Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.163
1.
Thorac Cancer ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38837623

BACKGROUND: To evaluate a novel intraoperative localization technique utilizing temporary pulmonary arteriovenous occlusion for enhancing the precision of sublobar resections in early-stage NSCLC. METHODS: Conducted from January to November 2023, this study involved 140 patients. During the surgery, key pulmonary vessels were identified using preoperative three-dimensional (3D) imaging and temporarily occluded with noninvasive clamps to isolate the target lung segment. Following vascular occlusion, indocyanine green (ICG) was administered intravenously to precisely delineate the resection margins. After visually confirming the marked areas, the clamps were released, and a targeted partial resection was performed on the delineated segment. Surgical data, including operation times, surgical margins, and hospitalization costs, were collected and compared with those from a historical control group of 110 patients who underwent traditional pulmonary wedge resections. RESULTS: In the study group, the median surgical margin achieved was 16 mm, which was statistically significant compared to 15 mm in the control group (p < 0.05). Operation times were reduced to an average of 58.43 ± 12.962 min, showing a decrease from the control group's average of 69.50 ± 17.544 min (p < 0.05). Hospitalization costs were also lower, averaging $4772.98 ± 624.339 for the study group versus $5161.34 ± 856.336 for the control group (p < 0.05). Patient safety was maintained with no increase in surgical complications. CONCLUSION: The technique, leveraging temporary pulmonary arteriovenous occlusion, offered a significant advancement in the surgical treatment of peripheral early-stage NSCLC. It reduced operation time and lowered overall surgical costs. This method represented a promising alternative to traditional surgical approaches.

2.
Adv Funct Mater ; 34(8)2024 Feb 19.
Article En | MEDLINE | ID: mdl-38828467

Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.

3.
Article En | MEDLINE | ID: mdl-38846323

Background: Currently, endovascular treatment of intracranial aneurysms (ICAs) is limited by low complete occlusion rates. The advent of novel endovascular technology has expanded the applicability of endovascular therapy; however, the superiority of novel embolic devices over the traditional Guglielmi detachable coils (GDCs) is still debated. We performed a systematic review of literature that reported Raymond-Roy occlusion classification (RROC) rates of modern endovascular devices to determine their immediate and follow-up occlusion effectiveness for the treatment of unruptured saccular ICAs. Methods: A search was conducted using electronic databases (PUBMED, Cochrane, ClinicalTrials.gov, Web of Science). We retrieved studies published between 2000-2022 reporting immediate and follow-up RROC rates of subjects treated with different endovascular ICA therapies. We extracted demographic information of the treated patients and their reported angiographic RROC rates. Results: A total of 80 studies from 15 countries were included for data extraction. RROC rates determined from angiogram were obtained for 21,331 patients (72.5% females, pooled mean age: 58.2 (95% CI: 56.8-59.6), harboring 22,791 aneurysms. The most frequent aneurysm locations were the internal carotid artery (46.4%, 95% CI: 41.9%-50.9%), the anterior communicating artery (26.4%, 95% CI: 22.5%-30.8%), the middle cerebral artery (24.5%, 95% CI:19.2%-30.8%) and the basilar tip (14.4%, 95% CI:11.3%-18.3%). The complete occlusion probability (RROC-I) was analyzed for GDCs, the Woven EndoBridge (WEB), and flow diverters. The RROC-I rate was the highest in balloon-assisted coiling (73.9%, 95% CI: 65.0%-81.2%) and the lowest in the WEB (27.8%, 95% CI:13.2%-49.2%). The follow-up RROC-I probability was homogenous in all analyzed devices. Conclusions: We observed that the coil-based endovascular therapy provides acceptable rates of complete occlusion, and these rates are improved in balloon-assisted coils. Out of the analyzed devices, the WEB exhibited the shortest time to achieve >90% probability of follow-up complete occlusion (~18 months). Overall, the GDCs remain the gold standard for endovascular treatment of unruptured saccular aneurysms.

