose deprivation/reperfusion (OGD/R). Then, CYR61-overexpression and sh-CYR61 viruses mediated by lentivirus were transduced into ODG/R-treated primary astrocytes. The expressions of related genes were evaluated using real-time quantitative PCR, western blot, immunofluorescence staining, and Enzyme-linked immunosorbent assay. The results showed that hypoxia-ischemia induced short-term neurological deficits, neuronal damage, and cerebral infarction in neonatal rats. In vivo, the expressions of CYR61, NLRP3, and glial fibrillary acidic protein (GFAP) were up-regulated in the HIBD model. In vitro, CYR61 exhibited high expression. CYR61 overexpression increased the expressions of GFAP and C3, whereas decreased S100A10 expression. CYR61 overexpression increased the expression of NLRP3, ASC, caspase-1 p20 and IL-1ß. CYR61 overexpression activated NF-κB by promoting the phosphorylation of IκBα and p65. Thus, CYR61 is involved in neonatal HIBD progress, which may be related to the activation of astrocytes, the NLRP3 inflammasome, and the NF-κB signaling pathway.

5.
Int J Biol Macromol ; 274(Pt 2): 133304, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925189

ABSTRACT

Epithelial barrier impairment of intestinal inflammation leads to the leakage of bacteria, antigens and consequent persistent immune imbalance. Restoring the barrier function holds promise for management of intestinal inflammation, while the theragnostic strategies are limited. In this study, we developed a novel coating by catalase (CAT)-catalyzed polymerization of tannic acid (TA) and combined chelation network with Fe3+. TA-Fe3+ coating was self-polymerized in situ along the small intestinal mucosa, demonstrating persistent adhesion properties and protective function. In enteritis models, sequential administration of TA-Fe3+ complex solution effectively restored the barrier function and alleviated the intestinal inflammation. Overexpressed CAT in inflammatory lesion is more favorable for the in situ targeting growth of TA-Fe3+ coating onto the defective barrier. Based on the high longitudinal relaxivity of Fe3+, the pathologically catalyzed coating facilitated the visualization of intestinal barrier impairment through MRI. In conclusion, the novel TA-Fe3+ delivery coating proposed an alternative approach to promote theranostic intervention for intestinal diseases.

6.
Behav Sci (Basel) ; 14(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38920840

ABSTRACT

Ensemble coding allows observers to form an average to represent a set of elements. However, it is unclear whether observers can extract an average from a cross-category set. Previous investigations on this issue using low-level stimuli yielded contradictory results. The current study addressed this issue by presenting high-level stimuli (i.e., a crowd of facial expressions) simultaneously (Experiment 1) or sequentially (Experiment 2), and asked participants to complete a member judgment task. The results showed that participants could extract average information from a group of cross-category facial expressions with a short perceptual distance. These findings demonstrate cross-category ensemble coding of high-level stimuli, contributing to the understanding of ensemble coding and providing inspiration for future research.

7.
J Cancer Res Clin Oncol ; 150(6): 317, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914670

ABSTRACT

INTRODUCTION: CD24 is a highly glycosylated glycosylphosphatidylinositol anchored membrane protein that plays an important role in tumor progression. The aim of this study was to investigate the effect of abnormal expression of CD24 on the proliferation, migration and invasion of breast cancer (BC) cells, and the molecular mechanism of regulating CD24 expression in breast cancer. METHODOLOGY: The bioinformatics method was used to predict the expression level of CD24 in BC and its relationship with the occurrence and development of BC. IHC, RT-qPCR and WB were used to detect the expression of CD24 in BC tissues and cells. The proliferation of CD24 was evaluated by CCK-8 and colony formation assay, and the migration and invasion of CD24 were evaluated by wound healing and transwell. In addition, the effect of CD24 on the malignancy of BC in vivo was further evaluated by subcutaneous tumorigenesis assay. Molecular mechanisms were measured by luciferase reporter assays, biotin-labeled miRNA pull-down assay, RIP, and western blotting. RESULTS: The results show that CD24 is highly expressed in breast cancer tissues and cell lines, and knockdown of CD24 in vivo and in vitro can inhibit the proliferation, migration and invasion of BC cells. Mechanistically, the transcription factor ZNF460 promotes its expression by binding to the CD24 promoter, and the expression of ZNF460 is regulated by miR-125a-5p, which inhibits its expression by targeting the 3'UTR of ZNF460. In addition, LINC00525 acts as a ceRNA sponge to adsorb miR-125a-5p and regulate its expression. CONCLUSIONS: Overexpression of CD24 is involved in the development and poor prognosis of BC, which can be used as a potential target for the treatment of BC and provide a theoretical basis for the treatment of BC.


