Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 167
1.
Chemosphere ; : 142395, 2024 May 24.
Article En | MEDLINE | ID: mdl-38797207

Hexavalent chromium (Cr(VI)) contamination of groundwater has traditionally been an environmental issue of great concern due to its bioaccumulative and highly toxic nature. This paper presents a review and bibliometric analysis of the literature on the interest area "Cr(VI) in groundwater" published in the Web of Science Core Collection from 1999 to 2022. First, information on 203 actual Cr(VI)-contaminated groundwater sites around the world was summarized, and the basic characteristics of the sources and concentrations of contamination were derived. 68.95% of the sites were due to human causes and 56.43% of these sites had Cr(VI) concentrations in the range of 0 - 10 mg/L. At groundwater sites with high Cr(VI) contamination due to natural causes, 75.00% of the sites had Cr(VI) concentrations less than 0.2 mg/L. A total of 936 papers on "Cr(VI) in groundwater" were retrieved for bibliometric analysis: interest in research on Cr(VI) in groundwater has grown rapidly in recent years; 59.4% of the papers were published in the field of environmental sciences. A systematic review of the progress of studies on the Cr(VI) removal/remediation based on reduction, adsorption and biological processes is presented. Out of 666 papers on Cr(VI) removal/remediation, 512, 274, and 75 papers dealt with the topics of reduction, adsorption, and bioremediation, respectively. In addition, several studies have demonstrated the potential applicability of natural attenuation in the remediation of Cr(VI)-contaminated groundwater. This paper will help researchers to understand and investigate methodological strategies to remove Cr(VI) from groundwater in a more targeted and effective manner.

2.
Am J Nucl Med Mol Imaging ; 14(2): 157-160, 2024.
Article En | MEDLINE | ID: mdl-38737643

Adenoid cystic carcinoma (ACC) is a rare salivary gland cancer. Still, its growth and invasion progress is slow, and its hematogenous metastasis is ACC's most common distant metastasis. Because of the broad expression and low background uptake of fibroblast activation protein (FAP) in tumor stroma, FAPI is considered another potential tracer of ACC in addition to FDG. In this case, we report a patient who was diagnosed with metastatic ACC liver cancer by fine needle aspiration biopsy (FNAB) and underwent PET/CT examination of [18F]FDG and [18F]FAPI-42 to find the primary cancer lesion. Finally, the primary cancer lesion was found in the left submandibular gland and was pathologically confirmed as ACC after resection.

3.
Int J Biol Macromol ; 268(Pt 2): 131516, 2024 May.
Article En | MEDLINE | ID: mdl-38621556

Simvastatin (SV) is a statin drug that can effectively control cholesterol and prevent cardiovascular diseases. However, SV is water-insoluble, and poor oral bioavailability (<5 %). Solid self-emulsifying carrier system is more stable than liquid emulsions, facilitating to improve the solubility and bioavailability of poorly soluble drugs. In the present study, a solid self-emulsifying carrier stabilized by casein (Cas-SSE) was successfully used to load SV to improve its solubility in water, by formulation selection and emulsification process optimization. Compared with oral tablets, the release of SV from Cas-SSE was significantly enhanced in artificial intestinal fluid. Furthermore, everted gut sac experiments indicated some water-soluble dispersing agents such as hydroxyethyl starch (HES), were not conducive to drug absorption. Pharmacokinetic studies suggested Cas-SSE without dispersing agent has much higher relative bioavailability (184.1 % of SV and 284.5 % of simvastatin acid) than SV tablet. The present work suggests Cas-SSE is a promising drug delivery platform with good biocompatibility for improving oral bioavailability of poorly water-soluble drugs.


Biological Availability , Caseins , Drug Carriers , Emulsions , Simvastatin , Solubility , Simvastatin/pharmacokinetics , Simvastatin/chemistry , Simvastatin/administration & dosage , Caseins/chemistry , Caseins/pharmacokinetics , Administration, Oral , Animals , Drug Carriers/chemistry , Emulsions/chemistry , Rats , Male , Drug Liberation
4.
J Hazard Mater ; 470: 134222, 2024 May 15.
Article En | MEDLINE | ID: mdl-38583199

