Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 491
Filter
1.
Small ; : e2405789, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319480

ABSTRACT

Zwitterionic hydrogels exhibit great potential in biomedical applications due to their antifouling properties and biocompatibility. However, the single-network structure of pure zwitterionic hydrogels leads to a low toughness and strength, limiting their application in biomedical fields. In this work, a high entanglement sulfobetaine methacrylate-dopamine hydrogel (SBMA-DA-PE) with low cross-linker content and high monomer concentration is prepared by using a dopamine oxidative radical polymerization method. Compared to a regular zwitterionic hydrogel, the SBMA-DA-PE hydrogel exhibits a 5-fold increase in tensile fracture stress and a 10-fold increase in compressive fracture stress. The SBMA-DA-PE hydrogel possesses excellent mechanical properties (the maximum compressive stress ≥4.85 MPa, the maximum compressive strain ≥90%). Besides, the non-covalent interactions between catechol or ortho-quinones within the SBMA-DA-PE hydrogel, combined with strong intermolecular electrostatic interactions, endow the SBMA-DA-PE hydrogel with great self-healing capabilities and fatigue resistance. The SBMA-DA-PE hydrogel demonstrates low swellability and possesses good antifouling properties. Furthermore, the good printability and conductivity of the tough SBMA-DA-PE hydrogel endows it with new possibilities for developing biological 3D scaffolds and electronic devices. Overall, this work provides new insights into the preparation of zwitterionic hydrogels with high mechanical strength and multi-functionality for biomedical applications.

2.
Nat Commun ; 15(1): 8148, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289379

ABSTRACT

In computational molecular and materials science, determining equilibrium structures is the crucial first step for accurate subsequent property calculations. However, the recent discovery of millions of new crystals and super large twisted structures has challenged traditional computational methods, both ab initio and machine-learning-based, due to their computationally intensive iterative processes. To address these scalability issues, here we introduce DeepRelax, a deep generative model capable of performing geometric crystal structure relaxation rapidly and without iterations. DeepRelax learns the equilibrium structural distribution, enabling it to predict relaxed structures directly from their unrelaxed ones. The ability to perform structural relaxation at the millisecond level per structure, combined with the scalability of parallel processing, makes DeepRelax particularly useful for large-scale virtual screening. We demonstrate DeepRelax's reliability and robustness by applying it to five diverse databases, including oxides, Materials Project, two-dimensional materials, van der Waals crystals, and crystals with point defects. DeepRelax consistently shows high accuracy and efficiency, validated by density functional theory calculations. Finally, we enhance its trustworthiness by integrating uncertainty quantification. This work significantly accelerates computational workflows, offering a robust and trustworthy machine-learning method for material discovery and advancing the application of AI for science.

3.
Commun Psychol ; 2(1): 58, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39242848

ABSTRACT

When we recall a past event, we reconstruct the event based on a combination of episodic details and semantic knowledge (e.g., prototypes). Though prototypes can impair the veracity of recall, it remains unclear whether we are metacognitively aware of the distortions they introduce. To address this, we conducted six experiments in which participants learned object-colour/object-location pairs and subsequently recalled the colour/location when cued with the object. Leveraging unsupervised machine learning algorithms, we extracted participant-specific prototypes and embedded responses in two-dimensional space to quantify prototype-based distortions in individual memory traces. Our findings reveal robust and conceptually replicable evidence to suggest that prototype-based distortion is accompanied by a reduction in self-reported confidence - an implicit measure of metacognitive awareness. Critically, we find evidence to suggest that it is prototype-based distortion of a memory trace that undermines confidence, rather than a lack of confidence biasing reconstruction towards the use of prototypes. Collectively, these findings suggest that we possess metacognitive awareness of distortions embedded in our memories.