Subject(s)
Breast Neoplasms , CD24 Antigen , Cell Proliferation , Disease Progression , MicroRNAs , RNA, Long Noncoding , Humans , CD24 Antigen/genetics , CD24 Antigen/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , MicroRNAs/genetics , Animals , Mice , RNA, Long Noncoding/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Movement/genetics , Mice, Inbred BALB C , Prognosis
8.
J Am Heart Assoc ; 13(13): e034817, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38934869

ABSTRACT

BACKGROUND: Anterior-posterior electrode placement is preferred in electrical cardioversion of atrial fibrillation. However, the optimal anterior-posterior electrode position in relation to the heart is not studied. METHODS AND RESULTS: We performed a prospective observational study on patients presenting for cardioversion of atrial fibrillation. Electrodes were placed in the anterior-posterior position and shock was delivered in a step-up approach (100 J→200 J→360 J). Fluoroscopic images were obtained, and distances were measured from points A, midanterior electrode; and B, midposterior electrode, to midpoint of the cardiac silhouette. Patients requiring one 100 J shock for cardioversion success (group I) were compared with those requiring >1 shock/100 J (group II). Logistic regression was used to determine the impact of electrode distance on low energy (100 J) cardioversion success. Computed tomography scans from this cohort were analyzed for anatomic landmark correlation to the cardiac silhouette. Of the 87 patients included, 54 (62%) comprised group I and 33 (38%) group II. Group I had significantly lower distances from the mid-cardiac silhouette to points A (5.0±2.4 versus 7.4±3.3 cm; P<0.001) and B (7.3±3.0 versus 10.0±3.8 cm; P=0.002) compared with group II. On multivariate analysis, higher distances from the mid-cardiac silhouette to point A (odds ratio, 1.33 [95% CI, 1.07-1.70]; P=0.01) and B (odds rsatio, 1.24 [95% CI, 1.05-1.50]; P=0.01) were independent predictors of low energy (100 J) cardioversion failure. Based on review of computed tomography scans, we suggest that the xiphoid process may be an easy landmark to guide proximity to the myocardium. CONCLUSIONS: In anterior-posterior electrode placement, closer proximity to the cardiac silhouette predicts successful 100 J cardioversion irrespective of clinical factors.


Subject(s)
Atrial Fibrillation , Electric Countershock , Humans , Atrial Fibrillation/therapy , Atrial Fibrillation/physiopathology , Electric Countershock/instrumentation , Electric Countershock/methods , Male , Female , Pilot Projects , Prospective Studies , Aged , Middle Aged , Treatment Outcome , Tomography, X-Ray Computed , Defibrillators, Implantable , Fluoroscopy , Logistic Models
9.
Transl Oncol ; 46: 102000, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852278

ABSTRACT

Gastric cancer (GC) has become the first malignant tumor with highest incidence rate and mortality of cancer in China, finding therapeutic targets for gastric cancer is of great significant for improving the survival rate of patients with GC. Recently, many of studies have shown that LncRNAs is involved in multiple biological progresses in the development of GC. This study, we screened for abnormally high expression of LncSHANK3 in GC through the TCGA database, and found that LncSHANK3 sponge adsorbs miR-4530, further competing with MNX1 and binding to miR-4530. We demonstrated the interaction between LncSHANK3 and miR-4530 through luciferase reporting analysis, with miR-4530 negatively regulating MNX1.Through CCK8, colony formation, transwell, and wound healing assays, it was found that LncSHANK3 affects the occurrence of GC through cell proliferation, migration and invasion. In conclusion, LncSHANK3/miR-4530/MNX1 axis is a potential mechanism for the treatment of GC.

