Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Biol Chem ; 300(6): 107351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718868

ABSTRACT

SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.


Subject(s)
Fatty Acids , Membrane Proteins , STAT3 Transcription Factor , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Animals , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Up-Regulation , Mice
2.
Nat Commun ; 15(1): 4667, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821952

ABSTRACT

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity. We establish a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR inhibitor auranofin, an approved anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, we show a pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.


Subject(s)
Auranofin , Carcinoma, Non-Small-Cell Lung , Checkpoint Kinase 1 , Lung Neoplasms , Oxidation-Reduction , Thioredoxins , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Humans , Oxidation-Reduction/drug effects , Thioredoxins/metabolism , Cell Line, Tumor , Auranofin/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleotide Reductases/metabolism , Ribonucleotide Reductases/antagonists & inhibitors , Drug Synergism , Animals
3.
Viruses ; 16(2)2024 01 26.
Article in English | MEDLINE | ID: mdl-38399967

ABSTRACT

The cleavage of sialic acids by neuraminidase (NA) facilitates the spread of influenza A virus (IV) descendants. Understanding the enzymatic activity of NA aids research into the transmission of IVs. An effective method for purifying NA was developed using p-aminophenyloxamic acid-modified functionalized hydroxylated magnetic particles (AAMPs), and from 0.299 to 0.401 mg of NA from eight IV strains was isolated by 1 mg AAMP. A combination of lectin microarrays and MALDI-TOF/TOF-MS was employed to investigate the N-glycans of isolated NAs. We found that more than 20 N-glycans were identified, and 16 glycan peaks were identical in the strains derived from chicken embryo cultivation. Multi-antennae, bisected, or core-fucosylated N-glycans are common in all the NAs. The terminal residues of N-glycans are predominantly composed of galactose and N-acetylglucosamine residues. Meanwhile, sialic acid residue was uncommon in these N-glycans. Further computational docking analysis predicted the interaction mechanism between NA and p-aminophenyloxamic acid.


Subject(s)
Influenza A virus , Influenza, Human , Animals , Chick Embryo , Chickens , Lectins , Neuraminidase , Polysaccharides/chemistry
4.
Cell Rep ; 42(7): 112790, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37436895

ABSTRACT

Cholesterol is a structural component of cell membranes. How rapidly growing tumor cells maintain membrane cholesterol homeostasis is poorly understood. Here, we found that glioblastoma (GBM), the most lethal brain tumor, maintains normal levels of membrane cholesterol but with an abundant presence of cholesteryl esters (CEs) in its lipid droplets (LDs). Mechanistically, SREBP-1 (sterol regulatory element-binding protein 1), a master transcription factor that is activated upon cholesterol depletion, upregulates critical autophagic genes, including ATG9B, ATG4A, and LC3B, as well as lysosome cholesterol transporter NPC2. This upregulation promotes LD lipophagy, resulting in the hydrolysis of CEs and the liberation of cholesterol from the lysosomes, thus maintaining plasma membrane cholesterol homeostasis. When this pathway is blocked, GBM cells become quite sensitive to cholesterol deficiency with poor growth in vitro. Our study unravels an SREBP-1-autophagy-LD-CE hydrolysis pathway that plays an important role in maintaining membrane cholesterol homeostasis while providing a potential therapeutic avenue for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Brain Neoplasms/metabolism , Homeostasis/physiology , Glioblastoma/pathology , Cholesterol/metabolism , Autophagy
5.
Nat Metab ; 4(5): 575-588, 2022 05.
Article in English | MEDLINE | ID: mdl-35534729