4.
Front Immunol ; 15: 1361606, 2024.
Article En | MEDLINE | ID: mdl-38846937

Introduction: Pathological changes in the articular cartilage (AC) and synovium are major manifestations of osteoarthritis (OA) and are strongly associated with pain and functional limitations. Exosome-derived microRNAs (miRNAs) are crucial regulatory factors in intercellular communication and can influence the progression of OA by participating in the degradation of chondrocytes and the phenotypic transformation in the polarization of synovial macrophages. However, the specific relationships and pathways of action of exosomal miRNAs in the pathological progression of OA in both cartilage and synovium remain unclear. Methods: This study evaluates the effects of fibroblast-like synoviocyte (FLS)-derived exosomes (FLS-Exos), influenced by miR-146a, on AC degradation and synovial macrophage polarization. We investigated the targeted relationship between miR-146a and TRAF6, both in vivo and in vitro, along with the involvement of the NF-κB signaling pathway. Results: The expression of miR-146a in the synovial exosomes of OA rats was significantly higher than in healthy rats. In vitro, the upregulation of miR-146a reduced chondrocyte apoptosis, whereas its downregulation had the opposite effect. In vivo, exosomes derived from miR-146a-overexpressing FLSs (miR-146a-FLS-Exos) reduced AC injury and chondrocyte apoptosis in OA. Furthermore, synovial proliferation was reduced, and the polarization of synovial macrophages shifted from M1 to M2. Mechanistically, the expression of TRAF6 was inhibited by targeting miR-146a, thereby modulating the Toll-like receptor 4/TRAF6/NF-κB pathway in the innate immune response. Discussion: These findings suggest that miR-146a, mediated through FLS-Exos, may alleviate OA progression by modulating cartilage degradation and macrophage polarization, implicating the NF-κB pathway in the innate immune response. These insights highlight the therapeutic potential of miR-146a as a protective agent in OA, underscoring the importance of exosomal miRNAs in the pathogenesis and potential treatment of the disease.


Exosomes , Macrophages , MicroRNAs , Osteoarthritis , Synoviocytes , TNF Receptor-Associated Factor 6 , MicroRNAs/genetics , Animals , Exosomes/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/immunology , Rats , Macrophages/immunology , Macrophages/metabolism , Synoviocytes/metabolism , Synoviocytes/pathology , Male , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , NF-kappa B/metabolism , Signal Transduction , Rats, Sprague-Dawley , Fibroblasts/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Synovial Membrane/immunology , Cells, Cultured , Apoptosis , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Macrophage Activation
7.
OTO Open ; 8(2): e147, 2024.
Article En | MEDLINE | ID: mdl-38846015

Objective: To evaluate for correlation between intraoperative ultrasound (IOUS)-measured tumor thickness (TT) (uTT) and histopathological TT (hTT), and to compare IOUS-assisted resection with conventional resection in patients with oral tongue cancers. Data Sources: Ovid MEDLINE (1946-2023), Embase.com (1947-2023), and Web of Science (All Databases 1900-2023). Review Methods: Inclusion criteria were the use of IOUS for the management of oral tongue cancer. Studies that did not report quantitative data were excluded. Additionally, studies that were not contributory to meta-analysis, or a narrative analysis of pooled results were excluded. Selection was carried out by 2 reviewers. A total of 2417 studies were initially identified, with 12 ultimately being included in this review, and 7 included in the meta-analysis. Data were extracted by 2 investigators and were pooled using a random-effects model. Results: Our meta-analysis reveals a pooled correlation coefficient of 0.92 (95% confidence interval: 0.80-0.96) for studies comparing uTT to hTT. Studies comparing IOUS-assisted resection to conventional resection found IOUS-assisted resection yielded wider nearest margins in all studies reporting this outcome. Conclusion: IOUS reliably measures TT, similarly to that of histopathology measurement. IOUS-assisted resection, which allows the surgeon to view the deep extent of tumor invasion, may increase closest radial margin distance compared to conventional resection. IOUS-assisted resection may represent a more reliable approach to achieving clear margins than conventional resection.