Organic-contaminated shallow aquifers have become a global concern of groundwater contamination, yet little is known about the coupled effects of hydrodynamic-thermal-chemical-microbial (HTCM) multi-field on organic contaminant transport and transformation over a short time in aquifers. Therefore, this study proposed a quick and efficient field experimental method for the transport-transformation of contaminants under multi-field coupling to explore the relationship between organic contaminants (total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbons (PAHs), benzene-toluene-ethylbenzene-xylene (BTEX) and phthalates acid esters (PAEs)) and multi-field factors. The results showed that hydrodynamics (affecting pH, p < 0.001) and temperature (affecting dissolved oxygen, pH and HCO3-, p < 0.05) mainly affected the organic contaminants indirectly by influencing the hydrochemistry to regulate redox conditions in the aquifer. The main degradation reactions of the petroleum hydrocarbons (TPH, PAHs and BTEX) and PAEs in the aquifer were sulfate reduction and nitrate reduction, respectively. Furthermore, the organic contamination was directly influenced by microbial communities, whose spatial patterns were shaped by the combined effects of the spatial pattern of hydrochemistry (induced by the organic contamination pressure) and other multi-field factors. Overall, our findings imply that the spatiotemporal patterns of organic contaminants are synergistically regulated by HTCM, with distinct mechanisms for petroleum hydrocarbons and PAEs.

5.
Acta Pharm Sin B ; 14(4): 1711-1725, 2024 Apr.
Article En | MEDLINE | ID: mdl-38572109

Drug repurposing offers an efficient approach to therapeutic development. In this study, our bioinformatic analysis first predicted an association between obesity and lansoprazole (LPZ), a commonly prescribed drug for gastrointestinal ulcers. We went on to show that LPZ treatment increased energy expenditure and alleviated the high-fat diet-induced obesity, insulin resistance, and hepatic steatosis in mice. Treatment with LPZ elicited thermogenic gene expression and mitochondrial respiration in primary adipocytes, and induced cold tolerance in cold-exposed mice, suggesting the activity of LPZ in promoting adipose thermogenesis and energy metabolism. Mechanistically, LPZ is an efficient inhibitor of adipose phosphocholine phosphatase 1 (PHOSPHO1) and produces metabolic benefits in a PHOSPHO1-dependent manner. Our results suggested that LPZ may stimulate adipose thermogenesis by inhibiting the conversion of 2-arachidonoylglycerol-lysophosphatidic acid (2-AG-LPA) to 2-arachidonoylglycerol (2-AG) and reduce the activity of the thermogenic-suppressive cannabinoid receptor signaling. In summary, we have uncovered a novel therapeutic indication and mechanism of LPZ in managing obesity and its related metabolic syndrome, and identified a potential metabolic basis by which LPZ improves energy metabolism.

6.
J Environ Manage ; 355: 120488, 2024 Mar.
Article En | MEDLINE | ID: mdl-38457892

Sulfidation enhances the reactivity of zero-valent iron (ZVI) for Cr(VI) removal from groundwater. Current sulfidation methods mainly focus on chemical and mechanical sulfidation, and there has been little research on biosulfidation using sulfate-reducing bacteria (SRB) and its performance in Cr(VI) removal. Herein, the ability of the SRB-biosulfidated ZVI (SRB-ZVI) system was evaluated and compared with that of the Na2S-sulfidated ZVI system. The SRB-ZVI system forms a thicker and more porous FeSx layer than the Na2S-sulfidated ZVI system, resulting in more sufficient sulfidation of ZVI and a 2.5-times higher Cr(VI) removal rate than that of the Na2S-sulfidated ZVI system. The biosulfidated-ZVI granules and FeSx suspension are the major components of the SRB-ZVI system. The SRB-ZVI system exhibits a long-lasting (11 cycles) Cr(VI) removal performance owing to the regeneration of FeSx. However, the Na2S-sulfidated ZVI system can perform only two Cr(VI) removal cycles. SRB attached to biosulfidated-ZVI can survive in the presence of Cr(VI) because of the protection of the biogenic porous structure, whereas SRB in the suspension is inhibited. After Cr(VI) removal, SRB repopulates in the suspension from biosulfidated-ZVI and produce FeSx, thus providing conditions for subsequent Cr(VI) removal cycles. Overall, the synergistic effect of SRB and ZVI provides a more powerful and environmentally friendly sulfidation method, which has more advantageous for Cr(VI) removal than those of chemical sulfidation. This study provides a visionary in situ remediation strategy for groundwater contamination using ZVI-based technologies.