10.
Front Plant Sci ; 15: 1406256, 2024.
Article in English | MEDLINE | ID: mdl-38872890

ABSTRACT

Alfalfa (Medicago sativa L.) is one of the most important forage crops in the world. Drought is recognized as a major challenge limiting alfalfa production and threatening food security. Although some literature reviews have been conducted in this area, bibliometric reviews based on large amounts of published data are still lacking. In this paper, a bibliometric analysis of alfalfa drought stress from 1998-2023 was conducted using the Web of Science Core Collection database in order to assess global trends in alfalfa drought stress research and to provide new directions for future research. The results showed that the annual publication output maintained an increase in most years, with China and the United States contributing significantly to the field. Most of the journals published are specialized journals in botany, environmental science, soil science and crop science, as well as related agribusiness journals. "plant growth" and "yield" were the most frequently used keywords, reflecting the important purpose of research in this field. And two main research directions were identified: research on drought response mechanism of alfalfa and exploration of drought-resistant technology. In addition, physiological, biochemical, and molecular responses of drought tolerance and high yield in alfalfa, transgenics, and microbial fertilizer research have been hot research topics in recent years and may continue in the future. The ultimate goal of this paper is to provide a foundational reference for future research on alfalfa's drought resistance and yield optimization mechanisms, thereby enhancing the crop's application in agricultural production.

11.
Front Public Health ; 12: 1343915, 2024.
Article in English | MEDLINE | ID: mdl-38873321

ABSTRACT

Background: Although epidemiological evidence implies a link between exposure to particulate matter (PM) and Alzheimer's disease (AD), establishing causality remains a complex endeavor. In the present study, we used Mendelian randomization (MR) as a robust analytical approach to explore the potential causal relationship between PM exposure and AD risk. We also explored the potential associations between PM exposure and other neurodegenerative diseases. Methods: Drawing on extensive genome-wide association studies related to PM exposure, we identified the instrumental variables linked to individual susceptibility to PM. Using summary statistics from five distinct neurodegenerative diseases, we conducted two-sample MR analyses to gauge the causal impact of PM on the risk of developing these diseases. Sensitivity analyses were undertaken to evaluate the robustness of our findings. Additionally, we executed multivariable MR (MVMR) to validate the significant causal associations identified in the two-sample MR analyses, by adjusting for potential confounding risk factors. Results: Our MR analysis identified a notable association between genetically predicted PM2.5 (PM with a diameter of 2.5 µm or less) exposure and an elevated risk of AD (odds ratio, 2.160; 95% confidence interval, 1.481 to 3.149; p < 0.001). A sensitivity analysis supported the robustness of the observed association, thus alleviating concerns related to pleiotropy. No discernible causal relationship was identified between PM and any other neurodegenerative diseases. MVMR analyses-adjusting for smoking, alcohol use, education, stroke, hearing loss, depression, and hypertension-confirmed a persistent causal relationship between PM2.5 and AD. Sensitivity analyses, including MR-Egger and weighted median analyses, also supported this causal association. Conclusion: The present MR study provides evidence to support a plausible causal connection between PM2.5 exposure and AD. The results emphasize the importance of contemplating air quality interventions as a public health strategy for reducing AD risk.


Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Particulate Matter , Particulate Matter/adverse effects , Humans , Alzheimer Disease/genetics , Risk Factors , Environmental Exposure/adverse effects , Causality , Air Pollution/adverse effects
12.
World J Clin Cases ; 12(17): 3045-3052, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38898875