8.
Front Neurol ; 15: 1389950, 2024.
Article En | MEDLINE | ID: mdl-38846042

Background and objective: Current data on the optimal treatment modality for ruptured anterior communicating artery (AComA) aneurysms are limited. We conducted this multicenter retrospective study to evaluate the safety and clinical outcomes of endovascular treatment (EVT) and microsurgical clipping (MC) for the treatment of ruptured AComA patients. Methods: Patients with ruptured AComA aneurysms were screened from the Chinese Multicenter Cerebral Aneurysm Database. Propensity score matching (PSM) was used to adjust for baseline characteristic imbalances between the EVT and MC groups. The safety outcomes included total procedural complications, procedure-related morbidity/death and remedial procedure for complication. The primary clinical outcome was 2-year functional independence measured by the modified Rankin scale (mRS) score. Results: The analysis included 893 patients with ruptured AComA aneurysms (EVT: 549; MC: 346). PSM yielded 275 pairs of patients in the EVT and MC cohorts for comparison. Decompressive craniectomy being more prevalent in the MC group (19.3% vs. 1.5%, p < 0.001). Safety data revealed a lower rate of total procedural complications (odds ratio [OR] = 0.62, 95% CI 0.39-0.99; p = 0.044) in the EVT group and similar rates of procedure-related morbidity/death (OR = 0.91, 95% CI 0.48-1.73; p = 0.880) and remedial procedure for complication (OR = 1.35, 95% CI 0.51-3.69, p = 0.657) between the groups. Compared with that of MC patients, EVT patients had a greater likelihood of functional independence (mRS score 0-2) at discharge (OR = 1.68, 95% CI 1.14-2.50; p = 0.008) and at 2 years (OR = 1.89, 95% CI 1.20-3.00; p = 0.005), a lower incidence of 2-year all-cause mortality (OR = 0.54, 95% CI 0.31-0.93; p = 0.023) and a similar rate of retreatment (OR = 1.00, 95% CI 0.23-4.40; p = 1.000). Conclusion: Clinical outcomes after treatment for ruptured AComA aneurysms appear to be superior to those after treatment with MC, with fewer overall procedure-related complications and no increase in the retreatment rate. Additional studies in other countries are needed to verify these findings.

9.
Appl Microbiol Biotechnol ; 108(1): 359, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836885

Vacuum foam drying (VFD) has been shown to improve the thermostability and long-term shelf life of Newcastle Disease Virus (NDV). This study optimized the VFD process to improve the shelf life of NDV at laboratory-scale and then tested the optimized conditions at pilot-scale. The optimal NDV to T5 formulation ratio was determined to be 1:1 or 3:2. Using the 1:1 virus to formulation ratio, the optimal filling volumes were determined to be 13-17% of the vial capacity. The optimized VFD process conditions were determined to be at a shelf temperature of 25℃ with a minimum overall drying time of 44 h. The vaccine samples prepared using these optimized conditions at laboratory-scale exhibited virus titer losses of ≤ 1.0 log10 with residual moisture content (RMC) below 3%. Furthermore, these samples were transported for 97 days around China at ambient temperature without significant titer loss, thus demonstrating the thermostability of the NDV-VFD vaccine. Pilot-scale testing of the NDV-VFD vaccine at optimized conditions showed promising results for up-scaling the process as the RMC was below 3%. However, the virus titer loss was slightly above 1.0 log10 (approximately 1.1 log10). Therefore, the NDV-VFD process requires further optimization at pilot scale to obtain a titer loss of ≤ 1.0 log10. Results from this study provide important guidance for possible industrialization of NDV-VFD vaccine in the future. KEY POINTS: • The process optimization and scale-up test of thermostable NDV vaccine prepared through VFD is reported for the first time in this study. • The live attenuated NDV-VFD vaccine maintained thermostability for 97 days during long distance transportation in summer without cold chain conditions. • The optimized NDV-VFD vaccine preparations evaluated at pilot-scale maintained acceptable levels of infectivity after preservation at 37℃ for 90 days, which demonstrated the feasibility of the vaccine for industrialization.