Groundwater , Water Pollutants, Chemical , Iron/chemistry , Chromium/chemistry , Bacteria , Sulfates , Water Pollutants, Chemical/chemistry
7.
Environ Sci Technol ; 58(2): 1378-1389, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38179651

It has been reported that tripolyphosphate (TPP) can enhance the oxygenation of natural Fe(II)-containing minerals to produce reactive oxygen species (ROS). However, the molecular structure of the TPP-Fe(II) mineral surface complex and the role of this complex in the generation and transformation of ROS have not been fully characterized. In the present study, a heterogeneous magnetite (Fe3O4)/O2/TPP system was developed for the degradation of p-nitrophenol (PNP). The results showed that the addition of TPP significantly accelerated the removal of PNP in the Fe3O4/O2 system and extended the range of effective pH to neutral. Experiments combined with density functional theory calculations revealed that the activation of O2 mainly occurs on the surface of Fe3O4 induced by a structural Fe(II)-TPP complex, where the generated O2•- (intermediate active species) can be rapidly converted into H2O2, and then the •OH generated by the Fenton reaction is released into the solution. This increases the concentration of •OH produced and the efficiency of •OH produced relative to Fe(II) consumed, compared with the homogeneous system. Furthermore, the binding of TPP to the surface of Fe3O4 led to stretching and even cleavage of the Fe-O bonds. Consequently, more Fe(II)/(III) atoms are exposed to the solvation environment and are available for the binding of active O2 and O2•-. This study demonstrates how common iron minerals and O2 in the natural environment can be combined to yield a green remediation technology.


Hydrogen Peroxide , Iron , Polyphosphates , Reactive Oxygen Species , Iron/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Minerals , Ferrous Compounds , Oxygen
8.
Small ; 20(5): e2305512, 2024 Feb.
Article En | MEDLINE | ID: mdl-37759410

Transparent nano-polycrystalline diamond (t-NPD) possesses superior mechanical properties compared to single and traditional polycrystalline diamonds. However, the harsh synthetic conditions significantly limit its synthesis and applications. In this study, a synthesis routine is presented for t-NPD under low pressure and low temperature conditions, 10 GPa, 1600 °C and 15 GPa, 1350 °C similar with the synthesis condition of organic precursor. Self-catalyzed hydrogenated carbon nano-onions (HCNOs) from the combustion of naphthalene enable synthesis under nearly industrial conditions, which are like organic precursor and much lower than that of graphite and other carbon allotropes. This is made possible thanks to the significant impact of hydrogen on the thermodynamics, as it chemically facilitates phase transition. Ubiquitous nanotwinned structures are observed throughout t-NPD due to the high concentration of puckered layers and stacking faults of HCNOs, which impart a Vickers hardness about 140 GPa. This high hardness and optical transparency can be attributed to the nanocrystalline grain size, thin intergranular films, absence of secondary phase and pore-free features. The facile and industrial-scale synthesis of the HCNOs precursor, and mild synthesis conditions make t-NPD suitable for a wide range of potential applications.

9.
iScience ; 26(10): 108076, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37860764

Cancer is a major health threat and a leading cause of human death worldwide. Surgical resection is the primary treatment for most cancers; however, some patients develop locoregional recurrence. Here, we developed an in situ cancer therapeutic system aimed to locally treat cancer and prevent postoperative recurrence. A functional scaffold, based on alginate/gelatin and crosslinked with copper ions, was fabricated by 3D printing and showed an excellent photothermal effect under near-infrared (NIR) irradiation. The combination of copper ions and NIR effectively killed thyroid cancer cells and patient-derived organoids, indicating a synergetic and broad-spectrum antitumor effect on thyroid cancer through the chemo-photothermal therapy. This implantable stent is designed to provide effective treatment in the vicinity of the tumor site and can be degraded without secondary surgery. The copper-loaded hydrogel scaffold may be a potential candidate for local cancer treatment and pave the way for precise and effective cancer therapy.

10.
ISA Trans ; 142: 409-419, 2023 Nov.
Article En | MEDLINE | ID: mdl-37541859

In this note, a wave simulation method based on the wave spectrum is proposed, and the wave simulation is transformed into external interference to verify the necessity of using variable encounter angle real wave interference. Firstly, A wave simulation method based on wave spectrum and equidistant method is proposed and demonstrated. Secondly, wave modeling is transformed into interference force related to the encounter angle by fully considering the real marine environment. Furthermore, a trajectory tracking controller with variable encounter angles and the actual sea state is designed using the disturbance modeling method. Finally, the necessity and authenticity of considering varying encounter angles and real sea conditions in the motion control of unmanned surface vehicles (USVs) are proved by simulation.