ABSTRACT

BACKGROUND: Oral cancer, which is caused by mucous membrane variation, represents a prevalent malignant tumor in the oral and maxillofacial region, posing a significant threat to patients' lives and safety. While surgical intervention stands as a cornerstone treatment for oral cancer patients, it carries the risk of incomplete treatment or high rates of postoperative recurrence. Hence, a multifaceted approach incorporating diverse treatment modalities is essential to enhance patient prognosis. AIM: To analyze the application effect of Tongluo Jiedu prescription as adjuvant therapy and its influence on patient prognosis in patients with oral cancer. METHODS: Eighty oral cancer patients in our hospital were selected and divided into the observation group and control group by a random number table. The control group was treated with continuous arterial infusion chemotherapy of cisplatin and 5-fluorouracil. The observation group was additionally given Tongluo Jiadu prescription. The inflammatory stress level, peripheral blood T-cell subsets, and immune function of the two groups were subsequently observed. SPSS 21.0 was used for data analysis. RESULTS: The observation group demonstrated lower levels of interleukin-6 and C-reactive protein, and a higher level of tumor necrosis factor in comparison to the control group. After treatment, the immune function in the observation group was significantly better than in the control group. CONCLUSION: Tongluo Jiedu prescription can improve the immune function and oxidative stress level of patients with oral cancer and accelerate the recovery process.

13.
Ann Med ; 56(1): 2363937, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38848045

ABSTRACT

BACKGROUND: FOXP3 is a transcription factor that regulates the development and function of Treg, playing an essential role in preventing autoimmune diseases. Variation in FOXP3 can impair the function of Treg cells, thus destroying their inhibitory capacity and leading to autoimmune diseases. This paper investigated whether the three SNPs in the FOXP3 gene (-3279 C/A, -924 A/G and -6054 del/ATT) are associated with systemic lupus erythematosus (SLE) susceptibility in the Han Chinese population. MATERIALS AND METHODS: The study cohort comprised 122 SLE patients and 268 healthy controls. Genotyping was performed by polymerase chain reaction sequence-specific primer (PCR-SSP). Furthermore, we examined the potential clinical manifestations associated with FOXP3 polymorphisms in SLE patients. RESULTS: The results showed that the -3279 (C > A) was significantly associated with the SLE risk in a homozygote (OR = 3.24, 95% CI = 1.23-8.52, p = .013, AA vs. CC), dominant (OR = 1.68, 95% CI = 1.07-2.65, p = .025, AC + AA vs. CC), recessive (OR = 2.90, 95% CI = 1.12-7.55, p = .023, AA vs. AC + CC) and allelic (OR = 1.72, 95% CI = 1.18-2.53, p = .005, A vs. C) models. In addition, -924 (A > G) was positively associated with SLE risk in the heterozygote (OR = 1.66, 95% CI = 1.04-2.66, p = .033, AG vs. AA) and dominant (OR = 1.59, 95% CI = 1.01-2.49, p = .042, AG + GG vs. AA) models, whereas -6054 (del > ATT) was not associated with SLE. Moreover, the immunological index analysis suggested that decreased complement C4 occurred more frequently in SLE patients carrying the minor allele (A) -3279 (C > A) than those not (p = .005). CONCLUSIONS: We demonstrated that -3279 (C > A) and -924 (A > G) were associated with an increased risk of SLE and the immunological index, indicating that the FOXP3 variation is potentially related to the occurrence and development of SLE.


Subject(s)
Asian People , Forkhead Transcription Factors , Genetic Predisposition to Disease , Lupus Erythematosus, Systemic , Polymorphism, Single Nucleotide , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Female , Forkhead Transcription Factors/genetics , Male , Adult , Asian People/genetics , China/epidemiology , Case-Control Studies , Middle Aged , Genotype , Gene Frequency , Young Adult , Risk Factors , Alleles , East Asian People
14.
Food Chem ; 455: 139885, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38850986

ABSTRACT

This study aimed to clarify the composition and bioactivity differences between goat and cow milk fat globule membrane (MFGM) protein by proteomic, and the immunomodulatory activity of MFGM proteins was further evaluated by using mouse splenic lymphocytes in vitro. A total of 257 MFGM proteins showed significant differences between goat and cow milk. The upregulated and unique MFGM proteins in goat milk were significantly enriched in the positive regulation of immune response, negative regulation of Interleukin-5 (IL-5) secretion, and involved in nucleotide-binding oligomerization domain (NOD)-like receptor signaling. The contents of IL-2 and Interferon-γ in the supernatant of spleen lymphocytes treated with goat MFGM proteins were much higher than those of IL-4 and IL-5, suggesting a Th1-skewed immune response. These results revealed that goat MFGM proteins could possess better immunomodulatory effects as compared to cow milk. Our findings may provide new insights to elucidate the physiological functions and nutritional of goat milk.

