Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 657
Filter
1.
Rev Cardiovasc Med ; 25(8): 284, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39228505

ABSTRACT

Background: Using fluid dynamic modeling, noninvasive fractional flow reserve (FFR) derived from coronary computed tomography angiography (CCTA) data provides better anatomic and functional information than CCTA, with a high diagnostic and discriminatory value for diagnosing hemodynamically significant lesions. Myocardial blood flow index (MBFI) based on CCTA is a physiological parameter that reflects myocardial ischemia. Thus, exploring the relationship between computed tomography derived fractional flow reserve (CT-FFR) and MBFI could be clinically significant. This study aimed to investigate the relationship between CT-FFR and MBFI and to analyze the feasibility of MBFI differing from CT-FFR in diagnosing suspected coronary artery disease (CAD). Methods: Data from 61 patients (35 males, mean age: 59.2 ± 10.02 years) with suspected CAD were retrospectively analyzed, including the imaging data of CCTA, CT-FFR, and data of invasive coronary angiography performed within one week after hospitalization. CT-FFR and MBFI were calculated, and the correlation between MBFI or CT-FFR and invasive coronary angiography (ICA) was evaluated. Using ICA (value ≥ 0.70) as the gold standard and determining the optimal cutoff value via a diagnostic test, the diagnostic performance of MBFI or CT-FFR was evaluated. Results: MBFI and CT-FFR were negatively correlated with ICA (r = -0.3670 and -0.4922, p = 0.0036 and 0.0001, respectively). Using ICA (value of ≥ 0.70) the gold standard, the optimal cutoff value was 0.115 for MBFI, and the area under the curve (AUC) was 0.833 (95% confidence interval [CI]: 0.716-0.916, Z = 5.357, p < 0.0001); using ICA (value of ≥ 0.70) the gold standard, the optimal cutoff value was 0.80 for CT-FFR, and the area under the curve (AUC) was 0.759 (95% CI: 0.632-0.859, Z = 3.665, p = 0.0002). No significant difference was observed between the AUCs of CT-FFR and MBFI (Z = 0.786, p = 0.4316). Conclusions: MBFI based on CCTA can be used to evaluate myocardial ischemia similar to CT-FFR in suspected CAD; however, it should be noted that CT-FFR is a functional index based on the anatomical stenosis of the coronary artery, whereas MBFI is a physiological index reflecting myocardial mass remodeling.

2.
ACS Omega ; 9(34): 36453-36463, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220540

ABSTRACT

Carbon dots (CDs)-minute carbon nanoparticles with remarkable luminescent properties, photostability, and low toxicity-show potential for various applications. CDs synthesized using citric acid and urea are the least toxic to biological environments. Here, we aimed to explore the effect of CDs synthesized using citric acid and urea at 50, 33, and 25% (CDs 1/1, 1/2, and 1/3, respectively) weight ratios in a microwave on bacterial cell fluorescence sensing and labeling. The nanoscale properties of CDs were investigated via transmission electron microscopy and dynamic light scattering particle size analysis. X-ray powder diffraction confirmed the graphitic structures of CDs. X-ray photoelectron spectroscopy revealed that the nitrogen content increased gradually with increasing urea ratios, indicating functional group changes. Transient photoluminescence decay periods demonstrated superior fluorescence intensity of CDs 1/3 under blue, green, and red lights. The use of CDs was notably more efficient than traditional methods in staining bacterial cells. Fluorescence microscopy of 10 g-positive and 10 g-negative bacteria revealed enhanced staining of Gram-positive strains, with CDs 1/3 presenting the best results. The CDs exhibited excellent photostability, maintaining poststaining fluorescence for 100 min, surpassing the performance of conventional dyes. CDs could serve as potential fluorescent dyes for the rapid discrimination of Gram-positive and Gram-negative bacteria.

3.
Article in English | MEDLINE | ID: mdl-39219169

ABSTRACT

Depression is a complex disorder with substantial impacts on individual health and has major public health implications. Depression results from complex interactions between genetic and environmental factors. Epigenetic mechanisms, including DNA methylation (DNAm), microRNAs (miRNAs), and histone modifications, can produce heritable phenotypic changes without a change in DNA sequence and have been recently proven to mediate lasting increases in the risk of depression following exposure to adverse life events. Of these, miRNAs are gaining attention for their role in the pathogenesis of many stress-associated mental disorders, including depression. One such miRNA is microRNA-206 (miR-206), which is a critical candidate for increasing the susceptibility to stress. Although miR-206 is thought to be a typical muscle-specific miRNA, it is expressed throughout the brain, particularly in the hippocampus and prefrontal cortex (PFC). Until now, only a few studies have been conducted on rodents to understand its role in stress-related abnormalities in neurogenesis. However, the precise underlying molecular mechanism of miR-206-mediated depression-like behaviours remains largely unknown. Here, we reviewed recent advances in the field of biomedical and clinical research on the role of miR-206 in the pathogenesis of depression from studies using different tissues and various experimental designs, and described how abnormalities in miR-206 expression in these tissues can affect neuronal functions. Moreover, we focused on studies investigating the brain-derived neurotrophic factor (BDNF) as a functional target of miR-206, where miR-206 has been implicated in the pathogenesis of depression by suppressing the expression of the BDNF. In summary, these studies confirm the existence of a tight correlation between the pathogenesis of depression and the miR-206/BDNF pathway.

4.
Front Neurol ; 15: 1406475, 2024.
Article in English | MEDLINE | ID: mdl-39099786

ABSTRACT

Importance: Acupuncture has been used to treat neurological and neuropsychiatric symptoms in China and other parts of the world. These symptoms, such as fatigue, headache, cognitive impairment, anxiety, depression, and insomnia, are common in people experiencing long COVID. Objective: This study aims to explore the feasibility of acupuncture in the treatment of neurological and neuropsychiatric symptoms in long COVID patients. Data Sources: A systematic search was conducted in four English and four Chinese databases from inception to 23 June 2023. Literature selection and data extraction were conducted by two pairs of independent reviewers. Study Selection: Randomized controlled trials (RCTs) that explored the effect of acupuncture on fatigue, depression, anxiety, cognitive abnormalities, headache, and insomnia were included. Data Extraction and Synthesis: RCTs that explored the effect of acupuncture on fatigue, depression, anxiety, cognitive abnormalities, headache, and insomnia were included. A meta-analysis was performed using R software. Heterogeneity was measured using I2. Subgroup analyses were performed focusing on the duration of treatment and acupuncture modalities. The systematic review protocol was registered on PROSPERO (registration number: CRD42022354940). Main outcomes and measures: Widely adopted clinical outcome scales included the Fatigue Scale for assessing fatigue, the Hamilton Depression Rating Scale for evaluating depression, the Mini-Mental State Examination for assessing cognitive impairment, the Visual Analog Scale for headache severity, and the Pittsburgh Sleep Quality Index for measuring insomnia. Results: A total of 110 RCTs were included in the systematic review and meta-analysis. Overall, acupuncture was found to improve the scores of the Fatigue Scale (vs. medication: mean differences (MD): -2.27, P < 0.01; vs. sham acupuncture: MD: -3.36, P < 0.01), the Hamilton Depression Rating Scale (vs. medication: MD: -1.62, 95%, P < 0.01; vs. sham acupuncture: MD: -9.47, P < 0.01), the Mini-Mental State Examination (vs. medication: MD: 1.15, P < 0.01; vs. sham acupuncture: MD: 1.20, P < 0.01), the Visual Analog Scale (vs. medication: MD: -1.05, P < 0.01; vs. waitlist: MD: -0.48, P=0.04), and the Pittsburgh Sleep Quality Index (vs. medication: MD: -2.33, P < 0.01; vs. sham acupuncture: MD: -4.19, P < 0.01). Conclusion and relevance: This systematic review suggested acupuncture as a potentially beneficial approach for the treatment of neurological and neuropsychiatric symptoms, as assessed using clinical scales, and it may have applicability in long COVID patients. Further well-designed clinical studies specifically targeting long COVID patients are needed to validate the role of acupuncture in alleviating long COVID symptoms. Systematic Review Registration: PROSPERO, identifier [CRD42022354940].

5.
Front Immunol ; 15: 1427380, 2024.
Article in English | MEDLINE | ID: mdl-39188712

ABSTRACT

Background and objective: Extracellular adenosine (eAdo) bridges tumor metabolism and immune regulation. CD39-CD73-eAdo/A2aR axis regulates tumor microenvironment (TME) and immunotherapy response. In the era of immunotherapy, exploring the impact of the CD39-CD73-eAdo/A2aR axis on TME and developing targeted therapeutic drugs to enhance the efficacy of immunotherapy are the current research hotspots. This study summarizes and explores the research trends and hotspots of the adenosine axis in the field of TME to provide ideas for further in-depth research. Methods: Literature information was obtained from the Web of Science core collection database. The VOS viewer and the bibliometric tool based on R were used to quantify and identify cooperation information and individual influence by analyzing the detailed information of the global annual publication volume, country/region and institution distribution, article authors and co-cited authors, and journal distribution of these articles. At the same time, the distribution of author keywords and the co-occurrence of author keywords, highly cited articles, and highly co-cited references of CD39-CD73-eAdo/A2aR in the field of TME were analyzed to determine research hotspots and trends. Result: 1,721 articles published in the past ten years were included in this study. Through bibliometric analysis, we found that (1) 69 countries and regions explored the effect of the CD39-CD73-eAdo/A2aR on TME, and the research was generally on the rise. Researchers in the United States dominated research in this area, with the highest total citation rate. China had the most significant number of publications. (2) Harvard University has published the most articles in this field. (3) 12,065 authors contributed to the publication of papers in this field, of which 23 published at least eight papers. STAGG J had significant academic influence, with 24 published articles and 2,776 citations. Co-cited authors can be clustered into three categories. Stagg J, Allard B, Ohta A, and Antonioli, L occupied a central position in the network. (4) 579 scholarly journals have published articles in this field. The journal FRONTIERS IN IMMUNOLOGY published the most significant number of papers, with 97 articles and a total of 2,317 citations, and the number of publications increased year by year. (5) "The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets" was the most frequently local cited article (163 times). The "A2A adenosine receptor protects tumors from antitumor T cells" was the most co-cited reference (224 times). (6) Through the analysis of author keywords, we found that the relationship between adenosine and immunotherapy was a core concept for many researchers in this field. Breast cancer, melanoma, colorectal cancer, ovarian cancer, glioblastoma, pancreatic cancer, hepatocellular carcinoma, and lung cancer were the most frequent cancer types in adenosine-related tumor studies. Immunotherapy, immunosuppression, immune checkpoint, and immune checkpoint inhibitors were the hot keywords in the research, reflecting the importance of the adenosine metabolic pathway in tumor immunotherapy. The keywords such as Immunogenic cell death, T cells, Sting, regulatory T cells, innate immunity, and immune infiltration demonstrated the pathways by which adenosine affected the TME. The famous author keywords in recent years have been immunotherapy, immunogenic cell death, inflammation, lung cancer, and gastric cancer. Conclusion: The effect of CD39-CD73-eAdo/A2aR on the infiltration and function of various immune cells in TME, tumor immunotherapy response, and patient prognosis has attracted the attention of researchers from many countries/regions. American scholars still dominate the research in this field, but Chinese scholars produce the most research results. The journal FRONTIERS IN IMMUNOLOGY has published the wealthiest research in the field. Stagg J was a highly influential researcher in this field. Further exploration of targeted inhibition of CD39-CD73-eAdo/A2aR alone or in combination with other immunotherapy, radiotherapy, and chemotherapy in treating various cancer types and developing effective clinical therapeutic drugs are continuous research hotspots in this field.


Subject(s)
5'-Nucleotidase , Adenosine , Apyrase , Bibliometrics , Neoplasms , Tumor Microenvironment , Animals , Humans , 5'-Nucleotidase/metabolism , Adenosine/metabolism , Apyrase/metabolism , GPI-Linked Proteins/immunology , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Receptor, Adenosine A2A/metabolism , Tumor Microenvironment/immunology
6.
Aging (Albany NY) ; 16(16): 11893-11903, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39172098

ABSTRACT

OBJECTIVE: To explore the underlying molecular mechanism of Notch1/cadherin 5 (CDH5) pathway in modulating in cell malignant behaviors of gastric cancer (GC). METHODS: We performed bioinformatic analyses to screen the potential target genes of Notch1 from cadherins in GC. Western blot and RT-PCR were conducted to detect CDH5 expression in GC tissues and cells. We utilized chromatin immunoprecipitation (CHIP) assays to assess the interaction of Notch1 with CDH5 gene. The effects of Notch1/CDH5 axis on the proliferation, invasion, migration and vasculogenic mimicry in GC cells were evaluated by EdU, wound healing, transwell, and tubule formation assays. RESULTS: Significantly increased CDH5 expression was found in GC tissues compared with paracancerous tissues and associated to clinical stage and poor overall survival (OS) in patients with GC. Notch1 positively regulate the expression of CDH5 in GC cells. CHIP assays validated that CDH5 was a direct target of Notch1. In addition, Notch1 upregulation enhanced the proliferation, migration, invasion and vasculogenic mimicry capacity of GC cells, which could be attenuated by CDH5 silencing. CONCLUSIONS: These results indicated Notch1 upregulation enhanced GC malignant behaviors by triggering CDH5, suggesting that targeting Notch1/CDH5 axis could be a potential therapeutic strategy for GC progression.


Subject(s)
Antigens, CD , Cadherins , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Receptor, Notch1 , Signal Transduction , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , Cadherins/metabolism , Cadherins/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Male , Female , Neoplasm Invasiveness , Middle Aged , Neoplasm Metastasis
7.
Mol Neurobiol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136907

ABSTRACT

Neuropathic pain (NP) is a chronic pain caused by injury or disease of the somatosensory nervous system, or it can be directly caused by disease. It often presents with clinical features like spontaneous pain, hyperalgesia, and dysesthesia. At present, voltage-gated calcium ion channels (VGCCs) are known to be closely related to the development of NP, especially the α2δ subunit. The α2δ subunit is a regulatory subunit of VGCCs. It exists mainly in the brain and peripheral nervous system, especially in nerve cells, and it plays a crucial part in regulating presynaptic and postsynaptic functions. Furthermore, the α2δ subunit influences neuronal excitation and pain signaling by promoting its expression and localization through binding to VGCC-related subunits. The α2δ subunit is widely used in the management of NP as a target of antiepileptic drugs gabapentin and pregabalin. Although drug therapy is one of the treatments for NP, its clinical application is limited due to the adverse reactions caused by drug therapy. Therefore, further research on the therapeutic target α2δ subunit is needed, and attempts are made to obtain an effective treatment for relieving NP without side effects. This review describes the current associated knowledge on the function of the α2δ subunit in perceiving and modulating NP.

8.
Sci Rep ; 14(1): 19728, 2024 08 25.
Article in English | MEDLINE | ID: mdl-39183349

ABSTRACT

This study aims to analyze the risk factors associated with delayed postoperative bleeding (DPPB) following colorectal polyp surgery, develop a dynamic nomogram and evaluate the model efficacy, provide a reference for clinicians to identify the patients at high risk of DPPB. Retrospective study was done on patients who underwent endoscopic colorectal polypectomy at the First Hospital of Lanzhou University from January 2020 to March 2023. Differences between the group with and without DPPB were compared, and independent risk factors for DPPB occurrence were identified through univariate analysis and combination LASSO and logistic regression. A dynamic nomogram was constructed based on multiple logistic regression to predict DPPB following colorectal polyp surgery. Model evaluation included receiver operating characteristic (ROC), Calibration curve, Decision curve analysis (DCA). DPPB occurred in 38 of the 1544 patients included. multivariate analysis showed that direct oral anticoagulants (DOACs), polyp location in the right hemi colon, polyp diameter, drink, and prophylactic hemoclips were the independent risk factors for DPPB and dynamic nomogram were established. Model validation indicated area under the ROC curve values of 0.936, 0.796, and 0.865 for the training set, validation set, and full set, respectively. The calibration curve demonstrated a strong alignment between the predictions of the column-line diagram model and actual observations. The decision curve analysis (DCA) displayed a significant net clinical benefit across the threshold probability range of 0-100%. The dynamic nomogram aids clinicians in identifying high-risk patients, enabling personalized diagnosis and treatment.


Subject(s)
Colonic Polyps , Nomograms , Postoperative Hemorrhage , Humans , Male , Female , Middle Aged , Postoperative Hemorrhage/etiology , Postoperative Hemorrhage/diagnosis , Postoperative Hemorrhage/epidemiology , Retrospective Studies , Risk Factors , Colonic Polyps/surgery , Aged , ROC Curve , Adult
9.
Magn Reson Imaging ; 113: 110213, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053592

ABSTRACT

OBJECTIVE: The objective of this study was to investigate the correlation between serum levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 (TIMP-1) levels and their ratios with the severity of white matter hyperintensities (WMHs) in patients with cerebral small vessel disease (CSVD). METHODS: This cross-sectional study was done on a prospective cohort of patients with CSVD. Qualitative and quantitative analyses of WMHs were performed using Fazekas grading and lesion prediction algorithm (LPA) methods. Biomarkers MMP-2, MMP-9, and TIMP-1 were measured to explore their correlation with the severity of WMHs. RESULTS: The sample consisted of 144 patients with CSVD. There were 63 male and 81 female patients, with an average age of 67.604 ± 8.727 years. Among these, 58.33% presented with white matter hyperintensities at Fazekas grading level 1, with an average total template volume of WMHs of 4.305 mL. MMP-2 (P = 0.025), MMP-9 (P = 0.008), TIMP-1 (P = 0.026), and age (P = 0.007) were identified as independent correlates of WMHs based on Fazekas grading. Independent correlates of the total template volume of WMHs included MMP-2 (P = 0.023), TIMP-1 (P = 0.046), age (P = 0.047), systolic blood pressure (P = 0.047), and homocysteine (Hcy) (P = 0.014). In addition, age (P = 0.003; P < 0.001), interleukin-6 (IL-6) (P < 0.001; P = 0.044), Hcy (P < 0.001; P < 0.001), glycated hemoglobin (HbA1c) (P = 0.016; P = 0.043), and chronic kidney disease (P < 0.001; P < 0.001) were associated with both WMHs Fazekas grading and the total template volume of WMHs. CONCLUSION: Serum levels of MMP-9, MMP-2, and TIMP-1 were independently associated with the Fazekas grading, while serum TIMP-1 and MMP-2 levels were independently related to the total template volume of WMHs. The association of TIMP-1 and MMP-2 with the severity of CSVD-related WMHs suggests their potential role as disease-related biomarkers. However, further research is required to uncover the specific mechanisms underlying these interactions.

10.
Cell Death Dis ; 15(7): 474, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956060

ABSTRACT

Colorectal cancer (CRC) is one of the most common tumors of the digestive system worldwide. KRAS mutations limit the use of anti-EGFR antibodies in combination with chemotherapy for the treatment of CRC. Therefore, novel targeted therapies are needed to overcome the KRAS-induced oncogenesis. Recent evidence suggests that inhibition of PI3K led to ferroptosis, a nonapoptotic cell death closely related to KRAS-mutant cells. Here, we showed that a selective PI3Kδ inhibitor TYM-3-98 can suppress the AKT/mTOR signaling and activate the ferroptosis pathway in KRAS-mutant CRC cells in a concentration-dependent manner. This was evidenced by the lipid peroxidation, iron accumulation, and depletion of GSH. Moreover, the overexpression of the sterol regulatory element-binding protein 1 (SREBP1), a downstream transcription factor regulating lipid metabolism, conferred CRC cells greater resistance to ferroptosis induced by TYM-3-98. In addition, the effect of TYM-3-98 was confirmed in a xenograft mouse model, which demonstrated significant tumor suppression without obvious hepatoxicity or renal toxicity. Taken together, our work demonstrated that the induction of ferroptosis contributed to the PI3Kδ inhibitor-induced cell death via the suppression of AKT/mTOR/SREBP1-mediated lipogenesis, thus displaying a promising therapeutic effect of TYM-3-98 in CRC treatment.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Lipogenesis , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , TOR Serine-Threonine Kinases , Ferroptosis/drug effects , Ferroptosis/genetics , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , Animals , Proto-Oncogene Proteins c-akt/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Lipogenesis/drug effects , Lipogenesis/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Mice , Signal Transduction/drug effects , Mice, Nude , Cell Line, Tumor , Mutation/genetics , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors/pharmacology
11.
Sci Rep ; 14(1): 17140, 2024 07 25.
Article in English | MEDLINE | ID: mdl-39060340

ABSTRACT

RNA-binding proteins (RBPs) play critical roles in genome regulation. In this study, we explored the latent function of KPNA2, which is an essential member of the RBP family, in the regulation of alternative splicing (AS) in gastric cancer (GC). We analyzed the role of KPNA2 in regulating differential expression and AS via RNA sequencing (RNA-seq) and improved RNA immunoprecipitation sequencing (iRIP-seq). Clinical specimens were used to analyze the associations between KPNA2 expression and clinicopathological characteristics. CCK8 assays, transwell assays and wound healing assays were performed to explore the effect of KPNA2/WDR62 on GC cell progression. KPNA2 was shown to be highly expressed in GC cells and tissues and associated with lymph node metastases. KPNA2 promoted the proliferation, migration and invasion of GC cells and primarily regulated exon skipping, alternative 3's splice sites (A3SSs), alternative 5' splice sites (A5SSs), and cassette exons. We further revealed that KPNA2 participated in biological processes related to cell proliferation, and the immune response in GC via the regulation of transcription. In addition, KPNA2 preferentially bound to intron regions. Notably, KPNA2 regulated the A3SS AS mode of WDR62, and upregulation of WDR62 reversed the KPNA2 downregulation-induced inhibition of GC cell proliferation, migration and invasion. Finally, we discovered that the AS of immune-related molecules could be regulated by KPNA2. Overall, our results demonstrated for the first time that KPNA2 functions as an oncogenic splicing factor in GC that regulated the AS and differential expression of GC-related genes, and KPNA2 may be a potential target for GC treatment.


Subject(s)
Alternative Splicing , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Stomach Neoplasms , alpha Karyopherins , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Proliferation/genetics , alpha Karyopherins/genetics , alpha Karyopherins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Female , Male , Middle Aged , Lymphatic Metastasis
12.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000597

ABSTRACT

Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Infertility, Male , Spermatogenesis , Animals , Male , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/deficiency , Spermatogenesis/genetics , Mitochondria/metabolism , Mitochondria/genetics , Testis/metabolism , Meiosis/genetics , Spermatogonia/metabolism , Gene Expression Profiling , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Spermatocytes/metabolism , Transcriptome
13.
Infect Drug Resist ; 17: 2923-2931, 2024.
Article in English | MEDLINE | ID: mdl-39011345

ABSTRACT

Purpose: Accurate differentiation between early and late latent syphilis stages is pivotal for patient management and treatment strategies. Nontreponemal IgM antibodies have shown potential in discriminating latent syphilis staging by differentiating syphilis activity. This study aimed to develop a predictive nomogram model for latent syphilis staging based on nontreponemal IgM antibodies. Patients and Methods: We explored the correlation between nontreponemal IgM antibodies and latent syphilis staging and developed a nomogram model to predict latent syphilis staging based on 352 latent syphilis patients. Model performance was assessed using AUC, calibration curve, Hosmer-Lemeshow χ2 statistics, C-index, Brier score, decision curve analysis, and clinical impact curve. Additionally, an external validation set was used to further assess the model's stability. Results: Nontreponemal IgM antibodies correlated with latent syphilis staging. The constructed model demonstrated a strong discriminative capability with an AUC of 0.743. The calibration curve displayed a strong fit, key statistics including Hosmer-Lemeshow χ² at 2.440 (P=0.486), a C-index score of 0.743, and a Brier score of 0.054, all suggesting favorable model calibration performance. Decision curve analysis and clinical impact curve highlighted the model's robust clinical applicability. The external validation set yielded an AUC of 0.776, Hosmer-Lemeshow χ² statistics of 2.440 (P=0.486), a C-index score of 0.767, and a Brier score of 0.054, further underscored the reliability of the model. Conclusion: The nontreponemal IgM antibody-based predicted model could equip clinicians with a valuable tool for the precise staging of latent syphilis and enhancing clinical decision-making.

14.
Front Psychiatry ; 15: 1335554, 2024.
Article in English | MEDLINE | ID: mdl-38957739

ABSTRACT

Background: Mobile phone addiction (MPA) greatly affects the biological clock and sleep quality and is emerging as a behavioral disorder. The saliva microbiota has been linked to circadian rhythms, and our previous research revealed dysrhythmic saliva metabolites in MPA subjects with sleep disorders (MPASD). In addition, acupuncture had positive effects. However, the dysbiotic saliva microbiota in MPASD patients and the restorative effects of acupuncture are unclear. Objectives: To probe the circadian dysrhythmic characteristics of the saliva microbiota and acupunctural restoration in MPASD patients. Methods: MPASD patients and healthy volunteers were recruited by the Mobile Phone Addiction Tendency Scale (MPATS) and the Pittsburgh Sleep Quality Index (PSQI). Saliva samples were collected every 4 h for 72 h. After saliva sampling, six MPDSD subjects (group M) were acupuncturally treated (group T), and subsequent saliva sampling was conducted posttreatment. Finally, all the samples were subjected to 16S rRNA gene sequencing and bioinformatic analysis. Results: Significantly increased MPATS and PSQI scores were observed in MPDSD patients (p< 0.01), but these scores decreased (p<0.001) after acupuncture intervention. Compared with those in healthy controls, the diversity and structure of the saliva microbiota in MPASD patients were markedly disrupted. Six genera with circadian rhythms were detected in all groups, including Sulfurovum, Peptostreptococcus, Porphyromonas and Prevotella. There were five genera with circadian rhythmicity in healthy people, of which the rhythmicities of the genera Rothia and Lautropia disappeared in MPASD patients but effectively resumed after acupuncture intervention. Conclusions: This work revealed dysrhythmic salivary microbes in MPASD patients, and acupuncture, as a potential intervention, could be effective in mitigating this ever-rising behavioral epidemic.

15.
Article in English | MEDLINE | ID: mdl-38982699

ABSTRACT

BACKGROUND: The kojyl 3-aminopropylphosphonic acid (KAP) was synthesized by kojic acid (KA) with a 3-aminopropylphosphonic acid. Which is more stable than KA and showed better skin penetration and anti-pigmentation efficacy in melanocytes. However, up till now, there have been no studies aimed at incorporating KAP into an emulsion system and evaluating its effectiveness. OBJECTIVE: We develop a novel skin-lightening agent using KAP as the active ingredient and a low-cytotoxic nanoemulsion as the delivery system in this study. METHOD: The sorbitan monooleate and polysorbate surfactants with polyethylene glycol (PEG) co-surfactant were used to generate a nanoemulsion system. RESULT: The transparency and particle size stability over various storage times indicate that the formulated nanoemulsions are suitable for long-term storage. Besides, results demonstrate that the anti-pigmentation function of KA and KAP-containing nanoemulsions (NE-KA and NEKAP) evidently outperformed that of the non-packed KA and KAP group. Despite having the lowest concentration among other treatments, NE-KAP was able to reduce melanin content to approximately 80% of the blank. CONCLUSION: Our findings suggest that this newly developed nanoemulsion containing KAP could potentially serve as a sustainable alternative to hydroquinone for treating dermal hyperpigmentation disorders in future applications.

16.
Bioorg Chem ; 151: 107647, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39024805

ABSTRACT

Brown rot of stone fruit, a disease caused by the ascomycete fungus Monilinia fructicola, has caused significant losses to the agricultural industry. In order to explore and discover potential fungicides against M. fructicola, thirty-one novel mandelic acid derivatives containing piperazine moieties were designed and synthesized based on the amide skeleton. Among them, target compound Z31 exhibited obvious in vitro antifungal activity with the EC50 value of 11.8 mg/L, and significant effects for the postharvest pears (79.4 % protective activity and 70.5 % curative activity) at a concentration of 200 mg/L. Antifungal activity for the target compounds was found to be significantly improved by the large steric hindrance of the R1 groups and the electronegative of the piperazines in the molecular structure, according to a three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. Further mechanism studies have demonstrated that the compound Z31 can disrupt cell membrane integrity, resulting in increased membrane permeability, release of intracellular electrolytes, and affect the normal growth of hyphae. Additional, morphological study also indicated that Z31 may disrupt the integrity of the membrane by inducing generate excess endogenous reactive oxygen species (ROS) and resulting in the peroxidation of cellular lipids, which was further verified by the detection of malondialdehyde (MDA) content. These studies have provided the basis for the creation of novel fungicides to prevent brown rot in stone fruits.


Subject(s)
Ascomycota , Drug Design , Fungicides, Industrial , Mandelic Acids , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Ascomycota/drug effects , Dose-Response Relationship, Drug , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Mandelic Acids/pharmacology , Mandelic Acids/chemistry , Molecular Structure , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Quantitative Structure-Activity Relationship , Benzyl Compounds/chemical synthesis , Benzyl Compounds/chemistry , Benzyl Compounds/pharmacology
17.
Adv Mater ; 36(33): e2405906, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943439

ABSTRACT

Deep-sea equipment usually operates under dwell-fatigue condition, which means the equipped energy storage devices must survive under the changing pressure. Special mechanical designs should be considered to maintain the electrochemical performance of electrodes under this extreme condition. In this work, an effective assembly strategy is proposed to accommodate the dwell-fatigue loading using Ag decorated reduced graphene oxide (rGO) foam (denoted as AGF) as a superelastic and robust Zn host. The wet-press assembly process enables the formation of highly porous and robust framework. The strong synergetic effect between rGO and Ag further guarantees AGF's superelasticity and ultrahigh mechanical strength. Meanwhile, the homogeneously distributed Ag species on the rGO sheets act as zincophilic sites to effectively facilitate Zn plating. Furthermore, AGF offers enough space to address the expansion during the charge and discharge cycles. As expected, the symmetrical cell using this AGF@Zn host demonstrates a long lifespan over 400 h at a depth-of-discharge of 50%. It is worth mentioning that the superelastic AGF host realizes stable Zn plating/stripping under varying pressures.

18.
J Proteomics ; 304: 105233, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38925350

ABSTRACT

Early diagnosis and intervention of esophageal squamous cell carcinoma (ESCC) can improve the prognosis. The purpose of this study was to identify biomarkers for ESCC and esophageal precancerous lesions (intraepithelial neoplasia, IEN). Based on the proteomic and genomic data of esophageal tissue including previously reported data, up-regulated proteins with copy number amplification in esophageal cancer were screened as candidate biomarkers. Five proteins, including KDM2A, RAD9A, ECT2, CYHR1 and TONSL, were confirmed by immunohistochemistry on ESCC and normal esophagus (NE). Then, we investigated the expression of 5 proteins in 236 participants (60 NEs, 93 IENs and 83 ESCCs) which were randomly divided into training set and test set. When distinguishing ESCC from NE, the area under curve (AUC) of the multiprotein model was 0.940 in the training set, while the lowest AUC of a protein was 0.735. In the test set, the results were similar. When distinguishing ESCC from IEN or distinguishing IEN from NE, the diagnostic efficiency of the multi-protein models were also improved compared with that of single protein. Our findings suggest that combined detection of KDM2A, RAD9A, ECT2, CYHR1 and TONSL can be used as potential biomarkers for the early diagnosis of ESCC and precancerous lesion development prediction. SIGNIFICANCE: Candidate biomarkers including KDM2A, RAD9A, ECT2, CYHR1 and TONSL screened by integrating genomic and proteomic data from the esophagus can be used as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma and precancerous lesion development prediction.


Subject(s)
Biomarkers, Tumor , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Esophageal Squamous Cell Carcinoma/diagnosis , Esophageal Squamous Cell Carcinoma/metabolism , Male , Female , Middle Aged , Carcinoma in Situ/diagnosis , Carcinoma in Situ/metabolism , Neoplasm Proteins/metabolism , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/metabolism , Proteomics/methods , Aged
19.
20.
Virulence ; 15(1): 2367671, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38910312

ABSTRACT

Viral diseases are among the main threats to public health. Understanding the factors affecting viral invasion is important for antiviral research. Until now, it was known that most viruses have very low plaque-forming unit (PFU)-to-particle ratios. However, further investigation is required to determine the underlying factors. Here, using quantitative single-particle analysis methods, the invasion of Semliki Forest virus (SFV), Japanese encephalitis virus (JEV), and influenza A virus (IAV) containing attachment to the cell surface, entry into the cell, transport towards the cell interior, and fusion with endosomes to release nucleocapsids were quantitatively analysed in parallel. It was found that for SFV with an PFU-to-particle ratio of approximately 1:2, an entry efficiency of approximately 31% limited infection. For JEV, whose PFU-to-particle ratio was approximately 1:310, an attachment efficiency of approximately 27% and an entry efficiency of 10% were the main factors limiting its infection. Meanwhile, for IAV with PFU-to-particle ratios of 1:8100, 5% attachment efficiency, 9% entry efficiency, and 53% fusion efficiency significantly limited its infection. These results suggest that viruses with different infectivities have different limited steps in the invasion process. Moreover, there are significant differences in attachment efficiencies among viruses, emphasizing the pivotal role of attachment in viral invasion. The influence of the virus purification method on virus invasion was also investigated. This study, for the first time, reports the efficiencies of different stages of virus invasion, leading to a better understanding of virus invasion and providing a protocol to quantitatively analyse the virus invasion efficiency.


Subject(s)
Influenza A virus , Semliki forest virus , Virus Internalization , Influenza A virus/physiology , Animals , Semliki forest virus/physiology , Humans , Encephalitis Virus, Japanese/physiology , Cell Line , Virus Attachment , Endosomes/virology
SELECTION OF CITATIONS
SEARCH DETAIL