11.
Micromachines (Basel) ; 14(4)2023 Mar 26.
Article En | MEDLINE | ID: mdl-37420970

This paper presents a performance prediction method for piezoelectric injection systems, based on finite element simulations. Two indexes representing the system performance are proposed: jetting velocity and droplet diameter. By combining Taguchi's orthogonal array method and finite element simulation (FES), a finite element model of the droplet injection process, with different parameter combinations, was established. The two performance indexes, jetting velocity and droplet diameter, were accurately predicted, and their variation with time were investigated. Finally, the accuracy of the predicted results of the FES model was verified by experiments. The errors of the predicted jetting velocity and droplet diameter were 3.02% and 2.20%, respectively. It is verified that the proposed method has better reliability and robustness than the traditional method.

13.
Polymers (Basel) ; 15(12)2023 Jun 08.
Article En | MEDLINE | ID: mdl-37376254

Polyimide foam (PIF) is a rising star in high-end applications such as aerospace thermal insulation and military sound absorption. However, the basic rule on molecular backbone design and uniform pore formation of PIF still need to be explored. In this work, polyester ammonium salt (PEAS) precursor powders are synthesized between alcoholysis ester of 3, 3', 4, 4'-benzophenone tetracarboxylic dianhydride (BTDE) and aromatic diamines with different chain flexibility and conformation symmetry. Then, a standard "stepwise heating" thermo-foaming approach is used to prepare PIF with comprehensive properties. A rational thermo-foaming program is designed based on in situ observation of pore formation during heating. The fabricated PIFs have uniform pore structure, and PIFBTDA-PDA shows the smallest size (147 µm) and narrow distribution. Interestingly, PIFBTDA-PDA also presents a balanced strain recovery rate (SR = 91%) and mechanical robustness (0.051 MPa at 25% strain) and its pore structure maintains regularity after 10 compression-recovery cycles, mainly due to high rigidity of the chains. Furthermore, all the PIFs possess lightweight feature (15-20 kg∙m-3), good heat resistance (Tg at 270-340 °C), thermal stability (T5% at 480-530 °C), thermal insulation properties (λ = 0.046-0.053 W∙m-1K-1 at 20 °C, λ = 0.078-0.089 W∙m-1K-1 at 200 °C), and excellent flame retardancy (LOI > 40%). The reported monomer-mediated pore-structure control strategy can provide guidelines for the preparation of high-performance PIF and its industrial applications.

14.
Food Res Int ; 169: 112908, 2023 07.
Article En | MEDLINE | ID: mdl-37254343

Black soybeans are extensively planted and consumed in China due to their high nutritional value and numerous health benefits. However, very few is known about the characteristic metabolites of black soybeans from different geographical origins in China. In the present study, 31 black soybean samples were collected from 11 main producing provinces in China. A combined metabolomics approach using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and gas chromatography coupled to an Orbitrap mass analyzer (GC-orbitrap-MS) was performed for the first time to comprehensively investigate the metabolite variability among the black soybeans from different geographical origins. A total of 48 differential non-volatile metabolites and 14 differential volatile metabolites were identified based on orthogonal partial least squares discriminant analysis (OPLS-DA) coupled with analysis of variance (ANOVA). Higher procyanidin B1, procyanidin B2, epicatechin, malonylated isoflavones, and ß-pinene were observed in Gansu black soybeans. Guangxi black soybeans had higher amounts of linoleic acid and its oxidation products of hexanal and pentane. The black soybeans from Xinjiang and Yunnan were found to have higher delphinidin-derived anthocyanins, gamma-glutamyl peptides, and aromatic hydrocarbons. The characteristic metabolites of black soybeans from other geographical origins were also clarified. This study indicated that the integrated untargeted metabolomic approach can be a powerful tool to provide knowledge for developing specialty black soybeans.


