Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 362: 142649, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901699

ABSTRACT

Little is known about the effect of surface coatings on the fate and toxicity of CeO2 nanoparticles (NPs) to aquatic plants. In this study, we modified nCeO2 with chitosan (Cs) and alginate (Al) to obtain positively charged nCeO2@Cs and negatively charged nCeO2@Al, respectively, and exposed them to a representative aquatic plant, duckweed (Lemna minor L.). Uncoated nCeO2 could significantly inhibit the growth of duckweed, induce oxidative damage and lead to cell death, whereas nCeO2@Cs and nCeO2@Al exhibited lower toxicity to duckweed. ICP-MS analysis revealed that the Ce content in duckweed from the nCeO2 group was 1.74 and 2.85 times higher than that in the nCeO2@Cs and nCeO2@Al groups, respectively. Microscopic observations indicated that the positively charged nCeO2@Cs was more readily adsorbed on the root surface of duckweed than the negatively charged nCeO2@Al. The results of XANES and LCF demonstrated that a certain percentage of Ce(Ⅳ) was reduced to Ce(Ⅲ) after the interaction of the three NPs with duckweed, but the degree of biotransformation differed among the treatments. Specifically, the absolute contents of Ce(III) produced of nCeO2@Cs and nCeO2@Al through biotransformation were reduced by 55.5% and 83.5%, respectively, compared with that of the nCeO2 group, which might be the key factor for the diminished phytotoxicity of the coated nCeO2 to the duckweed. These findings were valuable for understanding the toxicity of metal-based NPs to aquatic plants and for the synthesis of environmentally friendly nanomaterials.

2.
Nanomaterials (Basel) ; 13(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37764551

ABSTRACT

As one of the most widely used nanomaterials, CeO2 nanoparticles (NPs) might be released into the aquatic environment. In this paper, the interaction of CeO2 NPs and Ce3+ ions (0~10 mg/L) with duckweed (Lemna minor L.) was investigated. CeO2 NPs significantly inhibited the root elongation of duckweed at concentrations higher than 0.1 mg/L, while the inhibition threshold of Ce3+ ions was 0.02 mg/L. At high doses, both reduced photosynthetic pigment contents led to cell death and induced stomatal deformation, but the toxicity of Ce3+ ions was greater than that of CeO2 NPs at the same concentration. According to the in situ distribution of Ce in plant tissues by µ-XRF, the intensity of Ce signal was in the order of root > old frond > new frond, suggesting that roots play a major role in the uptake of Ce. The result of XANES showed that 27.6% of Ce(IV) was reduced to Ce(III) in duckweed treated with CeO2 NPs. We speculated that the toxicity of CeO2 NPs to duckweed was mainly due to its high sensitivity to the released Ce3+ ions. To our knowledge, this is the first study on the toxicity of CeO2 NPs to an aquatic higher plant.

3.
NanoImpact ; 24: 100364, 2021 10.
Article in English | MEDLINE | ID: mdl-35559823

ABSTRACT

Phytotoxicity of nanoceria (nCeO2) has been reported, but there are few studies on how to reduce its phytotoxicity. In the present study, we modified nCeO2 with two organophosphates (nCeO2@ATMP and nCeO2@EDTMP) and compared their toxicity to lettuce with that of uncoated nCeO2. The results showed that bare nCeO2 significantly inhibited the root growth of lettuce, leading to oxidative damages and root cell death. In contrast, after surface modification, the toxicity of nCeO2@ATMP to lettuce was weakened, while nCeO2@EDTMP was nontoxic to lettuce. It was found that the surface properties of the modified materials have been changed, resulting in sharp decreases in their bioavailability. Although nCeO2 with and without surface coatings were all transformed when interacting with plants, the absolute contents of Ce(III) in roots treated with modified nCeO2 decreased significantly, which may be the main reason for the reduction of toxicity. This study indicates that it is feasible to reduce the phytotoxicity of nanomaterials through surface coating.


Subject(s)
Lactuca , Nanoparticles , Nanoparticles/toxicity , Oxidative Stress
4.
J Geophys Res Atmos ; 123(1): 457-472, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29527427

ABSTRACT

Long-term (1981-2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 < AOT < 0.3 is identified as the sensitive regime of the conventional first AIE where CDER is more susceptible to AOT than the other cloud variables. The first AIE that manifests as the change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT < 0.08). Aerosol invigoration signature is also revealed by the concurrent increase of CDER, COD, and CWP with increasing AOT for a polluted marine atmosphere (AOT > 0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 < AOT < 0.4. The corresponding AIE active regions manifested themselves as the decline of the precipitation efficiency are mainly limited to the oceanic areas downwind of continental aerosols. The sensitive regime of the conventional AIE identified in this observational study is likely associated with the transitional regime from the aerosol-limited regime to the updraft-limited regime identified for aerosol-cloud interaction in cloud model simulations.

SELECTION OF CITATIONS
SEARCH DETAIL