15.
Res Sq ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38883715

ABSTRACT

We analyzed the risk-benefit of COVID-19 vaccine using a causal model to explain and weigh up possible risk factors of blood clots after vaccination. A self-controlled case series method was used to examine the association between blood clots and COVID-19 vaccination. To avoid bias due to the under-reported infection among non-hospitalized subjects, a case-control study was used to compare the risk of blood clots in infected subjects to control subjects who were hospitalized due to physical injury. We found increased risks of blood clots after vaccination (incidence rate ratio is 1.13, 95% CI: [1.03,1.24] after the first dose and 1.23, 95% CI: [1.13,1.34] after the second dose). Furthermore, vaccination attenuated the increased risk of blood clots associated with infection (odds ratio is 2.16, 95% CI: [1.93,2.42] in unvaccinated versus 1.46, 95% CI: [1.25,1.70] in vaccinated). After accounting for vaccine efficacy against infection and the protection against infection-associated blood clots, receiving the COVID-19 vaccines decreases the risk of blood clots, especially during high infection rate period.

16.
J Anim Sci Biotechnol ; 15(1): 85, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858680

ABSTRACT

BACKGROUND: The proliferation of porcine ovarian granulosa cells (GCs) is essential to follicular development and the ubiquitin-proteasome system is necessary for maintaining cell cycle homeostasis. Previous studies found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) regulates female reproduction, especially in ovarian development. However, the mechanism by which UCHL1 regulates porcine GC proliferation remains unclear. RESULTS: UCHL1 overexpression promoted GC proliferation, and knockdown had the opposite effect. UCHL1 is directly bound to cyclin B1 (CCNB1), prolonging the half-life of CCNB1 and inhibiting its degradation, thereby promoting GC proliferation. What's more, a flavonoid compound-isovitexin improved the enzyme activity of UCHL1 and promoted the proliferation of porcine GCs. CONCLUSIONS: UCHL1 promoted the proliferation of porcine GCs by stabilizing CCNB1, and isovitexin enhanced the enzyme activity of UCHL1. These findings reveal the role of UCHL1 and the potential of isovitexin in regulating proliferation and provide insights into identifying molecular markers and nutrients that affect follicle development.

17.
BMC Plant Biol ; 24(1): 534, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862913

ABSTRACT

BACKGROUND: Waterlogging stress (WS) negatively impacts crop growth and productivity, making it important to understand crop resistance processes and discover useful WS resistance genes. In this study, rye cultivars and wild rye species were subjected to 12-day WS treatment, and the cultivar Secale cereale L. Imperil showed higher tolerance. Whole transcriptome sequencing was performed on this cultivar to identify differentially expressed (DE) messenger RNAs (DE-mRNAs) and long non-coding RNAs (DE-lncRNAs) involved in WS response. RESULTS: Among the 6 species, Secale cereale L. Imperil showed higher tolerance than wild rye species against WS. The cultivar effectively mitigated oxidative stress, and regulated hydrogen peroxide and superoxide anion. A total of 728 DE-mRNAs and 60 DE-lncRNAs were discovered. Among these, 318 DE-mRNAs and 32 DE-lncRNAs were upregulated, and 410 DE-mRNAs and 28 DE-lncRNAs were downregulated. GO enrichment analysis discovered metabolic processes, cellular processes, and single-organism processes as enriched biological processes (BP). For cellular components (CC), the enriched terms were membrane, membrane part, cell, and cell part. Enriched molecular functions (MF) terms were catalytic activity, binding, and transporter activity. LncRNA and mRNA regulatory processes were mainly related to MAPK signaling pathway-plant, plant hormone signal transduction, phenylpropanoid biosynthesis, anthocyanin biosynthesis, glutathione metabolism, ubiquitin-mediated proteolysis, ABC transporter, Cytochrome b6/f complex, secondary metabolite biosynthesis, and carotenoid biosynthesis pathways. The signalling of ethylene-related pathways was not mainly dependent on AP2/ERF and WRKY transcription factors (TF), but on other factors. Photosynthetic activity was active, and carotenoid levels increased in rye under WS. Sphingolipids, the cytochrome b6/f complex, and glutamate are involved in rye WS response. Sucrose transportation was not significantly inhibited, and sucrose breakdown occurs in rye under WS. CONCLUSIONS: This study investigated the expression levels and regulatory functions of mRNAs and lncRNAs in 12-day waterlogged rye seedlings. The findings shed light on the genes that play a significant role in rye ability to withstand WS. The findings from this study will serve as a foundation for further investigations into the mRNA and lncRNA WS responses in rye.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , RNA, Long Noncoding , RNA, Messenger , Secale , Stress, Physiological , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Secale/genetics , Secale/physiology , Stress, Physiological/genetics , RNA, Plant/genetics , Transcriptome
18.
Cell Death Differ ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898233