Anthocyanins , Glycine max , Glycine max/chemistry , Gas Chromatography-Mass Spectrometry , Anthocyanins/metabolism , China , Metabolomics/methods
15.
Front Endocrinol (Lausanne) ; 14: 1140888, 2023.
Article En | MEDLINE | ID: mdl-36992805

Papillary thyroid cancer (PTC) is a common malignancy of the endocrine system, and its morbidity and mortality are increasing year by year. Traditional two-dimensional culture of cell lines lacks tissue structure and is difficult to reflect the heterogeneity of tumors. The construction of mouse models is inefficient and time-consuming, which is difficult to be applied to individualized treatment on a large scale. Clinically relevant models that recapitulate the biology of their corresponding parental tumors are urgently needed. Based on clinical specimens of PTC, we have successfully established patient-derived organoids by exploring and optimizing the organoid culture system. These organoids have been cultured stably for more than 5 passages and successfully cryopreserved and retried. Histopathological and genome analysis revealed a high consistency of the histological architectures as well as mutational landscapes between the matched tumors and organoids. Here, we present a fully detailed method to derive PTC organoids from clinical specimens. Using this approach, we have developed PTC organoid lines from thyroid cancer samples with a success rate of 77.6% (38/49) until now.


Thyroid Neoplasms , Animals , Mice , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Organoids/metabolism
16.
Nanoscale ; 15(4): 1835-1848, 2023 Jan 27.
Article En | MEDLINE | ID: mdl-36602166

Iodized oil has an excellent X-ray imaging effect, but it shows poor embolization performance. When used as an embolic agent, it is easily washed off by the blood flow and eliminated from the body. Therefore, it is essential to use iodized oil in combination with solid embolic agents such as gelatin sponge or to perform multiple embolization procedures to achieve the therapeutic effect. In the present study, a poly(N-isopropyl acrylamide)-co-acrylic acid (PNCAA) temperature-sensitive nanogel was synthesized by emulsion polymerization; the nanogel was then emulsified with iodized oil to prepare a thermosensitive iodized oil Pickering gel emulsion (TIPE). The oil-water (O/W) ratio of an O/W emulsion system can reach 4 : 6. When injected into the body, TIPE transforms into a nonflowing coagulated state at physiological temperature; the iodized oil is locked in the emulsion structure, thereby achieving local embolization and continuous imaging effects, which not only retain the X-ray imaging effect of the iodized oil but also improve its embolization effect. Subsequently, we further evaluated renal artery embolization in a normal rabbit renal artery model, and the results showed that TIPE shows a long-term conformal embolization performance and excellent long-term X-ray imaging ability.


Arteries , Iodized Oil , Animals , Rabbits , Emulsions , Nanogels , X-Rays , Water
17.
J Transl Med ; 21(1): 9, 2023 01 09.
Article En | MEDLINE | ID: mdl-36624452

BACKGROUNDS: Papillary thyroid cancer (PTC), which is often driven by acquired somatic mutations in BRAF genes, is the most common pathologic type of thyroid cancer. PTC has an excellent prognosis after treatment with conventional therapies such as surgical resection, thyroid hormone therapy and adjuvant radioactive iodine therapy. Unfortunately, about 20% of patients develop regional recurrence or distant metastasis, making targeted therapeutics an important treatment option. Current in vitro PTC models are limited in representing the cellular and mutational characteristics of parental tumors. A clinically relevant tool that predicts the efficacy of therapy for individuals is urgently needed. METHODS: Surgically removed PTC tissue samples were dissociated, plated into Matrigel, and cultured to generate organoids. PTC organoids were subsequently subjected to histological analysis, DNA sequencing, and drug sensitivity assays, respectively. RESULTS: We established 9 patient-derived PTC organoid models, 5 of which harbor BRAFV600E mutation. These organoids have been cultured stably for more than 3 months and closely recapitulated the histological architectures as well as mutational landscapes of the respective primary tumors. Drug sensitivity assays of PTC organoid cultures demonstrated the intra- and inter-patient specific drug responses. BRAFV600E inhibitors, vemurafenib and dabrafenib monotherapy was mildly effective in treating BRAFV600E-mutant PTC organoids. Nevertheless, BRAF inhibitors in combination with MEK inhibitors, RTK inhibitors, or chemotherapeutic agents demonstrated improved efficacy compared to BRAF inhibition alone. CONCLUSIONS: These data indicate that patient-derived PTC organoids may be a powerful research tool to investigate tumor biology and drug responsiveness, thus being useful to validate or discover targeted drug combinations.