4.
Acc Chem Res ; 57(17): 2572-2581, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39159428

ABSTRACT

ConspectusElectrides make up a fascinating group of materials with unique physical and chemical properties. In these materials, excess electrons do not behave like normal electrons in metals or form any chemical bonds with atoms. Instead, they "float" freely in the gaps within the material's structure, acting like negatively charged particles called anions (see the graph). Recently, there has been a surge of interest in van der Waals (vdW) electrides or electrenes in two dimensions. A typical example is layered lanthanum bromide (LaBr2), which can be taken as [La3+(Br1-)2]+•(e-). Each excess free electron is trapped within a hexagonal pore, forming dense dots of electron density. These anionic electrons are loosely bound, giving vdW electrides some unique properties such as ferromagnetism, superconductivity, topological features, and Dirac plasmons. The high density of the free electron makes electrides very promising for applications in thermionic emission, organic light-emitting diodes, and high-performance catalysts.In this Account, we first discuss the discovery of numerous vdW electrides through high-throughput computational screening of over 67,000 known inorganic crystals in Materials Project. A dozen of them have been newly discovered and have not been reported before. Importantly, they possess completely different structural prototypes and properties of anionic electrons compared to widely studied electrides such as Ca2N. Finding these new vdW electrides expands the variety of electrides that can be made in the experiment and opens up new possibilities for studying their unique properties and applications.Then, based on the screened vdW electrides, we delve into their various emerging properties. For example, we developed a new magnetic mechanism specific to atomic-orbital-free ferromagnetism in electrides. We uncover the dual localized and extended nature of the anionic electrons in such electrides and demonstrate the formation of the local moment by the localized feature and the ferromagnetic interaction by the direct overlapping of their extended states. We further show the effective tuning of the magnetic properties of vdW electrides by engineering their structural, electronic, and compositional properties. Besides, we show that the complex interaction between the multiple quantum orderings in vdW electrides leads to many interesting properties including valley polarization, charge density waves, a topological property, a superconducting property, and a thermoelectrical property.Moreover, we discuss strategies to leverage the unique intrinsic properties of vdW electrides for practical applications. We show that these properties make vdW electrides potential candidates for advanced applications such as spin-orbit torque memory devices, valleytronic devices, K-ion batteries, and thermoelectricity. Finally, we discuss the current challenges and future perspectives for research using these emerging materials.

5.
Heliyon ; 10(13): e33619, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39091940

ABSTRACT

Objectives: Effective exclusion of low-risk symptomatic outpatient cases for colorectal cancer (CRC) remains diagnostic challenges. We aimed to develop a self-reported symptom-based decision-making model for application in outpatient scenarios. Methods: In total, 8233 symptomatic cases at risk for CRC, as judged by outpatient physicians, were involved in this study at seven medical centers. A decision-making model was constructed using 60 self-reported symptom parameters collected from the questionnaire. Further internal and external validation cohorts were built to evaluate the discriminatory power of the CRC model. The discriminatory power of the CRC model was assessed by the C-index and calibration plot. After that, the clinical utility and user experience of the CRC model were evaluated. Results: Nine symptom parameters were identified as valuable predictors used for modeling. Internal and external validation cohorts verified the adequate discriminatory power of the CRC model. In the clinical application step, all 17 physicians found the model easy to grasp, 99.9 % of the patients were satisfied with the survey form. Application of this model detected all CRC cases. The total consistency ratio of outpatient cases undergoing colonoscopy was 81.4 %. None of the low-risk patients defined by the CRC model had been diagnosed with CRC. Conclusion: This multicenter study developed and validated a simple and user-friendly decision-making model covering self-reported information. The CRC model has been demonstrated to perform well in terms of rapid outpatient decision-making scenarios and clinical utility, particularly because it can better rule out low-risk outpatient cases.

6.
Front Public Health ; 12: 1436503, 2024.
Article in English | MEDLINE | ID: mdl-39157525

ABSTRACT

Background: The COVID-19 pandemic underscored the critical importance of biosafety in microbiology laboratories worldwide. In response, China has ramped up its efforts to enhance biosafety measures within its Centers for Disease Control and Prevention (CDC) laboratories. This study provides the first comprehensive assessment of biosafety practices across provincial, city, and county levels of CDC microbiology laboratories in China. Methods: We conducted a nationwide cross-sectional survey from 2021 to 2023, targeting staff from microbiology laboratories within CDCs at all administrative levels in China. Stratified sampling was employed to select respondents, ensuring a representative mix across different CDC hierarchies, job titles, and academic qualifications. The survey encompassed questions on biosafety training, the presence of BSL-2 and BSL-3 laboratories, adherence to general biosafety guidelines, and management practices regarding specimens, reagents, and consumables. Statistical analysis was performed to identify significant differences in biosafety practices among different CDC levels. Results: A total of 990 valid responses were received, highlighting a nearly universal presence (98.69%) of BSL-2 laboratories and a significant yet varied presence of BSL-3 laboratories across the CDC network. The survey revealed high levels of biosafety training (98.69%) and adherence to biosafety protocols. However, challenges remain in the consistent application of certain safety practices, especially at lower administrative levels. Notable differences in the management of specimens, reagents, and consumables point to areas for improvement in ensuring biosecurity. Conclusion: Our findings indicate a robust foundation of biosafety practices within CDC microbiology laboratories in China, reflecting significant advancements in the wake of the Biosecurity Law's implementation. Nevertheless, the variability in adherence to specific protocols underscores the need for ongoing training, resources allocation, and policy refinement to enhance biosafety standards uniformly across all levels. This study's insights are crucial for guiding future improvements in laboratory biosafety, not just in China but potentially in other countries enhancing their public health infrastructures.