ABSTRACT

Mitochondrial homeostasis is coordinated through communication between mitochondria and the nucleus. In response to stress, mitochondria generate retrograde signals to protect against their dysfunction by activating the expression of nuclear genes involved in metabolic reprogramming. However, the mediators associated with mitochondria-to-nucleus communication pathways remain to be clarified. Here, we identified that hnRNPH1 functions as a pivotal mediator of mitochondrial retrograde signaling to maintain mitochondrial homeostasis. hnRNPH1 accumulates in the nucleus following mitochondrial stress in a 5'-adenosine monophosphate-activated protein kinase (AMPK)-dependent manner. Accordingly, hnRNPH1 interacts with the transcription factor NRF1 and binds to the DRP1 promoter, enhancing the transcription of DRP1. Furthermore, in the cytoplasm, hnRNPH1 directly interacts with DRP1 and enhances DRP1 Ser616 phosphorylation, thereby increasing DRP1 translocation to mitochondrial outer membranes and triggering mitochondrial fission. Collectively, our findings reveal a novel role for hnRNPH1 in the mitochondrial-nuclear communication pathway to maintain mitochondrial homeostasis under stress and suggest that it may be a potential target for mitochondrial dysfunction diseases.

20.
Microorganisms ; 12(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38930517

ABSTRACT

The treatment and prevention of pathogenic diseases by lactic acid bacteria (LAB) has attracted more and more attention. As a special LAB, Levilactobacillus brevis (L. brevis) has relatively less research on its antibacterial infection in vivo, and its protective effect and mechanism still need to be fully studied. In this study, we selected L. brevis 23017, which can regulate the intestinal immunity of the host animal and resist pathogen infection, to evaluate its protective role and potential molecular mechanisms in the mouse model of S. typhimurium C7731 infection. As expected, we confirmed that L. brevis 23017 reduced the diarrhea rate and increased the daily weight gain and survival rate of the mouse model, and inhibited S. typhimurium colonization in the jejunum and liver. It also reduced the level of oxidative damage and protected the integrity of intestinal tissue by increasing the activity of intestinal antioxidant enzymes (SOD, GSH-Px and T-AOC). From the perspective of intestinal mucosal barrier injury and repair, it was confirmed that L. brevis 23017 could increase the expression levels of intestinal tight junction proteins (ZO-1 and OCLN). Our research results also show that L. brevis 23017 inhibits the inflammatory response and promotes the occurrence of cellular immunity in the body by promoting the increase in IL-10 and inhibiting IL-13 in serum and intestinal tissue. Notably, L. brevis 23017 increased total secretory immunoglobulin A (SIgA) levels in the intestine, which were closely associated with elevated levels of IL-5, IL-13, pIgR, j-chain, and IgAα-chain. In addition, L. brevis 23017 increased the expression of antioxidant proteins Nrf2, NQO1, and HO-1 associated with Nrf2 signaling to inhibit intestinal oxidative damage. This mechanism may be responsible for its protective effect against S. typhimurium-infected intestine. Our study provides new evidence and theoretical support for the analysis of the anti-bacterial infection effect and mechanism of L. brevis, which will contribute to the development of L. brevis and the treatment of pathogenic bacteria intestinal infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...