Newcastle Disease , Newcastle disease virus , Temperature , Viral Vaccines , Newcastle disease virus/immunology , Newcastle disease virus/chemistry , Pilot Projects , Newcastle Disease/prevention & control , Newcastle Disease/virology , Viral Vaccines/chemistry , Viral Vaccines/immunology , Vacuum , Animals , Chickens , Desiccation , China , Drug Stability , Viral Load
10.
Digit Health ; 10: 20552076241259047, 2024.
Article En | MEDLINE | ID: mdl-38840661

Background: Falls pose a serious health risk for the elderly, particular for those who are living alone. The utilization of WiFi-based fall detection, employing Channel State Information (CSI), emerges as a promising solution due to its non-intrusive nature and privacy preservation. Despite these advantages, the challenge lies in optimizing cross-individual performance for CSI-based methods. Objective: This study aimed to develop a resilient real-time fall detection system across individuals utilizing CSI, named TCS-Fall. This method was designed to offer continuous monitoring of activities over an extended timeframe, ensuring accurate and prompt detection of falls. Methods: Extensive CSI data on 1800 falls and 2400 daily activities was collected from 20 volunteers. The grouped coefficient of variation of CSI amplitudes were utilized as input features. These features capture signal fluctuations and are input to a convolutional neural network classifier. Cross-individual performance was extensively evaluated using various train/test participant splits. Additionally, a user-friendly CSI data collection and detection tool was developed using PyQT. To achieve real-time performance, data parsing and pre-processing computations were optimized using Numba's just-in-time compilation. Results: The proposed TCS-Fall method achieved excellent performance in cross-individual fall detection. On the test set, AUC reached 0.999, no error warning ratio score reached 0. 955 and correct warning ratio score reached of 0.975 when trained with data from only two volunteers. Performance can be further improved to 1.00 when 10 volunteers were included in training data. The optimized data parsing/pre-processing achieved over 20× speedup compared to previous method. The PyQT tool parsed and detected the fall within 100 ms. Conclusions: TCS-Fall method enables excellent real-time cross-individual fall detection utilizing WiFi CSI, promising swift alerts and timely assistance to elderly. Additionally, the optimized data processing led to a significant speedup. These results highlight the potential of our approach in enhancing real-time fall detection systems.

11.
BMJ Health Care Inform ; 31(1)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830766

BACKGROUND: Current approaches for initial coronary artery disease (CAD) assessment rely on pretest probability (PTP) based on risk factors and presentations, with limited performance. Infrared thermography (IRT), a non-contact technology that detects surface temperature, has shown potential in assessing atherosclerosis-related conditions, particularly when measured from body regions such as faces. We aim to assess the feasibility of using facial IRT temperature information with machine learning for the prediction of CAD. METHODS: Individuals referred for invasive coronary angiography or coronary CT angiography (CCTA) were enrolled. Facial IRT images captured before confirmatory CAD examinations were used to develop and validate a deep-learning IRT image model for detecting CAD. We compared the performance of the IRT image model with the guideline-recommended PTP model on the area under the curve (AUC). In addition, interpretable IRT tabular features were extracted from IRT images to further validate the predictive value of IRT information. RESULTS: A total of 460 eligible participants (mean (SD) age, 58.4 (10.4) years; 126 (27.4%) female) were included. The IRT image model demonstrated outstanding performance (AUC 0.804, 95% CI 0.785 to 0.823) compared with the PTP models (AUC 0.713, 95% CI 0.691 to 0.734). A consistent level of superior performance (AUC 0.796, 95% CI 0.782 to 0.811), achieved with comprehensive interpretable IRT features, further validated the predictive value of IRT information. Notably, even with only traditional temperature features, a satisfactory performance (AUC 0.786, 95% CI 0.769 to 0.803) was still upheld. CONCLUSION: In this prospective study, we demonstrated the feasibility of using non-contact facial IRT information for CAD prediction.