ABSTRACT

Tumorigenesis is associated with elevated glucose and glutamine consumption, but how cancer cells can sense their levels to activate lipid synthesis is unknown. Here, we reveal that ammonia, released from glutamine, promotes lipogenesis via activation of sterol regulatory element-binding proteins (SREBPs), endoplasmic reticulum-bound transcription factors that play a central role in lipid metabolism. Ammonia activates the dissociation of glucose-regulated, N-glycosylated SREBP-cleavage-activating protein (SCAP) from insulin-inducible gene protein (Insig), an endoplasmic reticulum-retention protein, leading to SREBP translocation and lipogenic gene expression. Notably, 25-hydroxycholesterol blocks ammonia to access its binding site on SCAP. Mutating aspartate D428 to alanine prevents ammonia binding to SCAP, abolishes SREBP-1 activation and suppresses tumour growth. Our study characterizes the unknown role, opposite to sterols, of ammonia as a key activator that stimulates SCAP-Insig dissociation and SREBP-1 activation to promote tumour growth and demonstrates that SCAP is a critical sensor of glutamine, glucose and sterol levels to precisely control lipid synthesis.


Subject(s)
Lipogenesis , Neoplasms , Ammonia , Glucose , Glutamine/metabolism , Humans , Insulin/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterols/metabolism
6.
Proteins ; 89(11): 1413-1424, 2021 11.
Article in English | MEDLINE | ID: mdl-34165207

ABSTRACT

Glucose is one of the most important monosaccharides. Although hyperglycemia in type 2 diabetes mellitus (T2DM) lead to a series of changes; however, little is known about the alterations of serum proteins in T2DM, especially those proteins with glucose affinity. In this study, the glucose-binding proteins (GlcBPs) of serum were isolated from 30 health volunteer (HV) and 30 T2DM patients by glucose-magnetic particle conjugates (GMPC) and identified by mass spectrum analysis. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated the main gene annotations and pathways of this GlcBPs, while Motif-X webtool provided the potential glucose-binding domains. Further docking analysis and glycan microarray were used to understand the interaction between the glucose and glucose-binding domains. A total of 149 and 119 GlcBPs were identified from HV and T2DM cases. Four hundred and sixty-eight GO annotations in 165 identified GlcBPs were available, while the majority involved in cellular processes and binding function. A short peptide, EGDEEITCLNGFWLE, which was derived from the Motif-X analysis, presented a high-binding ability to the glucose from both docking analysis and glycan analysis. GMPC provides a powerful tool for GlcBPs isolation and indicates the alteration of GlcBPs in T2DM.


Subject(s)
Blood Glucose/metabolism , Blood Proteins/isolation & purification , Blood Proteins/metabolism , Diabetes Mellitus, Type 2/blood , Binding Sites , Blood Chemical Analysis/methods , Blood Proteins/chemistry , Female , Healthy Volunteers , Humans , Male , Middle Aged , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Annotation , Peptide Fragments/blood , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Polysaccharides/analysis , Protein Interaction Maps
7.
iScience ; 23(10): 101569, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33083736

ABSTRACT

Recently, lipid metabolism reprogramming has been further evidenced in malignancies via the observation of large amounts of lipid droplets (LDs) in human tumors, including in glioblastoma (GBM), the most lethal primary brain tumor. However, the role played by LDs in tumor cells remains unknown. Here, we show that triglycerides (TG), the major components of LDs, serve as a critical energy reservoir to support GBM cell survival. TG/LDs rapidly diminished in GBM cells upon glucose reduction, whereas inhibiting fatty acid oxidation or autophagy resulted in the accumulation of TG/LDs and strongly potentiated GBM cell death. Immunofluorescence imaging and time-lapse videos showed that LDs are hydrolyzed by autophagy to release free fatty acids that mobilize into mitochondria for energy production. Our study demonstrates that autophagy-mediated hydrolysis of TG/LDs maintains energy homeostasis and GBM survival upon glucose reduction, suggesting that limiting TG/LDs utilization might be necessary upon treating GBM.

8.
Cell Metab ; 32(2): 229-242.e8, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32559414

ABSTRACT

Glioblastoma (GBM), a mostly lethal brain tumor, acquires large amounts of free fatty acids (FAs) to promote cell growth. But how the cancer avoids lipotoxicity is unknown. Here, we identify that GBM upregulates diacylglycerol-acyltransferase 1 (DGAT1) to store excess FAs into triglycerides and lipid droplets. Inhibiting DGAT1 disrupted lipid homeostasis and resulted in excessive FAs moving into mitochondria for oxidation, leading to the generation of high levels of reactive oxygen species (ROS), mitochondrial damage, cytochrome c release, and apoptosis. Adding N-acetyl-cysteine or inhibiting FA shuttling into mitochondria decreased ROS and cell death induced by DGAT1 inhibition. We show in xenograft models that targeting DGAT1 blocked lipid droplet formation, induced tumor cell apoptosis, and markedly suppressed GBM growth. Together, our study demonstrates that DGAT1 upregulation protects GBM from oxidative damage and maintains lipid homeostasis by facilitating storage of excess FAs. Targeting DGAT1 could be a promising therapeutic approach for GBM.


Subject(s)
Diacylglycerol O-Acyltransferase/metabolism , Fats/metabolism , Glioblastoma/metabolism , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Oxidative Stress
9.
Front Oncol ; 9: 636, 2019.
Article in English | MEDLINE | ID: mdl-31355147

ABSTRACT

Aberrant glycosylation is not only a feature of malignant cell transformation, but also plays an important role in metastasis. In the present study, an integrated strategy combining the lectin microarrays and lectin cytochemistry was employed to investigate and verify the altered glycopatterns in gastric cancer (GC) cell lines as well as resected tumor specimens from matched tissue sets of 46 GC patients. Subsequently, lectin-mediated affinity capture glycoproteins, and MALDI-TOF/TOF-MS were employed to further acquire precise structural information of the altered glycans. According to the results, the glycopatterns recognized by 10 (e.g., ACA, MAL-I, and ConA) and 3 lectins (PNA, MAL-I, and VVA) showed significantly variations in GC cells and tissue compared to their corresponding controls, respectively. Notably, the relative abundance of Galß-1,4GlcNAc (LacNAc) recognized by MAL-I exhibited a significant increase in GC cells (p < 0.001) and tissue from patients at stage II and III (p < 0.05), and a significant increase in lymph node positive tumor cases, compared with lymph node negative tumor cases (p < 0.05). More LacNAc contained N-glycans were characterized in tumor sample with advanced stage compared to corresponding control. Moreover, there were 10 neo-LacNAc-contained N-glycans (e.g., m/z 1625.605, 1803.652, and 1914.671) only presented in GC tissue with advanced stage. Among these, six N-glycans were modified with sialic acid or fucose based on LacNAc to form sialylated N-glycans or lewis antigens, respectively. Our results revealed that the aberrant expression of LacNAc is a characteristic of GC, and LacNAc may serve as a scaffold to be further modified with sialic acid or fucose. Our findings provided useful information for us to understand the development of GC.

10.
Glycobiology ; 29(3): 242-259, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30535277

ABSTRACT

The hepatitis B virus (HBV)-induced chronic liver diseases are serious health threats worldwide. There is evidence to display the alterations of salivary N-linked glycans related to the development of HBV-infected liver diseases. Here, we further investigated the alterations of fucosylated N/O-glycans recognized by LTL in saliva from 120 subjects (30 healthy volunteers (HV), 30 patients with hepatitis B (HB), 30 patients with hepatic cirrhosis (HC), and 30 patients with hepatocellular carcinoma (HCC)) using salivary microarrys and MALDI-TOF/TOF-MS. The results showed that the expression level of fucosylated glycans recognized by LTL was significantly increased in HCC compared with other subjects (P < 0.0001). Besides, the fucosylated glycoproteins were isolated from pooled saliva of HV, HB, HC, and HCC by LTL-magnetic particle conjugates. Then, N/O- glycans were released from the isolated glycoproteins with PNGase F and NaClO, and were identified by MALDI-TOF-MS, respectively. Totally, there were 21/20, 25/18, 29/19, and 28/24 N/O-glycan peaks that were identified and annotated with proposed structures in saliva of HV, HB, HC, and HCC. Among the total, there were 8 N-glycan peaks (e.g., m/z 1905.634, 2158.777 and 2905.036) and 15 O-glycan peaks (e.g., 1177.407, 1308.444 and 1322.444) that only presented in patients with HBV-induced liver diseases. One N-glycan peak (m/z 2205.766) was unique in HC, and 9 O-glycan peaks (e.g., m/z 1157.420, 1163.417 and 1193.402) were unique in HCC. This study could facilitate the discovery of biomarkers for HC and HCC based on precise alterations of fucosylated N/O-glycans in saliva.


Subject(s)
Biomarkers, Tumor/genetics , Hepatitis B virus/genetics , Polysaccharides/genetics , Protein Array Analysis , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/isolation & purification , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Female , Fibrosis/genetics , Fibrosis/virology , G(M1) Ganglioside/analogs & derivatives , G(M1) Ganglioside/chemistry , G(M1) Ganglioside/genetics , Hepatitis B virus/isolation & purification , Hepatitis B virus/pathogenicity , Hepatitis, Chronic/genetics , Hepatitis, Chronic/virology , Humans , Lectins/chemistry , Liver Neoplasms/genetics , Liver Neoplasms/virology , Male , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Saliva/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
11.
Food Funct ; 9(10): 5198-5208, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30178807

ABSTRACT

The bovine milk proteins have a wide range of functions, but the role of the attached glycans in their biological functions has not been fully understood yet. Here, the glycopatterns of whole bovine milk proteins were analyzed using lectin microarrays. Then, the proteins with Siaα2-3/6Gal-linked glycans were isolated and characterized. The roles of Siaα2-3/6Gal-linked glycans of the isolated proteins were assessed by inhibiting viral activity against influenza A viruses (IAV). In total, there were 69 sialylated proteins to be identified and annotated. The sialylated proteins have the ability to inhibit the attachment of IAV mimics to MDCK cells; however, the role of inhibition was abolished when the sialic acid moieties were destroyed. The results demonstrate that the sialic acid moieties of proteins could serve as competitive substrates to disturb the viral attachment to cell surface receptors. Our findings will help to assess the potential application of sialylated glycoproteins in bovine milk against IAV.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Milk/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals , Cattle , Humans , Influenza A virus/physiology , Influenza, Human/virology , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Virus Attachment/drug effects
12.
Medicine (Baltimore) ; 97(15): e0208, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29642144

ABSTRACT

We used lectin microarray and mass spectrometric analysis to identify the N-linked glycosylation patterns of hepatitis C virus (HCV) particles. HCV J6/JFH-1 chimeric cell culture (HCVcc) in the culture supernatant was concentrated and purified by ultrafiltration and sucrose gradient ultracentrifugation. Twelve fractions were collected from the top and analyzed for viral infectivity and HCV RNA content after sucrose gradient separation. HCV RNA and proteins were separated by ultracentrifugation in a continuous 10% to 60% sucrose gradient to purify viral particles based on their sedimentation velocities. HCVcc particles were found mainly in fractions 6 to 8, as determined by quantitative polymerase chain reaction (qPCR) analysis for HCV RNA and ELISA of the HCV core protein. The N-glycans on HCV proteins were analyzed by lectin microarray and mass spectrometry. We identified that 32 of 37 lectins displayed the positive binding signals and 16 types of N-glycoforms of which the major HCV glycoforms were high mannose-type N-linked oligosaccharides, hybrid N-glycans, and fucosylated N-glycans. Our study provided new detailed information regarding the majority of the glycan-protein profile, complementing to previous findings of glycan-HCV protein interactions.


Subject(s)
Hepacivirus/physiology , Hepatitis C/virology , Polysaccharides/metabolism , RNA, Viral/analysis , Viral Proteins/metabolism , Cell Culture Techniques , Drug Discovery , Glycoproteins/metabolism , Glycosylation , Hepatitis C/drug therapy , Humans
13.
Anal Chem ; 90(4): 2946-2953, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29347818

ABSTRACT

Vicinal dithiol-containing proteins (VDPs) play fundamental roles in intracellular redox homeostasis and are responsible for many diseases. In this work, we report a far-red fluorescence turn-on probe MCAs for VDPs exploiting the pKa shift of the imine functionality of the probe. MCAs is composed of a merocyanine Schiff base as the fluorescent reporter and a cyclic 1,3,2-dithiarsenolane as the specific ligand for VDPs. The imine pKa of MCAs is 4.8, and it exists predominantly in the Schiff base (SB) form at physiological pH. Due to the absence of a resonating positive charge, it absorbs at a relatively short wavelength and is essentially nonfluorescent. Upon selective binding to reduced bovine serum albumin (rBSA, selected as the model protein), MCAs was brought from aqueous media to the binding pockets of the protein, causing a large increase in pKa value of MCAs (pKa = 7.1). As a result, an increase in the protonated Schiff base (PSB) form of MCAs was observed at the physiological pH conditions, which in turn leads to a bathochromically shifted chromophore (λabs = 634 nm) and a significant increase in fluorescence intensity (λem = 657 nm) simultaneously. Furthermore, molecular dynamics simulations indicate that the salt bridges formed between the iminium in MCAs and the residues D72 and D517 in rBSA resist the dissociation of proton from the probe, thus inducing an increase of the pKa value. The proposed probe shows excellent sensitivity and specificity toward VDPs over other proteins and biologically relevant species and has been successfully applied for imaging of VDPs in living cells. We believe that the present pKa shift switching strategy may facilitate the development of new fluorescent probes that are useful for a wide range of applications.

14.
Front Physiol ; 8: 596, 2017.
Article in English | MEDLINE | ID: mdl-28871230

ABSTRACT

Background: Chronic infection with HBV (CHB) or HCV (CHC) is the most common chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma in humans, their infections have distinct pathogenic processes, however, little is known about the difference of glycoprotein glycopatterns in serum between hepatitis B virus (HBV)- and hepatitis C virus (HCV)-infected patients. Methods: A method combining the lectin microarrays, letin-mediated affinity capture glycoproteins, and MALDI-TOF/TOF-MS was employed to analyze serum protein glycopatterns and identify the glycan structures from patients with CHB (n = 54) or CHC(n = 47), and healthy volunteers (HV, n = 35). Lectin blotting was further utilized to validate and assess the expression levels of their serum glycopatterns. Finally, the differences of the glycoprotein glycopatterns were systematically compared between CHB and CHC patients. Conclusions: As a result, there were 11 lectins (e.g., HHL, GSL-II, and EEL) exhibited significantly increased expression levels, and three lectins (LCA, VVA, and ACA) exhibited significantly decreased expression levels of serum protein glycopatterns only in the CHB patients. However, DBA exhibited significantly decreased expression levels, and two lectins (WGA and SNA) exhibited significantly increased expression levels of serum glycopatterns only in the CHC patients. Furthermore, LEL and MAL-I showed a coincidentally increasing trend in both CHC and CHB patients compared with the HV. The individual analysis demonstrated that eight lectins (MPL, GSL-I, PTL-II, UEA-I, WGA, LEL, VVA, and MAL-I) exhibited a high degree of consistency with the pooled serum samples of HV, CHB, and CHC patients. Besides, a complex-type N-glycans binder PHA-E+L exhibited significantly decreased NFIs in the CHB compared with HV and CHC subjects (p < 0.01). The MALDI-TOF/TOF-MS results of N-linked glycans from the serum glycoproteins isolated by PHA-E+L-magnetic particle conjugates showed that there was an overlap of 23 N-glycan peaks (e.g., m/z 1419.743, 1663.734, and 1743.581) between CHB, and CHC patients, 5 glycan peaks (e.g., m/z 1850.878, 1866.661, and 2037.750) were presented in virus-infected hepatitis patients compared with HV, 3 glycan peaks (1460.659, 2069.740, and 2174.772) were observed only in CHC patients. Our data provide useful information to find new biomarkers for distinguishing CHB and CHC patients based on the precision alteration of their serum glycopatterns.

15.
Virology ; 511: 193-206, 2017 11.
Article in English | MEDLINE | ID: mdl-28866238

ABSTRACT

The RNA polymerase complex (RNApc) in influenza A viruses (IVs) is composed of the PB2, PB1 and PA subunits, which are encoded by the three longest genome segments (Seg1-3) and are responsible for the replication of vRNAs and transcription of viral mRNAs. However, the co-evolutionary relationships of the three segments from the known 126 subtypes IVs are unclear. In this study, we performed a detailed analysis based on a total number of 121,191 nucleotide sequences. Three segment sequences were aligned before the repeated, incomplete and mixed sequences were removed for homologous and phylogenetic analyses. Subsequently, the estimated substitution rates and TMRCAs (Times for Most Recent Common Ancestor) were calculated by 175 representative IVs. Tracing the cladistic distribution of three segments from these IVs, co-evolutionary patterns and trajectories could be inferred. The further correlation analysis of six internal protein coding segments reflect the RNApc segments have the closer correlation than others during continuous reassortments. This global approach facilitates the establishment of a fast antiviral strategy and monitoring of viral variation.


Subject(s)
Evolution, Molecular , Genetic Variation , Influenza A virus/enzymology , Influenza A virus/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Computational Biology , Phylogeny , Sequence Analysis, DNA
16.
J Virol Methods ; 249: 10-20, 2017 11.
Article in English | MEDLINE | ID: mdl-28797655

ABSTRACT

N-glycosylation can affect the host specificity, virulence and infectivity of influenza A viruses (IAVs). In this study, the distribution and evolution of N-glycosylation sites in the hemagglutinin (HA) and neuraminidase (NA) of H9N2 virus were explored using phylogenetic analysis. Then, one strain of the H9N2 subtypes was proliferated in the embryonated chicken eggs (ECE) and human embryonic lung fibroblast cells (MRC-5) system. The proliferated viral N-glycan profiles were analyzed by a glycomic method that combined the lectin microarray and MALDI-TOF/TOF-MS. As a result, HA and NA of H9N2 viruses prossess six and five highly conserved N-glycosylation sites, respectively. Sixteen lectins (e.g., MAL-II, SNA and UEA-I) had increased expression levels of the glycan structures in the MRC-5 compared with the ECE system; however, 6 lectins (e.g., PHA-E, PSA and DSA) had contrasting results. Eleven glycans from the ECE system and 13 glycans from the MRC-5 system were identified. Our results showed that the Fucα-1,6GlcNAc(core fucose) structure was increased, and pentaantennary N-glycans were only observed in the ECE system. The SAα2-3/6Gal structures were highly expressed and Fucα1-2Galß1-4GlcNAc structures were only observed in the MRC-5 system. We conclude that the existing SAα2-3/6Gal sialoglycans make the offspring of the H9N2 virus prefer entially attach to each other, which decreases the virulence. Alterations in the glycosylation sites for the evolution and role of IAVs have been widely described; however, little is known about the exact glycan structures for the same influenza strain from different hosts. Our findings may provide a novel way for further discussing the molecular mechanism of the viral transmission and virulence associated with viral glycosylation in avian and human hosts as well as vital information for designing a vaccine against influenza and other human viruses.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H9N2 Subtype/physiology , Polysaccharides/metabolism , Virus Replication , Animals , Cell Line , Chick Embryo , Embryo, Mammalian/cytology , Glycosylation , Humans , Influenza A Virus, H9N2 Subtype/chemistry , Influenza, Human/virology , Lectins/genetics , Lectins/metabolism , Lung/cytology , Lung/embryology , Phylogeny , Phytohemagglutinins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Sci Rep ; 7: 45957, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28383031

ABSTRACT

Acute-on-chronic hepatitis B liver failure (ACHBLF) is an increasingly recognized distinct disease entity encompassing an acute deterioration of liver function in patients with cirrhosis, so little is known about the alterations of protein glycopatterns in serum with its development. We aimed to identify the alterations of serum glycopatterns in ACHBLF and probe the possibility of them as novel potential biomarkers for diagnosis of ACHBLF. As a result, there were 18 lectins (e.g., WFA, GSL-II, and PNA) to give significantly alterations of serum glycopatterns in ACHBLF compared with healthy controls (HC) (all p ≤ 0.0386). Meanwhile, among these lectins, there were 12 lectins (e.g., WFA, GAL-II, and EEL) also exhibited significantly alterations of serum glycopatterns in ACHBLF compared with HBV-infected chronic hepatitis (cHB) (all p ≤ 0.0252). The receiver-operating characteristic (ROC) curve analysis indicated there were 5 lectins (PHA-E + L, BS-I, ECA, ACA, and BPL) had the greatest discriminatory power for distinguishing ACHBLF and HC or cHB, respectively (all p ≤ 0.00136). We provided a new basic insight into serum glycopatterns in ACHBLF and investigated the correlation of alterations in serum glycopatterns as novel potential biomarkers for diagnosis of ACHBLF.


Subject(s)
Acute-On-Chronic Liver Failure/blood , Acute-On-Chronic Liver Failure/diagnosis , Biomarkers, Tumor/blood , Glycoproteins/blood , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/diagnosis , Adult , Case-Control Studies , Female , Glycosides/metabolism , Humans , Lectins/metabolism , Liver/metabolism , Liver/pathology , Male , Microarray Analysis , Principal Component Analysis , ROC Curve , Reproducibility of Results
18.
Glycoconj J ; 34(4): 523-535, 2017 08.
Article in English | MEDLINE | ID: mdl-28389847

ABSTRACT

Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus (HBV), which can lead to chronic liver disease and put people at high risk of death from cirrhosis of the liver and liver cancer. However, little is known about the correlation of salivary N-linked glycans related to HBV-infected liver diseases. Here we investigated N-linked glycome in saliva from 200 subjects (50 healthy volunteers (HV), 40 HBV-infected patients (HB), 50 cirrhosis patients (HC), and 60 hepatocellular carcinoma patients (HCC) using MALDI-TOF/TOF-MS. Representative MS spectra of N-glycans with signal-to-noise ratios >6 were annotated using the GlycoWorkbench program. A total of 40, 47, 29, and 33 N-glycan peaks were identified and annotated from HV, HB, HC, and HCC groups, respectively. There were 15 N-glycan peaks (e.g., m/z 1647.587, 1688.613 and 2101.755) were present in all groups. Three N-glycan peaks (m/z 2596.925, 2756.962, and 2921.031) were unique in HV group, 2 N-glycan peaks (m/z 1898.676 and 1971.692) were unique in HB group, 5 N-glycan peaks (m/z 1954.677, 2507.914, 2580.930, 2637.952, and 3092.120) were unique in HC group, and 3 N-glycan peaks (m/z 2240.830, 2507.914, and 3931.338) were unique in HCC group. The proportion of fucosylated N-glycans was apparently increased in the HCC group (84.8%) than in any other group (73.1% ± 0.01), however, the proportion of sialylated N-glycans was decreased in HCC group (12.1%) than in any other group (17.23% ± 0.003). Our data provide pivotal information to distinguish between HBV-associated hepatitis, cirrhosis and HCC, and facilitate the discovery of biomarkers for HCC during its early stages based on precise alterations of N-linked glycans in saliva.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Hepatitis B virus/physiology , Hepatitis, Chronic/metabolism , Liver Cirrhosis/metabolism , Liver Neoplasms/metabolism , Metabolome , Polysaccharides/metabolism , Saliva/metabolism , Adult , Aged , Carcinoma, Hepatocellular/virology , Case-Control Studies , Female , Glycosylation , Hepatitis, Chronic/virology , Humans , Liver Cirrhosis/virology , Liver Neoplasms/virology , Male , Middle Aged , Pilot Projects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
J Diabetes Res ; 2017: 5728087, 2017.
Article in English | MEDLINE | ID: mdl-28401167

ABSTRACT

Diabetic nephropathy is a major cause of chronic kidney disease and end-stage kidney disease. However, so little is known about alterations of the glycopatterns in urine with the development of diabetic nephropathy. Presently, we interrogated glycopatterns in urine specimens using a lectin microarray. The results showed that expression levels of Siaα2-6Gal/GalNAc recognized by SNA exhibited significantly increased tendency with the development of diabetic nephropathy; moreover, SNA blotting indicated glycoproteins (90 kDa, 70 kDa, and 40 kDa) in urine may contribute to this alteration. Furthermore, the glycopatterns of (GlcNAc)2-4 recognized by STL exhibited difference between diabetic and nondiabetic nephropathy. The results of urinary protein microarray fabricated by another 48 urine specimens also indicated (GlcNAc)2-4 is a potential indictor to differentiate the patients with diabetic nephropathy from nondiabetic nephropathy. Furtherly, STL blotting showed that the 50 kDa glycoproteins were correlated with this alteration. In conclusion, our data provide pivotal information to monitor the development of diabetic nephropathy and distinguish between diabetic nephropathy and nondiabetic renal disease based on precise alterations of glycopatterns in urinary proteins, but further studies are needed in this regard.


Subject(s)
Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/urine , Glycoproteins/chemistry , Urinalysis/methods , Adult , Aged , Biomarkers/urine , Biopsy , Diabetes Mellitus, Type 2/urine , Female , Glycoproteins/analysis , Humans , Kidney Failure, Chronic/urine , Lectins/chemistry , Male , Middle Aged , Protein Array Analysis , Renal Insufficiency, Chronic/urine , Tissue Array Analysis , Young Adult
20.
Anal Chem ; 89(3): 1734-1741, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28208245

ABSTRACT

Selenocysteine (Sec) carries out the majority of the functions of the various Se-containing species in vivo. Thus, it is of great importance to develop sensitive and selective assays to detect Sec. Herein, a carbon-dot-based fluorescent turn-on probe for highly selective detection of selenol in living cells is presented. The highly photoluminescent carbon dots that emit yellow-green fluorescence (Y-G-CDs; λmax = 520 nm in water) were prepared by using m-aminophenol as carbon precursor through a facile solvothermal method. The surface of Y-G-CDs was then covalently functionalized with 2,4-dinitrobenzenesulfonyl chloride (DNS-Cl) to afford the 2,4-dinitrobenzene-functionalized CDs (CD-DNS) as a nanoprobe for selenol. CD-DNS is almost nonfluorescent. However, upon treating with Sec, the DNS moiety of CD-DNS can be readily cleaved by selenolate through a nucleophilic substitution process, resulting in the formation of highly fluorescent Y-G-CDs and hence leads to a dramatic increase in fluorescence intensity. The proposed nanoprobe exhibits high sensitivity and selectivity toward Sec over biothiols and other biological species. A preliminary study shows that CD-DNS can function as a useful tool for fluorescence imaging of exogenous and endogenous selenol in living cells.


Subject(s)
Carbon/chemistry , Fluorescent Dyes/chemistry , Microscopy, Fluorescence , Quantum Dots/chemistry , Selenium Compounds/analysis , Aminophenols/chemistry , Animals , Cell Line , Dinitrobenzenes/chemistry , Hydrogen-Ion Concentration , Mice , Selenium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...