Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.149
Filter
1.
Netw Neurosci ; 8(2): 395-417, 2024.
Article in English | MEDLINE | ID: mdl-38952809

ABSTRACT

Functional brain networks have preserved architectures in rest and task; nevertheless, previous work consistently demonstrated task-related brain functional reorganization. Efficient rest-to-task functional network reconfiguration is associated with better cognition in young adults. However, aging and cognitive load effects, as well as contributions of intra- and internetwork reconfiguration, remain unclear. We assessed age-related and load-dependent effects on global and network-specific functional reconfiguration between rest and a spatial working memory (SWM) task in young and older adults, then investigated associations between functional reconfiguration and SWM across loads and age groups. Overall, global and network-level functional reconfiguration between rest and task increased with age and load. Importantly, more efficient functional reconfiguration associated with better performance across age groups. However, older adults relied more on internetwork reconfiguration of higher cognitive and task-relevant networks. These reflect the consistent importance of efficient network updating despite recruitment of additional functional networks to offset reduction in neural resources and a change in brain functional topology in older adults. Our findings generalize the association between efficient functional reconfiguration and cognition to aging and demonstrate distinct brain functional reconfiguration patterns associated with SWM in aging, highlighting the importance of combining rest and task measures to study aging cognition.


Brain networks identified by functional connectivity (FC) have preserved architectures from rest to task and across task demands. Higher similarity, implying more efficient network reconfiguration, was associated with better cognition and task performance in young adults. To examine how it may be influenced by aging, we compared whole-brain and network-level FC similarities between resting-state and spatial working memory fMRI in young and older adults. At whole-brain level and higher order cognitive networks, older adults evidenced less efficient network reconfiguration from rest to task than young adults. Importantly, more efficient reconfiguration was associated with better accuracy. This relationship relied more on internetwork connections in older adults. Despite reduced neural resources compared to young, maintaining efficient network updating still contributes to better cognition at older age.

2.
Hum Brain Mapp ; 45(10): e26765, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958401

ABSTRACT

As a potential preclinical stage of Alzheimer's dementia, subjective cognitive decline (SCD) reveals a higher risk of future cognitive decline and conversion to dementia. However, it has not been clear whether SCD status increases the clinical progression of older adults in the context of amyloid deposition, cerebrovascular disease (CeVD), and psychiatric symptoms. We identified 99 normal controls (NC), 15 SCD individuals who developed mild cognitive impairment in the next 2 years (P-SCD), and 54 SCD individuals who did not (S-SCD) from ADNI database with both baseline and 2-year follow-up data. Total white matter hyperintensity (WMH), WMH in deep (DWMH) and periventricular (PWMH) regions, and voxel-wise grey matter volumes were compared among groups. Furthermore, using structural equation modelling method, we constructed path models to explore SCD-related brain changes longitudinally and to determine whether baseline SCD status, age, and depressive symptoms affect participants' clinical outcomes. Both SCD groups showed higher baseline amyloid PET SUVR, baseline PWMH volumes, and larger increase of PWMH volumes over time than NC. In contrast, only P-SCD had higher baseline DWMH volumes and larger increase of DWMH volumes over time than NC. No longitudinal differences in grey matter volume and amyloid was observed among NC, S-SCD, and P-SCD. Our path models demonstrated that SCD status contributed to future WMH progression. Further, baseline SCD status increases the risk of future cognitive decline, mediated by PWMH; baseline depressive symptoms directly contribute to clinical outcomes. In conclusion, both S-SCD and P-SCD exhibited more severe CeVD than NC. The CeVD burden increase was more pronounced in P-SCD. In contrast with the direct association of depressive symptoms with dementia severity progression, the effects of SCD status on future cognitive decline may manifest via CeVD pathologies. Our work highlights the importance of multi-modal longitudinal designs in understanding the SCD trajectory heterogeneity, paving the way for stratification and early intervention in the preclinical stage. PRACTITIONER POINTS: Both S-SCD and P-SCD exhibited more severe CeVD at baseline and a larger increase of CeVD burden compared to NC, while the burden was more pronounced in P-SCD. Baseline SCD status increases the risk of future PWMH and DWMH volume accumulation, mediated by baseline PWMH and DWMH volumes, respectively. Baseline SCD status increases the risk of future cognitive decline, mediated by baseline PWMH, while baseline depression status directly contributes to clinical outcome.