Coronary Artery Disease , Face , Thermography , Humans , Thermography/methods , Coronary Artery Disease/diagnostic imaging , Male , Female , Middle Aged , Face/diagnostic imaging , Aged , Predictive Value of Tests , Feasibility Studies , Body Temperature , Machine Learning , Coronary Angiography , Computed Tomography Angiography , Prospective Studies , Infrared Rays
12.
J Transl Med ; 22(1): 533, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831470

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a common disease in the urinary system, with a high incidence and poor prognosis in advanced stages. Although γ-interferon-inducible protein 16 (IFI16) has been reported to play a role in various tumors, its involvement in ccRCC remains poorly documented, and the molecular mechanisms are not yet clear. METHODS: We conducted bioinformatics analysis to study the expression of IFI16 in ccRCC using public databases. Additionally, we analyzed and validated clinical specimens that we collected. Subsequently, we explored the impact of IFI16 on ccRCC cell proliferation, migration, and invasion through in vitro and in vivo experiments. Furthermore, we predicted downstream molecules and pathways using transcriptome analysis and confirmed them through follow-up experimental validation. RESULTS: IFI16 was significantly upregulated in ccRCC tissue and correlated with poor patient prognosis. In vitro, IFI16 promoted ccRCC cell proliferation, migration, and invasion, while in vivo, it facilitated subcutaneous tumor growth and the formation of lung metastatic foci. Knocking down IFI16 suppressed its oncogenic function. At the molecular level, IFI16 promoted the transcription and translation of IL6, subsequently activating the PI3K/AKT signaling pathway and inducing epithelial-mesenchymal transition (EMT). CONCLUSION: IFI16 induced EMT through the IL6/PI3K/AKT axis, promoting the progression of ccRCC.


Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Interleukin-6 , Kidney Neoplasms , Nuclear Proteins , Phosphatidylinositol 3-Kinases , Phosphoproteins , Proto-Oncogene Proteins c-akt , Signal Transduction , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Cell Line, Tumor , Interleukin-6/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Animals , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Neoplasm Invasiveness , Male , Female , Prognosis
13.
Plant Cell Environ ; 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847345

Shoot branching from axillary bud (AB) directly determines plant architecture. However, the mechanism through which AB remains dormant or emerges to form branches as plants grow remains largely unknown. Here, the auxin-strigolactone (IAA-SL) pathway was first shown to regulate shoot branching in poplar, and we found that PagKNAT2/6b could modulate this pathway. PagKNAT2/6b was expressed mainly in the shoot apical meristem and AB and was induced by shoot apex damage. PagKNAT2/6b overexpressing poplar plants (PagKNAT2/6b OE) exhibited multiple branches that mimicked the branching phenotype of nontransgenic plants after decapitation treatment, while compared with nontransgenic controls, PagKNAT2/6b antisense transgenic poplar and Pagknat2/6b mutant lines exhibited a significantly decreased number of branches after shoot apex damage treatment. In addition, we found that PagKNAT2/6b directly inhibits the expression of the key IAA synthesis gene PagYUC6a, which is specifically expressed in the shoot apex. Moreover, overexpression of PagYUC6a in the PagKNAT2/6b OE background reduced the number of branches after shoot apex damage treatment. Overall, we conclude that PagKNAT2/6b responds to shoot apical injury and regulates shoot branching through the IAA-SL pathway. These findings may provide a theoretical basis and candidate genes for genetic engineering to create new forest tree species with different crown types.

14.
RSC Chem Biol ; 5(5): 447-453, 2024 May 08.
Article En | MEDLINE | ID: mdl-38725907

Pyk2 is a multi-domain non-receptor tyrosine kinase that serves dual roles as a signaling enzyme and scaffold. Pyk2 activation involves a multi-stage cascade of conformational rearrangements and protein interactions initiated by autophosphorylation of a linker site. Linker phosphorylation recruits Src kinase, and Src-mediated phosphorylation of the Pyk2 activation loop confers full activation. The regulation and accessibility of the initial Pyk2 autophosphorylation site remains unclear. We employed peptide-binding molecularly imprinted nanoparticles (MINPs) to probe the regulatory conformations controlling Pyk2 activation. MINPs differentiating local structure and phosphorylation state revealed that the Pyk2 autophosphorylation site is protected in the autoinhibited state. Activity profiling of Pyk2 variants implicated FERM and linker residues responsible for constraining the autophosphorylation site. MINPs targeting each Src docking site disrupt the higher-order kinase interactions critical for activation complex maturation. Ultimately, MINPs targeting key regulatory motifs establish a useful toolkit for probing successive activational stages in the higher-order Pyk2 signaling complex.