Subject(s)
Containment of Biohazards , Laboratories , China , Humans , Cross-Sectional Studies , Laboratories/standards , Containment of Biohazards/standards , Surveys and Questionnaires , COVID-19/prevention & control
7.
Plant Sci ; 347: 112176, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38971466

ABSTRACT

RNA silencing, a conserved gene regulatory mechanism, is critical for host resistance to viruses. Liquid-liquid phase separation (LLPS) is an important mechanism in regulating various biological processes. Emerging studies suggest RNA helicases play important roles in microRNA (miRNA) production through LLPS. In this study, we investigated the functional role of RNA helicase 20 (RH20), a DDX5 homolog in Arabidopsis thaliana, in RNA silencing and plant resistance to viruses. Our findings reveal that RH20 localizes in both the cytoplasm and nucleus, with puncta formation in the cytoplasm exhibiting liquid-liquid phase separation behavior. We demonstrate that RH20 plays positive roles in plant immunity against viruses. Further study showed that RH20 interacts with Argonaute 2 (AGO2), a key component of the RNA silencing pathway. Moreover, RH20 promotes the accumulation of both endogenous and exogenous small RNAs (sRNAs). Overall, our study identifies RH20 as a novel phase separation protein that interacting with AGO2, influencing sRNAs accumulation, and enhancing plant resistance to viruses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , Disease Resistance , Plant Diseases , Arabidopsis/genetics , Arabidopsis/virology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/virology , Disease Resistance/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Plant Immunity/genetics , RNA Interference , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism
8.
Talanta ; 279: 126594, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39053359

ABSTRACT

Ginseng, a highly esteemed herbal medicine, has been utilized over 5000 years, predominantly in Far Eastern countries. Ginseng is categorized into garden ginseng (GG) and ginseng under forest (FG). However, in contrast to FG, excessive intake of GG may lead to potential adverse effects due to disruption of epithelial cell integrity, and the specific population groups that may be at higher risk. In this work, untargeted metabolomics were used to determine the heterogeneity between GG and FG, the data indicates that the content of Ethyl caffeate, Homoorientin, Citric acid and Quinic acid in GG were higher than in FG. Mass spectrometry imaging showed that ethyl caffeate and Homoorientin were concentrated on the brownish yellow exocarp of the primary root. Our experiments demonstrated that excessive exposure to ethyl caffeate and Homoorientin exacerbated the inflammatory response of HUVECs and reduced the expression of cell junctions. This suggest that the compounds causing adverse effects from excessive intake of GG are mainly concentrated in the yellow exocarp of the primary root of GG. These results suggest that untargeted metabolomics coupled with MALDI-MSI can visualize the spatial distribution of endogenous differential molecules of the same herb in different growth environments or developmental stages.


Subject(s)
Inflammation , Panax , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Panax/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Humans , Inflammation/chemically induced , Inflammation/metabolism , Human Umbilical Vein Endothelial Cells , Forests , Plant Roots/chemistry , Plant Roots/metabolism , Metabolomics/methods
10.
Discov Oncol ; 15(1): 312, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060648

ABSTRACT

Malignant tumor, one of the most threatening diseases to human health, has been comprehensively treated with surgery, radiotherapy, chemotherapy and targeted therapy, but the prognosis has not always been ideal. In the past decade, immunotherapy has shown increased efficacy in tumor treatment; however, for immunotherapy to achieve its fullest potential, obstacles are to be conquered, among which tumor microenvironment (TME) has been widely investigated. In remodeling the tumor immune microenvironment to inhibit tumor progression, macrophages, as the most abundant innate immune population, play an irreplaceable role in the immune response. Therefore, how to remodel TME and alter the recruitment and polarization status of tumor-associated macrophages (TAM) has been of wide interest. In this context, nanoparticles, photodynamic therapy and other therapeutic approaches capable of affecting macrophage polarization have emerged. In this paper, we categorize and organize the existing means and methods for reprogramming TAM to provide ideas for clinical application of novel tumor-related therapies.