Carcinoma, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Proto-Oncogene Proteins B-raf/genetics , Iodine Radioisotopes/therapeutic use , Carcinoma, Papillary/drug therapy , Carcinoma, Papillary/genetics , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Organoids/pathology
18.
Sci Total Environ ; 862: 160773, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36509275

Levofloxacin (LEV) is prone to be retained in aquifers due to its strong adsorption affinity onto sand, thus posing a threat to groundwater quality. In-situ injection technology for remediating LEV-contaminated soil and groundwater is still challenging owing to the lack of appropriate remedial agents. Herein, two novel multi-component porous covalent-organic polymers (namely, SLEL-1 and SLEL-2) with alkyl chains were constructed through Schiff-base reactions to adsorb LEV from an aqueous solution, in which the kinetics, isotherms, influenced factors were investigated. Plausible adsorption mechanisms were proposed through characterization and experimental analysis, including pore filling effect, π-π electron-donor-acceptor (EDA) interaction, hydrogen bonding force, hydrophobic-hydrophobic interaction as well as electrostatic force. In addition, response surface methodology (RSM) revealed the treatment optimization and reciprocal relationship within multi-variables. Furthermore, taking advantage of favorable dispersion and outstanding competitive behavior, SLEL-1 was established as an in-situ adsorptive agent in dynamic saturated columns on a laboratory scale to investigate the removal of LEV from water-bearing stratum. Overall, the findings of this work provided an insight into the fabrication of SLELs as long-term mobile and reusable adsorptive agents for practical in-situ applications in the future.


Levofloxacin , Water Pollutants, Chemical , Levofloxacin/analysis , Sand , Porosity , Polymers , Adsorption , Water Pollutants, Chemical/chemistry
19.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Article En | MEDLINE | ID: mdl-36234524

For the preparation of diamond heat sinks with ultra-high thermal conductivity by Chemical Vapor Deposition (CVD) technology, the influence of diamond growth direction and electric field on thermal conductivity is worth exploring. In this work, the phonon and thermal transport properties of diamond in three crystal orientation groups (<100>, <110>, and <111>) were investigated using first-principles calculations by electric field. The results show that the response of the diamond in the three-crystal orientation groups presented an obvious anisotropy under positive and negative electric fields. The electric field can break the symmetry of the diamond lattice, causing the electron density around the C atoms to be segregated with the direction of the electric field. Then the phonon spectrum and the thermodynamic properties of diamond were changed. At the same time, due to the coupling relationship between electrons and phonons, the electric field can affect the phonon group velocity, phonon mean free path, phonon−phonon interaction strength and phonon lifetime of the diamond. In the crystal orientation [111], when the electric field strength is ±0.004 a.u., the thermal conductivity is 2654 and 1283 W·m−1K−1, respectively. The main reason for the change in the thermal conductivity of the diamond lattice caused by the electric field is that the electric field has an acceleration effect on the extranuclear electrons of the C atoms in the diamond. Due to the coupling relationship between the electrons and the phonons, the thermodynamic and phonon properties of the diamond change.

20.
Chemosphere ; 308(Pt 2): 136229, 2022 Dec.
Article En | MEDLINE | ID: mdl-36041530

Molasses have a prominent effect on the bioremediation of Cr(VI) contaminated groundwater. However, its reaction mechanism is not detailed. In this paper, the removal of Cr(VI) with different carbon sources was compared to explore the effect and mechanism of the molasses. The addition of molasses can completely remove 25 mg/L Cr(VI), while the removal efficiency by glucose or emulsified vegetable oil was only 20%. Molasses could rapidly stimulate the reduction of Cr(VI) by indigenous microorganisms and weakened the toxicity on bacteria. The average removal rate of Cr(VI) was 0.42 mg/L·h, 10 times that of glucose system. Compared with glucose, molasses can remediate Cr(VI) at a higher concentration (50 mg/L), and the carbohydrate acted as microbial nutrients. Direct and indirect reduction acted together, the Fe(II) content in the aquifer medium increased from 1.7% to 4.7%. The addition of molasses extract into glucose system could increased the removal rate of Cr(VI) by 2-3 times, and the ions of molasses had no significant effect on the reduction. Excitation emission matrix fluorescence spectra and electrochemical analysis proved that the molasses contained humic acid-like substances, which had the ability of electron shuttle and improved the reduction rate of Cr(VI). In the process of bioreduction, the composition of molasses changed and the electron transport capacity increased from 104.2 to 446.5 µmol/(g C), but these substances could not be used as electron transport media to continuously enhance the reduction effect. This study is of great significance to fully understand the role and application of molasses.


Humic Substances , Molasses , Biodegradation, Environmental , Carbohydrates , Carbon , Chromium/analysis , Ferrous Compounds , Glucose , Humic Substances/analysis , Molasses/analysis , Oxidation-Reduction , Plant Oils
...