15.
Front Pharmacol ; 15: 1390294, 2024.
Article En | MEDLINE | ID: mdl-38720773

Introduction: Ganoderma lucidum (G. lucidum, Lingzhi) has long been listed as a premium tonic that can be used to improve restlessness, insomnia, and forgetfulness. We previously reported that a rat model of sporadic Alzheimer's disease (sAD) that was induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) showed significant learning and cognitive deficits and sleep disturbances. Treatment with a G. lucidum spore extract with the sporoderm removed (RGLS) prevented learning and memory impairments in sAD model rats. Method: The present study was conducted to further elucidate the preventive action of RGLS on sleep disturbances in sAD rats by EEG analysis, immunofluorescence staining, HPLC-MS/MS and Western blot. Results: Treatment with 720 mg/kg RGLS for 14 days significantly improved the reduction of total sleep time, rapid eye movement (REM) sleep time, and non-REM sleep time in sAD rats. The novelty recognition experiment further confirmed that RGLS prevented cognitive impairments in sAD rats. We also found that RGLS inhibited the nuclear factor-κB (NF-κB)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammatory pathway in the medial prefrontal cortex (mPFC) in sAD rats and ameliorated the lower activity of γ-aminobutyric acid (GABA)-ergic neurons in the parabrachial nucleus (PBN). Discussion: These results suggest that inhibiting the neuroinflammatory response in the mPFC may be a mechanism by which RGLS improves cognitive impairment. Additionally, improvements in PBN-GABAergic activity and the suppression of neuroinflammation in the mPFC in sAD rats might be a critical pathway to explain the preventive effects of RGLS on sleep disturbances in sAD.

16.
Front Pharmacol ; 15: 1406127, 2024.
Article En | MEDLINE | ID: mdl-38720779

Introduction: Ganoderma lucidum: (G. lucidum, Lingzhi) is a medicinal and edible homologous traditional Chinese medicine that is used to treat various diseases, including Alzheimer's disease and mood disorders. We previously reported that the sporoderm-removed G. lucidum spore extract (RGLS) prevented learning and memory impairments in a rat model of sporadic Alzheimer's disease (sAD), but the effect of RGLS on depression-like behaviors in this model and its underlying molecular mechanisms of action remain unclear. Method: The present study investigated protective effects of RGLS against intracerebroventricular streptozotocin (ICV-STZ)-induced depression in a rat model of sAD and its underlying mechanism. Effects of RGLS on depression- and anxiety-like behaviors in ICV-STZ rats were assessed in the forced swim test, sucrose preference test, novelty-suppressed feeding test, and open field test. Results: Behavioral tests demonstrated that RGLS (360 and 720 mg/kg) significantly ameliorated ICV-STZ-induced depression- and anxiety-like behaviors. Immunofluorescence, Western blot and enzyme-linked immunosorbent assay results further demonstrated that ICV-STZ rats exhibited microglia activation and neuroinflammatory response in the medial prefrontal cortex (mPFC), and RGLS treatment reversed these changes, reflected by the normalization of morphological changes in microglia and the expression of NF-κB, NLRP3, ASC, caspase-1 and proinflammatory cytokines. Golgi staining revealed that treatment with RGLS increased the density of mushroom spines in neurons. This increase was associated with elevated expression of brain-derived neurotrophic protein in the mPFC. Discussion: In a rat model of ICV-STZ-induced sAD, RGLS exhibits antidepressant-like effects, the mechanism of which may be related to suppression of the inflammatory response modulated by the NF-κB/NLRP3 pathway and enhancement of synaptic plasticity in the mPFC.