11.
Biomedicines ; 12(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39061954

ABSTRACT

Although travelers are frequently accompanied by abdominal discomfort and even diarrhea, not every trip can cause this issue. Many studies have reported that intestinal microbes play an important role in it. However, little is known about the reason for the dynamics of these intestinal microbes. Here, we delved into the effects of short-term travel on the gut microbiota of 12 healthy individuals. A total of 72 fecal samples collected before and after one-week travel, alongside non-traveling controls, underwent amplicon sequencing and a series of bioinformatic analyses. We found that travel significantly increased intra-individual gut microbiota fluctuations without diarrhea symptoms. In addition, the initial composition of the gut microbiota before travel emerged as a crucial factor in understanding these fluctuations. Travelers with stable microbiota exhibited an enrichment of specific probiotic bacteria (Agathobaculum, Faecalibacterium, Bifidobacterium, Roseburia, Lactobacillus) before travel. Another batch of data validated their predictive role in distinguishing travelers with and without the gut microbial disorder. This work provided valuable insights into understanding the relationship between gut microbiota and travel. It offered a microbiota-centric perspective and a potential avenue for interventions to preserve gut health during travel.

12.
Eur J Pharm Sci ; 200: 106837, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38960206

ABSTRACT

Intractable lymphatic malformations (iLM) pose a significant threat to affected children, demonstrating limited responses to conventional treatments. Sirolimus, effectively inhibiting endothelial cell proliferation in lymphatic vessels, plays a crucial role in iLM treatment. However, the drug's narrow therapeutic window and substantial interindividual variability necessitate customized dosing strategies. This study aims to establish a Population Pharmacokinetic Model (PopPK model) for sirolimus in pediatric iLM patients, identifying quantitative relationships between covariates and sirolimus clearance and volume of distribution. Initial dosages are recommended based on a target concentration range of 5-15 ng/mL. Retrospective data from our institution, encompassing 53 pediatric patients with 275 blood concentration results over the past five years (average age: 4.64 ± 4.19 years), constituted the foundation of this analysis. The final model, adopting a first-order absorption and elimination single-compartment model, retained age as the sole covariate. Results indicated a robust correlation between apparent clearance (CL/F) at 5.56 L/h, apparent volume of distribution (V/F) at 292.57 L, and age. Monte Carlo simulation guided initial dosages for patients aged 0-18 years within the target concentration range. This study presents the first PopPK model using a large Therapeutic Drug Monitoring (TDM) database to describe personalized sirolimus dosing for pediatric iLM patients, contributing to pharmacokinetic guidance and potentially improving long-term clinical outcomes.


Subject(s)
Lymphatic Abnormalities , Models, Biological , Sirolimus , Humans , Sirolimus/pharmacokinetics , Sirolimus/administration & dosage , Sirolimus/blood , Child , Child, Preschool , Female , Male , Infant , Adolescent , Lymphatic Abnormalities/drug therapy , Retrospective Studies , Monte Carlo Method , Infant, Newborn , Precision Medicine/methods , Immunosuppressive Agents/pharmacokinetics , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/blood
13.
PLoS One ; 19(7): e0306867, 2024.
Article in English | MEDLINE | ID: mdl-38980890

ABSTRACT

With the development of earthquake disaster reduction efforts in China, the content of earthquake disaster reduction policies has become increasingly enriched and improved. Particularly, multiple provincial governments have proposed earthquake disaster reduction planning policies. It is important to explore whether these policies can affect disaster mitigation. Therefore, this paper summarizes the earthquake disaster reduction plans and factors influencing seismic resilience. Panel data from 24 provinces between 2012 and 2021 were collected, and a difference-in-differences approach was used to construct an econometric model to evaluate the policy effects and analyze the enhancement of seismic resilience. The results show that the implementation of earthquake disaster reduction policies has a positive impact on earthquake monitoring, evacuation, and emergency relief capabilities, and the estimated policy effects are statistically significant. Moreover, a series of tests were conducted. The conclusions are as follows: (1) Earthquake disaster reduction policies have a positive impact on the improvement of seismic resilience in provinces. (2) Provinces with a higher number of earthquakes experience more significant effects from earthquake disaster reduction policies. (3) Provinces with higher seismic peak ground acceleration values exhibit more pronounced improvements in seismic resilience.