Subject(s)
Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Female , Male , Aged , Gray Matter/diagnostic imaging , Gray Matter/pathology , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Longitudinal Studies , Diagnostic Self Evaluation , Depression/diagnostic imaging , Depression/pathology
3.
Article in English | MEDLINE | ID: mdl-38972728

ABSTRACT

BACKGROUND AND AIM: There is a pressing need for non-invasive preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). This study investigates the potential of exosome-derived mRNA in plasma as a biomarker for diagnosing MVI. METHODS: Patients with suspected HCC undergoing hepatectomy were prospectively recruited for preoperative peripheral blood collection. Exosomal RNA profiling was conducted using RNA sequencing in the discovery cohort, followed by differential expression analysis to identify candidate targets. We employed multiplexed droplet digital PCR technology to efficiently validate them in a larger sample size cohort. RESULTS: A total of 131 HCC patients were ultimately enrolled, with 37 in the discovery cohort and 94 in the validation cohort. In the validation cohort, the expression levels of RSAD2, PRPSAP1, and HOXA2 were slightly elevated while CHMP4A showed a slight decrease in patients with MVI compared with those without MVI. These trends were consistent with the findings in the discovery cohort, although they did not reach statistical significance (P > 0.05). Notably, the expression level of exosomal PRPSAP1 in plasma was significantly higher in patients with more than 5 MVI than in those without MVI (0.147 vs 0.070, P = 0.035). CONCLUSION: This study unveils the potential of exosome-derived PRPSAP1 in plasma as a promising indicator for predicting MVI status preoperatively.

4.
Sci Rep ; 14(1): 15620, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972880

ABSTRACT

Hydraulic systems play a pivotal and extensive role in mechanics and energy. However, the performance of intelligent fault diagnosis models for multiple components is often hindered by the complexity, variability, strong hermeticity, intricate structures, and fault concealment in real-world conditions. This study proposes a new approach for hydraulic fault diagnosis that leverages 2D temporal modeling and attention mechanisms for decoupling compound faults and extracting features from multisample rate sensor data. Initially, to address the issue of oversampling in some high-frequency sensors within the dataset, variable frequency data sampling is employed during the data preprocessing stage to resample redundant data. Subsequently, two-dimensional convolution simultaneously captures both the instantaneous and long-term features of the sensor signals for the coupling signals of hydraulic system sensors. Lastly, to address the challenge of feature fusion with multisample rate sensor data, where direct merging of features through maximum or average pooling might dilute crucial information, a feature fusion and decoupling method based on a probabilistic sparse self-attention mechanism is designed, avoiding the issue of long-tail distribution in multisample rate sensor data. Experimental validation showed that the proposed model can effectively utilize samples to achieve accurate fault decoupling and classification for different components, achieving a diagnostic accuracy exceeding 97% and demonstrating robust performance in hydraulic system fault diagnosis under noise conditions.

5.
Med Sci Monit ; 30: e942954, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949992

ABSTRACT

BACKGROUND This study aimed to investigate the impact of EIT-guided yoga breathing training on postoperative pulmonary complications (PPCs) for esophageal cancer patients. MATERIAL AND METHODS Total of 62 patients underwent radical resections of esophageal cancer. Esophageal cancer patients were randomized to the standard care group, or the intervention group receiving an additional complete breathing exercise under the guidance of EIT in AICU. Following extubation after the esophagectomy, pulmonary functions were evaluated by EIT with center of ventilation (CoV), dependent silent spaces (DSS), and non-dependent silent spaces (NSS). RESULTS Sixty-one older esophageal cancer patients (31 in the Control group and 30 in the EIT group) were included in the final analysis. Forty-four patients experienced pulmonary complications after esophagectomy, 27 (87.1%) in the Control group and 17 (36.7%) in the EIT group (RR, 0.42 (95% CI: 0.26, 0.69). The most common pulmonary complication was pleural effusion, with an incidence of 30% in the EIT group and 74.2% in the Control group, with RR of 0.40 (95% CI: 0.23, 0.73). Time for the first pulmonary complication was significantly longer in the EIT group than in the Control group (hazard ratio, HR, 0.43; 95% CI 0.21 to 0.87; P=0.019). Patients in the EIT group had significantly higher scores in CoV, DSS, and NSS than in the Control group. CONCLUSIONS Guided by EIT, the addition of the postoperative breathing exercise to the standardized care during AICU could further improve pulmonary function, and reduce postoperative pulmonary complications after esophagectomy.


Subject(s)
Breathing Exercises , Esophageal Neoplasms , Esophagectomy , Postoperative Complications , Yoga , Humans , Male , Esophagectomy/adverse effects , Esophagectomy/methods , Female , Breathing Exercises/methods , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Middle Aged , Esophageal Neoplasms/surgery , Aged , Respiratory Function Tests , Lung/physiopathology
6.
Physiol Rep ; 12(12): e16022, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924383

ABSTRACT

Cardiac hypertrophy is an adaptive response to stressors such as high cardiac workload, which might lead to abnormal cardiac function and heart failure. Previous studies have indicated that macrophage migration inhibitory factor (MIF) might play a protective role in cardiac hypertrophy. Here, we aimed to illustrate the mechanism of MIF in protecting against pressure overload-induced cardiac hypertrophy. Transverse aortic constriction (TAC) mouse model was established and we found that overexpression of MIF protected against pressure overload-induced cardiac hypotrophy in TAC treated mice, as evidenced by significantly decreased the heart weight. In addition, transthoracic echocardiography showed that overexpression of MIF restored ejection fraction in TAC-treated mice. While TAC treatment resulted in a much larger cardiomyocyte size in mice, MIF overexpression notably decreased the cardiomyocyte size. Next, we demonstrated that MIF overexpression promoted the expression of miR-29b-3p which further downregulated the expression of its downstream target HMG box protein 1 (HBP1). Overexpression of HBP1 reversed the effect of MIF in alleviating Ang-II induced oxidative stress in cardiomyocytes. In conclusion, our findings suggest that MIF could attenuate pressure overload-induced cardiac hypertrophy through regulating the miR-29b-3p/HBP1 axis.


Subject(s)
Cardiomegaly , Macrophage Migration-Inhibitory Factors , Mice, Inbred C57BL , MicroRNAs , Myocytes, Cardiac , Animals , Male , Mice , Cardiomegaly/metabolism , Cardiomegaly/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Oxidative Stress
7.
J Agric Food Chem ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847422

ABSTRACT

Sitobion miscanthi L-type symbiont (SMLS) is a bacterial symbiont commonly found in the wheat aphid S. miscanthi. A new aphid densovirus, S. miscanthi densovirus (SmDV), was recently identified in S. miscanthi. In this study, the similar cellular tropism of SmDV and SMLS in aphid embryos was uncovered using in situ hybridization. SmDV infection significantly decreased the longevity and number of S. miscanthi offspring. However, the SmDV titers were significantly suppressed after SMLS transmission, thus reducing the negative effects of SmDV infection on S. miscanthi fitness. Moreover, an integrative analysis of RNA-seq datasets showed that SMLS inhibited the expression of genes related to the phosphatidylinositol 3-kinase (Pl3K)/Akt pathways and further induced the expression of antiviral factors associated with the apoptosis and FoxO signaling pathways. These results indicate that SMLS mediates host antiviral defenses to inhibit the propagation of SmDV, which was further verified by an RNA interference assay.

8.
Heliyon ; 10(11): e31901, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845879

ABSTRACT

Molecular techniques of nucleic acid testing recommended by the World Health Organization (WHO) for the Mycobacterium tuberculosis (MTB) detection were considered to have the potential access to the accurate tuberculosis (TB) notifications. In this study, a new method, which coupled real-time (rt) fluorescence technique with multiple cross displacement amplification (MCDA), was developed for the rapid, sensitive and specific detection of MTB (termed MTB-rt-MCDA). According to the principle of the rt-MCDA test, a set of ten primers were designed for the MCDA reaction, of which one was engineered with a restrictive endonuclease recognition site, a fluorophore and a quencher for achieving the real-time fluorescence detection. MTB-rt-MCDA test was conducted under the optimized conditions (67 °C, 40 min) on the real-time fluorescence platform. The MTB-rt-MCDA assay accurately identified the MTB strains with no cross reaction with other bacteria. The lowest detectable genomic DNA concentration of the MTB-rt-MCDA assay was 25 fg/µl. We employed the genomic DNA templates extracted from sputum of clinical cases for validating the practical applicability of this assay, and the detection power of the MTB-rt-MCDA assay was comparable to that of the Xpert method and MCDA-based biosensor detection and superior to smear microscope method. The complete process of the MTB-rt-MCDA assay, including rapid extraction of DNA and rt-MCDA test, takes less than 1 h. In conclusion, the presented MTB-rt-MCDA assay provided an effective and simple option for the rapid screening of MTB infection.

9.
Sci Rep ; 14(1): 14226, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902401

ABSTRACT

This study aimed to investigate impacts of Omicron infection on cancer patients in China. A retrospective study was conducted, including 347 cancer patients undergoing radiotherapy or chemoradiotherapy between July 2022 and March 2023. Three groups involved: 108 patients without SARS-CoV-2 infection (non-COVID-19 group), 102 patients beginning treatment 10 days after first SARS-CoV-2 infection (≥ 10 days COVID-19 group), and 137 patients beginning treatment less than 10 days after first SARS-CoV-2 infection (< 10 days COVID-19 group). SAA, hsCRP, ALT, etc., were used to assess COVID-19 infection. Serum levels of SAA, hsCRP and IL-6 were all raised in two COVID-19-infected groups (SAA < 0.01, hsCRP < 0.01, IL-6 < 0.05), but PCT, ALT, LDH and HBDH levels were only elevated in ≥ 10 days COVID-19 group (PCT = 0.0478, ALT = 0.0022, LDH = 0.0313, HBDH = 0.0077). Moreover, moderate and severe infected cases were higher in ≥ 10 days COVID-19 group than < 10 days COVID-19 group (12/102 vs 5/137, p = 0.0211), but no significance in myelosuppression and completion rates among three groups. Omicron infection led to inflammation, liver and cardiovascular injury on cancer patients, but delay duration of radiotherapy or chemoradiotherapy after infection did not affect the completion rates and myelosuppression of current therapy. Besides, severity of Omicron infection was even worse among cancer patients who received delayed treatment.


Subject(s)
COVID-19 , Chemoradiotherapy , Neoplasms , SARS-CoV-2 , Humans , COVID-19/therapy , Female , Male , Middle Aged , Neoplasms/radiotherapy , Neoplasms/therapy , Neoplasms/drug therapy , Chemoradiotherapy/adverse effects , Retrospective Studies , Aged , SARS-CoV-2/isolation & purification , Adult , China/epidemiology
10.
PLoS Biol ; 22(6): e3002669, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905164

ABSTRACT

Throughout human life, the brain undergoes intricate structural changes that support cognition. A study in PLOS Biology introduces new avenues for depicting the trajectory of the brain morphometric connectome and its underlying genetic and molecular mechanisms.


Subject(s)
Brain , Connectome , Brain/growth & development , Brain/anatomy & histology , Brain/physiology , Humans , Longevity/physiology , Magnetic Resonance Imaging/methods
11.
Respir Res ; 25(1): 254, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907347

ABSTRACT

Tuberculosis (TB) remains the second leading cause of death from a single infectious agent and long-term medication could lead to antituberculosis drug-induced liver injury (ATB-DILI). We established a prospective longitudinal cohort of ATB-DILI with multiple timepoint blood sampling and used untargeted metabolomics to analyze the metabolic profiles of 107 plasma samples from healthy controls and newly diagnosed TB patients who either developed ATB-DILI within 2 months of anti-TB treatment (ATB-DILI subjects) or completed their treatment without any adverse drug reaction (ATB-Ctrl subjects). The untargeted metabolome revealed that 77 metabolites (of 895 total) were significantly changed with ATB-DILI progression. Among them, levels of multiple fatty acids and bile acids significantly increased over time in ATB-DILI subjects. Meanwhile, metabolites of the same class were highly correlated with each other and pathway analysis indicated both fatty acids metabolism and bile acids metabolism were up-regulated with ATB-DILI progression. The targeted metabolome further validated that 5 fatty acids had prediction capability at the early stage of the disease and 6 bile acids had a better diagnostic performance when ATB-DILI occurred. These findings provide evidence indicating that fatty acids metabolism and bile acids metabolism play a vital role during ATB-DILI progression. Our report adds a dynamic perspective better to understand the pathological process of ATB-DILI in clinical settings.


Subject(s)
Antitubercular Agents , Biomarkers , Chemical and Drug Induced Liver Injury , Metabolomics , Humans , Antitubercular Agents/adverse effects , Male , Metabolomics/methods , Female , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/metabolism , Longitudinal Studies , Adult , Middle Aged , Biomarkers/blood , Prospective Studies , Predictive Value of Tests , Tuberculosis/drug therapy , Tuberculosis/blood , Tuberculosis/metabolism , Bile Acids and Salts/blood , Bile Acids and Salts/metabolism
12.
Biol Psychiatry ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942348

ABSTRACT

BACKGROUND: Mosaic chromosomal alterations (mCAs) are implicated in neuropsychiatric disorders, yet the contribution to schizophrenia (SCZ) risk for somatic copy number variations (sCNVs) emerging in early developmental stages is not fully established. METHODS: We analyzed blood-derived genotype arrays from 9,715 SCZ patients and 28,822 controls of Chinese descent using a computational tool (MoChA) based on long-range chromosomal information to detect mCAs. We focused on probable early developmental sCNVs through stringent filtering. We assessed the sCNVs' burden across varying cell fraction (CF) cutoffs, as well as the frequency with which genes were involved in sCNVs. We integrated this data with the Psychiatric Genomics Consortium (PGC) dataset, which comprises 12,834 SCZ cases and 11,648 controls of European descent, and complemented it with genotyping data from postmortem brain tissue of 936 subjects (449 cases and 487 controls). RESULTS: Patients with SCZ had a significantly higher somatic losses detection rate than control subjects (1.00% vs 0.52%; odds ratio (OR) = 1.91; 95% CI, 1.47-2.49; two-sided Fisher's exact test, p=1.49×10-6). Further analysis indicated that the ORs escalated proportionately (from 1.91 to 2.78) with the increment in CF cutoffs. Recurrent sCNVs associated with SCZ (OR>8; Fisher's exact test, p<0.05) were identified, including notable regions at 10q21.1 (ZWINT), 3q26.1 (SLITRK3), 1q31.1 (BRINP3) and 12q21.31-21.32 (MGAT4C and NTS) in the Chinese cohort, some regions validated with PGC data. Cross-tissue validation pinpointed somatic losses at loci like 1p35.3-35.2 and 19p13.3-13.2. CONCLUSIONS: The study highlights mCAs' significant impact on SCZ, suggesting their pivotal role in the disorder's genetic etiology.

13.
Talanta ; 277: 126310, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38815319

ABSTRACT

The sensitive and accurate detection of target microRNA is especially important for the diagnosis, staging, and treatment of hepatocellular carcinoma (HCC). Herein, we report a simple strand displacement and CRISPR-Cas12a amplification strategy with nanozymes as a signal reporter for the binary visual and colorimetric detection of the HCC related microRNA. Pt@Au nanozymes with excellent peroxidase enzyme activity were prepared and linked to magnetic beads via a single-stranded DNA (ssDNA) linker. The target microRNA was designed to trigger strand displacement amplification and release a DNA promoter to activate the CRISPR-Cas12a system. The activated CRISPR-Cas12a system efficiently cleaved the linker ssDNA and released Pt@Au nanozymes from magnetic beads to induce the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine. The strand displacement amplification converted the single microRNA input into abundant DNA promoter output, which improved the detection sensitivity by over two orders of magnitude. Through integration of strand displacement amplification and the nanozyme-mediated CRISPR-Cas12a system, limits of detection of 0.5 pM and 10 pM for miRNA-21 were achieved with colorimetric and visual readouts, respectively. The proposed strategy can achieve accurate quantitative detection of miRNA-21 in the range from 1 pM to 500 pM. The detection results for miRNA-21 using both colorimetric and visual readouts were validated in 40 clinical serum samples. Significantly, the proposed strategy achieved visual HCC diagnosis with the naked eye and could distinguish distinct Barcelona clinical HCC stages by colorimetric detection, showing good application prospects for sensitive and facile point-of-care testing for HCC.

14.
J Alzheimers Dis ; 99(3): 965-980, 2024.
Article in English | MEDLINE | ID: mdl-38759005

ABSTRACT

Background: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) show differential vulnerability to large-scale brain functional networks. Plasma neurofilament light (NfL), a promising biomarker of neurodegeneration, has been linked in AD patients to glucose metabolism changes in AD-related regions. However, it is unknown whether plasma NfL would be similarly associated with disease-specific functional connectivity changes in AD and bvFTD. Objective: Our study examined the associations between plasma NfL and functional connectivity of the default mode and salience networks in patients with AD and bvFTD. Methods: Plasma NfL and neuroimaging data from patients with bvFTD (n = 16) and AD or mild cognitive impairment (n = 38; AD + MCI) were analyzed. Seed-based functional connectivity maps of key regions within the default mode and salience networks were obtained and associated with plasma NfL in these patients. RESULTS: We demonstrated divergent associations between NfL and functional connectivity in AD + MCI and bvFTD patients. Specifically, AD + MCI patients showed lower default mode network functional connectivity with higher plasma NfL, while bvFTD patients showed lower salience network functional connectivity with higher plasma NfL. Further, lower NfL-related default mode network connectivity in AD + MCI patients was associated with lower Montreal Cognitive Assessment scores and higher Clinical Dementia Rating sum-of-boxes scores, although NfL-related salience network connectivity in bvFTD patients was not associated with Neuropsychiatric Inventory Questionnaire scores. CONCLUSIONS: Our findings indicate that plasma NfL is differentially associated with brain functional connectivity changes in AD and bvFTD.


Subject(s)
Alzheimer Disease , Biomarkers , Frontotemporal Dementia , Magnetic Resonance Imaging , Neurofilament Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/diagnostic imaging , Male , Aged , Neurofilament Proteins/blood , Middle Aged , Biomarkers/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging
15.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814872

ABSTRACT

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Subject(s)
Cerebral Cortex , Cognition , Magnetic Resonance Imaging , Humans , Cognition/physiology , Cognition/drug effects , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Male , Magnetic Resonance Imaging/methods , Female , Adolescent , Child , Connectome/methods , Alprazolam/pharmacology , Receptors, GABA-A/metabolism , Young Adult
16.
Biodes Res ; 6: 0032, 2024.
Article in English | MEDLINE | ID: mdl-38716149

ABSTRACT

Messenger RNA (mRNA) therapeutics hold great potential in the prevention and treatment of many diseases owing to several unique advantages. Delivery of mRNA into target cells is a critical step in mRNA therapy. Efficient and safe delivery systems remain an urgent need. Here, we provide an overview of the current applications of protein nanocages (PNCs), which include different types of PNCs, such as viral capsids, nonviral PNCs, and artificial PNCs, in mRNA delivery. PNCs have the features of uniform size, controllable assembly, modifiable inner and outer surfaces, good biocompatibility, and biodegradability, making them ideal candidates for mRNA delivery. In this review, the properties, loading strategies, and delivery outcomes of each tested PNC are introduced. The challenges faced by PNC-based mRNA carriers are discussed. We also share our perspectives on possible strategies to address these challenges, emphasizing the opportunities brought by emerging technologies and disciplinary convergence.

17.
Article in English | MEDLINE | ID: mdl-38701138

ABSTRACT

BACKGROUND: Subarachnoid hemorrhage (SAH) represents a severe injury to the brain and is associated with a high mortality (40%). Several experimental SAH models are described in the literature requiring specialized equipment and a high degree of surgical expertise. Our goal was to validate a simplified, cost-effective model to permit future studies of SAH. METHODS: SAH was induced by injection of homologous blood into the cisterna magna. Perfusion-fixation then perfusion of gelatinous India ink was performed. Brains and brainstems were collected and imaged for analysis of cerebral vasospasm. Triphenyl tetrazolium chloride (TTC) staining was used to analyze brain tissue cell death 24 hours following stroke. A composite neuroscore was utilized to assess SAH-related neurologic deficits. RESULTS: Anterior cerebral artery and basilary artery diameters were significantly reduced at 24 hours post SAH induction. Middle cerebral artery diameter was also reduced; however, the results were not significant. TTC staining showed no infarcted tissue. Neuroscores were significantly lower in the SAH mice, indicating the presence of functional deficits. CONCLUSIONS: This simplified model of SAH elicits pathological changes consistent with those described for more complex models in the literature. Therefore, it can be used in future preclinical studies examining the pathophysiology of SAH and novel treatment options.

18.
Nanoscale ; 16(21): 10483, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38764388

ABSTRACT

Correction for 'Promoter-regulated in vivo asymmetric self-assembly strategy to synthesize heterogeneous nanoparticles for signal amplification' by Chen Chen et al., Nanoscale, 2022, 14, 16180-16184, https://doi.org/10.1039/D2NR04661J.

19.
Bioresour Technol ; 402: 130845, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754559

ABSTRACT

Waste-Green Infrastructure Nexus is crucial to mitigate carbon emissions in waste disposal and promote eco-functions of green infrastructure in a circular bio-economy. Our purpose is to verify the feasibility of the nexus via "food waste anaerobic digestion - digestate/digestate biochar - green roof promotion". The results found that food waste digestate and digestate biochar significantly promoted green roof plant growth, evapotranspiration, rainwater retention, runoff reduction, and prevention of nutrient leaching. Digestate treatments were better than digestate biochar for the green roof promotion. The promotion ranked consistently with 20 % digestate > 10 % digestate > 20 % digestate biochar > 10 % digestate biochar > control in stolon growth, leaf emergence, branching of Paspalum vaginatum, green roof establishment, rainwater retention, runoff reduction, and the leaching of nitrogen, phosphorus, potassium. This study demonstrated that food waste could be regenerated to promote urban green infrastructure to form a circular bio-economy by the Waste-Green Infrastructure Nexus.


Subject(s)
Charcoal , Food , Refuse Disposal/methods , Conservation of Natural Resources/methods , Food Loss and Waste
20.
Biomedicines ; 12(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38790962

ABSTRACT

Inflammatory bowel disease (IBD) is a group of chronic disorders characterized by pain, ulceration, and the inflammation of the gastrointestinal tract (GIT) and categorized into two major subtypes: ulcerative colitis (UC) and Crohn's disease. The inflammation in UC is typically restricted to the mucosal surface, beginning in the rectum and extending through the entire colon. UC patients typically show increased levels of pro-inflammatory cytokines, leading to intestinal epithelial apoptosis and mucosal inflammation, which impair barrier integrity. Chronic inflammation is associated with the rapid recruitment and inappropriate retention of leukocytes at the site of inflammation, further amplifying the inflammation. While UC can be managed using a number of treatments, these drugs are expensive and cause unwanted side effects. Therefore, a safe and effective treatment for UC patients is needed. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide and an analog of the endocannabinoid anandamine. PEA administration has been found to normalize intestinal GIT motility and reduce injury in rodents and humans. In the current study, we examined the efficacy of PEA encapsulated in phytosomes following oral administration in experimental ulcerative colitis. Here, we showed that PEA at a human-equivalent dose of 123 mg/kg (OD or BID) attenuated DSS-induced experimental colitis as represented by the reduction in clinical signs of colitis, reduction in gross mucosal injury, and suppression of leukocyte recruitment at inflamed venules. These findings add to the growing body of data demonstrating the beneficial effects of PEA to control the acute phase of intestinal inflammation occurring during UC.

SELECTION OF CITATIONS
SEARCH DETAIL
...