17.
Nat Commun ; 15(1): 3731, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702306

Molecular recognition of proteins is key to their biological functions and processes such as protein-protein interactions (PPIs). The large binding interface involved and an often relatively flat binding surface make the development of selective protein-binding materials extremely challenging. A general method is reported in this work to construct protein-binding polymeric nanoparticles from cross-linked surfactant micelles. Preparation involves first dynamic covalent chemistry that encodes signature surface lysines on a protein template. A double molecular imprinting procedure fixes the binding groups on the nanoparticle for these lysine groups, meanwhile creating a binding interface complementary to the protein in size, shape, and distribution of acidic groups on the surface. These water-soluble nanoparticles possess excellent specificities for target proteins and sufficient affinities to inhibit natural PPIs such as those between cytochrome c (Cytc) and cytochrome c oxidase (CcO). With the ability to enter cells through a combination of energy-dependent and -independent pathways, they intervene apoptosis by inhibiting the PPI between Cytc and the apoptotic protease activating factor-1 (APAF1). Generality of the preparation and the excellent molecular recognition of the materials have the potential to make them powerful tools to probe protein functions in vitro and in cellulo.


Cytochromes c , Electron Transport Complex IV , Nanoparticles , Polymers , Nanoparticles/chemistry , Cytochromes c/metabolism , Cytochromes c/chemistry , Humans , Polymers/chemistry , Polymers/metabolism , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/chemistry , Molecular Imprinting/methods , Protein Binding , Apoptosis , Micelles , HeLa Cells , Animals
18.
BMC Public Health ; 24(1): 1224, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702746

BACKGROUND: Accumulating evidence suggests a pivotal role of vitamin B2 in the pathogenesis and progression of prostate cancer (PCa). Vitamin B2 intake has been postulated to modulate the screening rate for PCa by altering the concentration of prostate-specific antigen(PSA). However, the relationship between vitamin B2 and PSA remains indeterminate. Hence, we conducted a comprehensive evaluation of the association between vitamin B2 intake and PSA levels, utilizing data from the National Health and Nutrition Examination Survey (NHANES) database. METHODS: From a pool of 20,371 participants in the NHANES survey conducted between 2003 and 2010, a cohort of 2,323 participants was selected for the present study. The male participants were classified into four distinct groups based on their levels of vitamin B2 intake. We employed a multiple linear regression model and a non-parametric regression method to investigate the relationship between vitamin B2 and PSA levels. RESULTS: The study cohort comprised of 2,323 participants with a mean age of 54.95 years (± 11.73). Our findings revealed a statistically significant inverse correlation between vitamin B2 intake (mg) and PSA levels, with a reduction of 0.13 ng/ml PSA concentration for every unit increase in vitamin B2 intake. Furthermore, we employed a fully adjusted model to construct a smooth curve to explore the possible linear relationship between vitamin B2 intake and PSA concentration. CONCLUSIONS: Our study in American men has unveiled a notable inverse association between vitamin B2 intake and PSA levels, potentially posing a challenge for the identification of asymptomatic prostate cancer. Specifically, our findings suggest that individuals with higher vitamin B2 intake may be at a greater risk of being diagnosed with advanced prostate cancer in the future, possibly indicating a detection bias. These results may offer a novel explanation for the observed positive correlation between vitamin B2 intake and prostate cancer.


Nutrition Surveys , Prostate-Specific Antigen , Prostatic Neoplasms , Riboflavin , Humans , Male , Prostate-Specific Antigen/blood , Middle Aged , United States/epidemiology , Aged , Prostatic Neoplasms/blood , Prostatic Neoplasms/epidemiology , Riboflavin/administration & dosage , Adult
19.
Burns Trauma ; 12: tkae006, 2024.
Article En | MEDLINE | ID: mdl-38716051

Septic shock is a severe form of sepsis characterized by high global mortality rates and significant heritability. Clinicians have long been perplexed by the differential expression of genes, which poses challenges for early diagnosis and prompt treatment of septic shock. Genetic polymorphisms play crucial roles in determining susceptibility to, mortality from, and the prognosis of septic shock. Research indicates that pathogenic genes are known to cause septic shock through specific alleles, and protective genes have been shown to confer beneficial effects on affected individuals. Despite the existence of many biomarkers linked to septic shock, their clinical use remains limited. Therefore, further investigation is needed to identify specific biomarkers that can facilitate early prevention, diagnosis and risk stratification. Septic shock is closely associated with multiple signaling pathways, including the toll-like receptor 2/toll-like receptor 4, tumor necrosis factor-α, phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, nuclear factor κB, Janus kinase/signal transducer and activator of transcription, mammalian target of rapamycin, NOD-like receptor thermal protein domain-associated protein 3 and hypoxia-induced-factor-1 pathways. Understanding the regulation of these signaling pathways may lead to the identification of therapeutic targets for the development of novel drugs to treat sepsis or septic shock. In conclusion, identifying differential gene expression during the development of septic shock allows physicians to stratify patients according to risk at an early stage. Furthermore, auxiliary examinations can assist physicians in identifying therapeutic targets within relevant signaling pathways, facilitating early diagnosis and treatment, reducing mortality and improving the prognosis of septic shock patients. Although there has been significant progress in studying the genetic polymorphisms, specific biomarkers and signaling pathways involved in septic shock, the journey toward their clinical application and widespread implementation still lies ahead.

20.
J Med Internet Res ; 26: e54095, 2024 May 27.
Article En | MEDLINE | ID: mdl-38801765

BACKGROUND: In recent epochs, the field of critical medicine has experienced significant advancements due to the integration of artificial intelligence (AI). Specifically, AI robots have evolved from theoretical concepts to being actively implemented in clinical trials and applications. The intensive care unit (ICU), known for its reliance on a vast amount of medical information, presents a promising avenue for the deployment of robotic AI, anticipated to bring substantial improvements to patient care. OBJECTIVE: This review aims to comprehensively summarize the current state of AI robots in the field of critical care by searching for previous studies, developments, and applications of AI robots related to ICU wards. In addition, it seeks to address the ethical challenges arising from their use, including concerns related to safety, patient privacy, responsibility delineation, and cost-benefit analysis. METHODS: Following the scoping review framework proposed by Arksey and O'Malley and the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we conducted a scoping review to delineate the breadth of research in this field of AI robots in ICU and reported the findings. The literature search was carried out on May 1, 2023, across 3 databases: PubMed, Embase, and the IEEE Xplore Digital Library. Eligible publications were initially screened based on their titles and abstracts. Publications that passed the preliminary screening underwent a comprehensive review. Various research characteristics were extracted, summarized, and analyzed from the final publications. RESULTS: Of the 5908 publications screened, 77 (1.3%) underwent a full review. These studies collectively spanned 21 ICU robotics projects, encompassing their system development and testing, clinical trials, and approval processes. Upon an expert-reviewed classification framework, these were categorized into 5 main types: therapeutic assistance robots, nursing assistance robots, rehabilitation assistance robots, telepresence robots, and logistics and disinfection robots. Most of these are already widely deployed and commercialized in ICUs, although a select few remain under testing. All robotic systems and tools are engineered to deliver more personalized, convenient, and intelligent medical services to patients in the ICU, concurrently aiming to reduce the substantial workload on ICU medical staff and promote therapeutic and care procedures. This review further explored the prevailing challenges, particularly focusing on ethical and safety concerns, proposing viable solutions or methodologies, and illustrating the prospective capabilities and potential of AI-driven robotic technologies in the ICU environment. Ultimately, we foresee a pivotal role for robots in a future scenario of a fully automated continuum from admission to discharge within the ICU. CONCLUSIONS: This review highlights the potential of AI robots to transform ICU care by improving patient treatment, support, and rehabilitation processes. However, it also recognizes the ethical complexities and operational challenges that come with their implementation, offering possible solutions for future development and optimization.


Artificial Intelligence , Critical Care , Robotics , Robotics/methods , Humans , Critical Care/methods , Intensive Care Units
...