Subject(s)
Disaster Planning , Earthquakes , China , Humans , Disaster Planning/methods , Disasters
14.
Int J Oncol ; 65(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-39054958

ABSTRACT

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that a possible error had been identified in the selection of images in Figs. 1 and/or 7. After having consulted their original data, the authors realized that an erroneous image appeared on p. 593, in Fig. 7F [the 'Hep­G2 / IL­8 (5 ng/ml)' data panel], where part of this figure panel was overlapping with an image on p. 589 in Fig. 1C (the 'Hep­G2 Co­cultured' data panel). After a thorough review and verification of the data by all the authors, they have confirmed that the original data presented in the paper were accurate, and the error was solely due to the selection of an incorrect image during figure arrangement. The authors confirm that this mistake in image selection did not affect the overall conclusions reported in the article. A corrected version of Fig. 7, including the correct data for the 'Hep­G2 / IL­8 (5 ng/ml)' panel in Fig. 7F, is shown on the next page. The authors are grateful to the Editor of International Journal of Oncology for granting them the opportunity to publish this Corrigendum. All the authors agree to the publication of this Corrigendum, and apologize to the readership for any inconvenience caused. [International Journal of Oncology 46: 587­596, 2015; DOI: 10.3892/ijo.2014.2761].

15.
Langmuir ; 40(25): 13001-13009, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860838

ABSTRACT

Metal-organic frameworks (MOFs) based on tin (Sn) have shown great potential as materials for lithium storage, thanks to their ability to alleviate volume expansion due to the homogeneous distribution of Sn in a porous matrix framework. However, the weak mechanical strength of the porous Sn-MOF structure has been a major challenge, leading to pulverization during the discharging/charging process. To overcome this issue, we have developed a feasible strategy to strengthen the Sn-MOF mechanical properties by incorporating SiO2/GeO2 nanoparticles during the synthesis process. The resulting composites of Sn-Si and Sn-Ge exhibited high energy density and long-term cycle stability, thanks to their synergistic effect in alloying and conversion reactions. Our density functional theory (DFT) calculations have revealed that the rigid SiO2/GeO2 nanoparticles enhance the Sn-MOF mechanical properties, including Young's and shear moduli, which contribute to the long-term cycle stability of these composites.

16.
Foods ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928787

ABSTRACT

In the realm of analysis, the lateral flow immunoassay (LFIA) is frequently utilized due to its capability to be fast and immediate. However, the biggest challenge of the LFIA is its low detection sensitivity and tolerance to matrix interference, making it impossible to enable accurate, qualitative analyses. In this study, we developed a new LFIA with higher affinity and sensitivity, based on a nanobody (G8-DIG) and CuS nanoflowers-Au (CuS NFs-Au), for the detection of aflatoxin B1 (AFB1) in maize. We synthesized the immunoprobe G8-DIG@CuS NFs-Au, stimulated the in situ development of Au nanoparticles (Au NPs) on Cu NFs by electrical displacement, and obtained Cu NFs-Au for fixing the G8-DIG. G8-DIG@CuS NFs-Au probe-based LFIAs may, in ideal circumstances, use a strip chromatography reader to accomplish sensitive quantitative detection and qualitative visualization. AFB1 has a detection range of 2.82-89.56 µg/L and a detection limit of 0.87 µg/L. When compared with an LFIA based on CuS NFs, this sensitivity is increased by 2.76 times. The practical application of this method in corn flour demonstrated a recovery rate of 81.7% to 117%. Therefore, CuS NFs-Au show great potential for detecting analytes.

17.
J Clin Oncol ; : JCO2302044, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900984

ABSTRACT

PURPOSE: SHR-A1811 is an antibody-drug conjugate composed of an anti-human epidermal growth factor receptor 2 (HER2) antibody trastuzumab, a cleavable linker, and a topoisomerase I inhibitor payload. We assessed the safety, tolerability, antitumor activity, and pharmacokinetics of SHR-A1811 in heavily pretreated HER2-expressing or mutated advanced solid tumors. METHODS: This global, multi-center, first-in-human, phase I trial was conducted at 33 centers. Patients who had HER2-expressing or mutated unresectable, advanced, or metastatic solid tumors and were refractory or intolerant to standard therapies were enrolled. SHR-A1811 was administered intravenously at doses ranging from 1.0 to 8.0 mg/kg once every 3 weeks. The primary end points were dose-limiting toxicity, safety, and the recommended phase II dose. RESULTS: From September 7, 2020, to February 27, 2023, 307 patients who had undergone a median of three (IQR, 2-5) previous treatment regimens in the metastatic setting received SHR-A1811 treatment. As of data cutoff (February 28, 2023), one patient from the 6.4 mg/kg group experienced dose-limiting toxicities (pancytopenia and colitis). The most common grade 3 or higher adverse events (AEs) included decreased neutrophil count (119 [38.8%]) and decreased WBC count (70 [22.8%]). Interstitial lung disease occurred in only eight (2.6%) patients. Serious AEs and deaths occurred in 70 (22.8%) and 13 (4.2%) patients, respectively. SHR-A1811 led to objective responses in 59.9% (184/307) of all patients, 76.3% (90/118) of HER2-positive breast cancer, 60.4% (55/91) of HER2 low-expressing breast cancer, and 45.9% (39/85 with evaluable tumor responses) of the 98 nonbreast tumors. CONCLUSION: SHR-A1811 exhibited acceptable tolerability, promising antitumor activity, and a favorable pharmacokinetic profile in heavily pretreated advanced solid tumors. The recommended phase II dose of 4.8 or 6.4 mg/kg was selected for various tumor types.

18.
Acta Pharmacol Sin ; 45(7): 1425-1437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839936

ABSTRACT

Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.


Subject(s)
Fibrosis , Mice, Inbred C57BL , Myocardial Infarction , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mice , Male , YAP-Signaling Proteins/metabolism , Fibroblasts/metabolism , Cytidine/analogs & derivatives , Cytidine/pharmacology , Mice, Knockout , Membrane Proteins/metabolism , Membrane Proteins/genetics , N-Terminal Acetyltransferase E/metabolism , Hippo Signaling Pathway , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cells, Cultured , Signal Transduction , N-Terminal Acetyltransferases/metabolism , Myocardium/pathology , Myocardium/metabolism , Adaptor Proteins, Signal Transducing/metabolism
19.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928092

ABSTRACT

Lung adenocarcinoma (LUAD) is the most widespread cancer in the world, and its development is associated with complex biological mechanisms that are poorly understood. Here, we revealed a marked upregulation in the mRNA level of C1orf131 in LUAD samples compared to non-tumor tissue samples in The Cancer Genome Atlas (TCGA). Depletion of C1orf131 suppressed cell proliferation and growth, whereas it stimulated apoptosis in LUAD cells. Mechanistic investigations revealed that C1orf131 knockdown induced cell cycle dysregulation via the AKT and p53/p21 signalling pathways. Additionally, C1orf131 knockdown blocked cell migration through the modulation of epithelial-mesenchymal transition (EMT) in lung adenocarcinoma. Notably, we identified the C1orf131 protein nucleolar localization sequence, which included amino acid residues 137-142 (KKRKLT) and 240-245 (KKKRKG). Collectively, C1orf131 has potential as a novel therapeutic marker for patients in the future, as it plays a vital role in the progression of lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Proliferation/genetics , Cell Movement/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Apoptosis/genetics , Disease Progression , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , A549 Cells
20.
Immunology ; 173(1): 172-184, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38840413

ABSTRACT

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer, and the early detection and diagnosis of this disease are crucial in reducing mortality rates. The timely diagnosis of LUAD is essential for controlling tumour development and enabling early surgical treatment. GPR56 is a vital G protein-coupled receptor and its role in T lymphocytes has received considerable attention. However, its function in B cells remains unclear. This study aimed to investigate the significance of GPR56 in LUAD. We found that GPR56 exhibited a significant increase in circulating plasmablasts and a decrease in new memory B cells. GPR56 expression in B cells was significantly reduced after LPS stimulation and the proportion of HLA-DR+ and CD40+ proportions were also decreased in GPR56+ B cells after stimulation. Additionally, GPR56 exhibited significant down-regulation in circulating B cell subsets of early-stage LUAD patients, and there were significant correlations between GPR56+ B cell subsets and tumour markers. In conclusion, GPR56 could reflect the hypoactivation state of B cells and the decreased proportion of GPR56+ B cell subset in LUAD patients can signify the active humoral immunity in vivo. The expression of GPR56 in B cells could potentially hold value in the early diagnosis of LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Middle Aged , Female , Aged , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Lymphocyte Activation , Down-Regulation , Neoplasm Staging , Immunity, Humoral , Biomarkers, Tumor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL