Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 924
Filter
1.
Biomater Adv ; 163: 213958, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39053385

ABSTRACT

Irregular bone defects caused by trauma and bone diseases provide a complex implant environment for surgery. Traditional implants often fail to integrate well with the surrounding bone defect interface, therefore, developing an artificial bone scaffold that can adapt to irregular bone defect boundaries is of significant importance for bone defect repair. This study successfully utilized a shape memory ternary copolymer polylactic acid-trimethylene carbonate-hydroxyacetic acid (PLLA-TMC-GA) and dopamine-modified nano-hydroxyapatite (PHA) composite to construct a temperature-responsive bone repair scaffold (PTG/PHA), thereby enhancing the interface compatibility between the implant and the surrounding environment. The addition of PHA has effectively improved the hydrophilicity of the stent and significantly increased its mechanical strength. Furthermore, the Sodium alginate (SA) hydrogel loaded with Icariin (Ica) coated on the stent surface promotes the growth and differentiation of bone cells through the drug-scaffold synergistic effect. Both in vivo and in vitro experiments have shown that the synergistic effect of the composite stent with Icariin significantly enhances the repair of bone defects. This study provides a promising tissue engineering method for the repair of irregular bone defects.

2.
ACS Appl Mater Interfaces ; 16(27): 34840-34849, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38946061

ABSTRACT

Adopting noble metals on non-noble metals is an effective strategy to balance the cost and activity of electrocatalysts. Herein, a thorough analysis of the synergistic OER is conducted at the heterogeneous interface formed by Ir clusters and NiCo2O4 based on DFT calculations. Specifically, the electrons spontaneously bring an eg occupancy of interfacial Ir close to unity after the absorbed O, providing more transferable electrons for the conversion of the absorbed O-intermediates. Besides, the diffuse distribution of electrons in the Ir 5d orbital fills the antibonding orbital after O is absorbed, avoiding the desorption difficulties caused by the stronger Ir-O bonds. The electrons transfer from Ir to Co atoms at the heterogeneous interface and fill the Co 3d band near the Fermi level, stimulating the interfacial Co to participate in the direct O-O coupling (DOOC) pathway. Experimentally, the ultrathin-modulated NiCo2O4 nanosheets are used to support Ir clusters (Ircluster-E-NiCo2O4) by the electrodeposition method. The as-synthesized Ircluster-E-NiCo2O4 catalyst achieves a current density of 10 mA cm-2 at an ultralow overpotential of 238 mV and works steadily for 100 h under a high current of 100 mA cm-2, benefiting from the efficient DOOC pathway during the OER.

3.
Eur J Pharmacol ; : 176846, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067566

ABSTRACT

Chronic lung disease is the third leading cause of death globally, imposing huge burden of death, disability and healthcare costs. However, traditional pharmacotherapy has relatively limited effects in improving the cure rate and reducing the mortality of chronic lung disease. Thus, new treatments are urgently needed for the prevention and treatment of chronic lung disease. It is particularly noteworthy that, multiple aging-related phenotypes were involved in the occurrence and development of chronic lung disease, such as blocked proliferation, telomere attrition, mitochondrial dysfunction, epigenetic alterations, altered nutrient perception, stem cell exhaustion, chronic inflammation, etc. Consequently, senescent cells induce a series of pathological changes in the lung, such as immune dysfunction, airway remodeling, oxidative stress and regenerative dysfunction, which is a critical issue that needs special attention in chronic lung diseases. Therefore, anti-aging interventions may bring new insights into the treatment of chronic lung diseases. In this review, we elaborate the involvement of aging in chronic lung disease and further discuss the application and prospects of anti-aging therapy.

4.
Int Immunopharmacol ; 138: 112616, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38959544

ABSTRACT

Intervertebral disc degeneration (IDD) is the leading cause of low back pain, which is one of the major factors leading to disability and severe economic burden. Necroptosis is an important form of programmed cell death (PCD), a highly regulated caspase-independent type of cell death that is regulated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL)-mediated, play a key role in the pathophysiology of various inflammatory, infectious and degenerative diseases. Recent studies have shown that necroptosis plays an important role in the occurrence and development of IDD. In this review, we provide an overview of the initiation and execution of necroptosis and explore in depth its potential mechanisms of action in IDD. The analysis focuses on the connection between NP cell necroptosis and mitochondrial dysfunction-oxidative stress pathway, inflammation, endoplasmic reticulum stress, apoptosis, and autophagy. Finally, we evaluated the possibility of treating IDD by inhibiting necroptosis, and believed that targeting necroptosis may be a new strategy to alleviate the symptoms of IDD.


Subject(s)
Intervertebral Disc Degeneration , Necroptosis , Humans , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/pathology , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy , Oxidative Stress , Protein Kinases/metabolism
5.
iScience ; 27(7): 110344, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39055942

ABSTRACT

This study investigated host responses to long COVID by following up with 89 of the original 144 cohorts for 1-year (N = 73) and 2-year visits (N = 57). Pulmonary long COVID, characterized by fibrous stripes, was observed in 8.7% and 17.8% of patients at the 1-year and 2-year revisits, respectively, while renal long COVID was present in 15.2% and 23.9% of patients, respectively. Pulmonary and renal long COVID at 1-year revisit was predicted using a machine learning model based on clinical and multi-omics data collected during the first month of the disease with an accuracy of 87.5%. Proteomics revealed that lung fibrous stripes were associated with consistent down-regulation of surfactant-associated protein B in the sera, while renal long COVID could be linked to the inhibition of urinary protein expression. This study provides a longitudinal view of the clinical and molecular landscape of COVID-19 and presents a predictive model for pulmonary and renal long COVID.

6.
Cell Rep ; 43(6): 114372, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38878289

ABSTRACT

Emerging evidence highlights the regulatory role of paired-like (PRD-like) homeobox transcription factors (TFs) in embryonic genome activation (EGA). However, the majority of PRD-like genes are lost in rodents, thus prompting an investigation into PRD-like TFs in other mammals. Here, we showed that PRD-like TFs were transiently expressed during EGA in human, monkey, and porcine fertilized embryos, yet they exhibited inadequate expression in their cloned embryos. This study, using pig as the research model, identified LEUTX as a key PRD-like activator of porcine EGA through genomic profiling and found that LEUTX overexpression restored EGA failure and improved preimplantation development and cloning efficiency in porcine cloned embryos. Mechanistically, LEUTX opened EGA-related genomic regions and established histone acetylation via recruiting acetyltransferases p300 and KAT2A. These findings reveal the regulatory mechanism of LEUTX to govern EGA in pigs, which may provide valuable insights into the study of early embryo development for other non-rodent mammals.


Subject(s)
Genome , Nuclear Transfer Techniques , Animals , Swine , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Embryonic Development/genetics , Embryo, Mammalian/metabolism , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Acetylation , Cloning, Organism/methods , Histones/metabolism , Blastocyst/metabolism
7.
J Dent ; : 105153, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914183

ABSTRACT

OBJECTIVES: To evaluate the effects of repeated cut-off and rescan procedures on the trueness of three intraoral scanners (IOS). METHODS: A tooth model (#16) with a standard class II cavity was prepared, and the complete-arch was scanned using a laboratory scanner (D2000, 3Shape A/S) to obtain a reference scan. Then the typodont was scanned with three IOSs (3Shape TRIOS 3, CEREC Omnicam, and Medit i500) under two rescanning strategies (full-cut and partial-cut), with varying numbers of repeated cut-off and rescanning procedures (0, 1, 3, 5, 7, or 10). The trueness discrepancy between the reference and experimental digital scan was estimated using root mean square (RMS) calculations. Three regions of interest were selected to represent the rescanning, identification, and non-rescan area. And the discrepancies were analyzed using a linear mixed model (α=.05). RESULTS: Cut-off and rescanning procedures significantly decreased the trueness of digital scans in all test conditions compared to the reference. However, no progressive increase in discrepancy was observed under any rescan conditions. Significant influences on trueness were found based on the IOS used, with the 3Shape system exhibiting lower RMS values. The partial-cut strategy showed lower RMS values compared to the full-cut strategy, albeit without statistical significance. CONCLUSIONS: While repeated cut-off and rescanning procedures led to a decline in the quality of digital impressions, they did not result in discrepancy accumulation with repeated rescanning. CLINICAL SIGNIFICANCE: To ensure high scanning accuracy in dental practice, it is advisable to minimize the rescanning area when correcting imperfections in digital scans. Additionally, selecting an appropriate scanner can help mitigate the negative effects of the rescanning technique.

8.
Sci Rep ; 14(1): 12758, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38830909

ABSTRACT

Circulating tumor cells (CTCs) as a liquid biopsy have great potential in clinical applications and basic cancer research, but their clinical use in gastric cancer remains unclear. This study investigated whether CTCs could be used as a potential prognosis predictor in patients with gastric cancer. A total of 120 patients with pathologically confirmed gastric cancer were enrolled from January 1, 2015, to December 1, 2019. All patients were initially diagnosed without previous treatment, and then the number of CTCs was detected using the NEimFISH method before radical surgical resection. Regular follow-up was performed in all patients, and the correlations between the number of CTCs and clinical endpoints, such as disease-free survival (DFS) and overall survival (OS), were evaluated. The univariate and multivariate hazard ratios were calculated using the Cox proportional hazard model. Based on the number of CTCs, we defined CTCs ≥ 2 per 7.5 mL of whole blood as the positive group and CTCs < 2 as the negative group. Among the 120 patients who underwent CTC detection before surgery, the rate of CTC-positive patients was 64.17% (77/120) of which stage I and II patients accounted for 22.50% and stage III patients accounted for 41.67% (P = 0.014). By detecting CTCs before surgery and at the time of recurrence, the number of CTCs tends to increase concomitantly with disease progression (median: 2 VS 5 per 7.5 mL). Multivariate analysis showed that age (HR, 0.259; 95% CI, 0.101-0.662; P = 0.005), D-dimer (HR, 3.146; 95% CI, 1.169-8.461; P = 0.023), and lymph node metastasis (HR, 0.207; 95% CI, 0.0071-0.603; P = 0.004) were factors correlated with CTCs. In addition, the median follow-up of all the patients was 38.0 months (range of 28-80 months); the DFS in CTC-positive patients was significantly shorter than that of the CTC-negative patients, and a significant difference was found based on the Cox proportional hazard regression model analysis (44.52 ± 2.83 m vs. 74.99 ± 2.78 m, HR = 4.550, P = 0.018). The OS was shorter in the CTC-positive group than in the CTC-negative group before the operation, but the result was not significant based on the Cox proportional hazard regression model analysis (47.58 ± 2.46 m vs. 70.68 ± 3.53 m, HR = 2.261, P = 0.083). The number of CTCs tends to increase concomitantly with disease progression. In addition, the detection of CTCs was an independent predictor of shorter DFS in gastric cancer. However, the relationship between CTCs and OS needs to be determined in future studies.


Subject(s)
Neoplasm Recurrence, Local , Neoplastic Cells, Circulating , Stomach Neoplasms , Humans , Neoplastic Cells, Circulating/pathology , Stomach Neoplasms/pathology , Stomach Neoplasms/blood , Stomach Neoplasms/surgery , Stomach Neoplasms/mortality , Male , Female , Middle Aged , Aged , Neoplasm Recurrence, Local/pathology , Prognosis , Adult , Biomarkers, Tumor/blood , Disease-Free Survival , Neoplasm Staging , Proportional Hazards Models
9.
MedComm (2020) ; 5(7): e621, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38938285

ABSTRACT

Acute asthma exacerbation refers to the progressive deterioration of asthma symptoms that is always triggered by virus infection represented by respiratory syncytial virus (RSV). After RSV infection, exaggerated Th2-mediated pulmonary inflammation is the critical pathological response of asthmatic patients with acute exacerbation. Significantly, airway epithelial cells, being the primary targets of RSV infection, play a crucial role in controlling the pulmonary inflammatory response by releasing airway epithelial cell-derived exosomes (AEC-Exos), which potentially influence the development of asthma. However, the specific role of AEC-Exos in acute asthma exacerbation after RSV infection remains obscure. The purpose of this study was to determine the distinct function of AEC-Exos in exacerbating acute asthma following RSV infection. Blockade of exosomes by GW reduce the enhanced pulmonary inflammation significantly. Specifically, the enhanced Th2 inflammation was induced by AEC-Exos thorough transportation of hsa-miR-155-5p-Sirtuin 1 (SIRT1) pathway during acute asthma exacerbation. Targeted inhibition of hsa-miR-155-5p blocks the exaggerated Th2 inflammation effectively in mice with acute asthma exacerbation. In summary, our study showed that during acute asthma exacerbation after RSV infection, AEC-Exos promote the enhanced Th2 inflammation through transportation of increased hsa-miR-155-5p, which was mediated partly through SIRT1-mediated pathway. hsa-miR-155-5p is a potential biomarker for early prediction of acute asthma exacerbation.

10.
Microbes Infect ; : 105373, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857786

ABSTRACT

Gut microbiota dysbiosis increases the susceptibility to Clostridioides difficile infection (CDI). In this study, we monitored C. difficile colonization (CDC) patients from no CDC status (CDN) to CDC status (CDCp) and CDI patients from asymptomatic status before CDI (PRECDI), CDI status (ONCDI), to asymptomatic status after CDI (POSTCDI). Based on metagenomic sequencing, we aimed to investigate the interaction pattern between gut microbiota and C. difficile. There was no significant difference of microbiota diversity between CDN and CDCp. In CDCp, Bacteroidetes and short-chain fatty acid (SCFA)-producing bacteria increased, with a positive correlation between SCFA-producing bacteria and C. difficile colonization. Compared with PRECDI, ONCDI and POSTCDI showed a significant decrease in microbiota diversity, particularly in Bacteroidetes and SCFA-producing bacteria, with a positive correlation between opportunistic pathogen and C. difficile. Fatty acid metabolism, and amino acid biosynthesis were enriched in CDN, CDCp, and PRECDI, while bile secretion was enriched in ONCDI and POSTCDI. Microbiota and metabolic pathways interaction networks in CDN and CDCp were more complex, particularly pathways in fatty acid and bile acid metabolism. Increasing of Bacteroidetes and SCFA-producing bacteria, affecting amino acid and fatty acid metabolism, is associated with colonization resistance to C. difficile and inhibiting the development of CDI.

11.
Biochem Biophys Res Commun ; 724: 150224, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38851139

ABSTRACT

Despite intensive search over the past decades, only a few small-molecule DNA fluorescent dyes were found with large Stokes shifts. These molecules, however, are often too toxic for widespread usage. Here, we designed DNA-specific fluorescent dyes rooted in benzimidazole architectures with a hitherto unexplored molecular framework based on thiazole-benzimidazole scaffolding. We further incorporated a pyrazole ring with an extended sidechain to prevent cell penetration. These novel benzimidazole derivatives were predicted by quantum calculations and subsequently validated to have large Stokes shifts ranging from 135 to 143 nm, with their emission colors changed from capri blue for the Hoechst reference compound to iguana green. These readily-synthesized compounds, which displayed improved DNA staining intensity and detection limits along with a complete loss of capability for cellular membrane permeation and negligible mutagenic effects as designed, offer a safer alternative to the existing high-performance small-molecule DNA fluorescent dyes.


Subject(s)
Benzimidazoles , DNA , Fluorescent Dyes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , DNA/chemistry , Benzimidazoles/chemistry , Humans , Drug Design , Mutagens/chemistry , Mutagens/toxicity , DNA Damage
12.
Risk Anal ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851300

ABSTRACT

In this paper, we develop a generic framework for systemically encoding causal knowledge manifested in the form of hierarchical causality structure and qualitative (or quantitative) causal relationships into neural networks to facilitate sound risk analytics and decision support via causally-aware intervention reasoning. The proposed methodology for establishing causality-informed neural network (CINN) follows a four-step procedure. In the first step, we explicate how causal knowledge in the form of directed acyclic graph (DAG) can be discovered from observation data or elicited from domain experts. Next, we categorize nodes in the constructed DAG representing causal relationships among observed variables into several groups (e.g., root nodes, intermediate nodes, and leaf nodes), and align the architecture of CINN with causal relationships specified in the DAG while preserving the orientation of each existing causal relationship. In addition to a dedicated architecture design, CINN also gets embodied in the design of loss function, where both intermediate and leaf nodes are treated as target outputs to be predicted by CINN. In the third step, we propose to incorporate domain knowledge on stable causal relationships into CINN, and the injected constraints on causal relationships act as guardrails to prevent unexpected behaviors of CINN. Finally, the trained CINN is exploited to perform intervention reasoning with emphasis on estimating the effect that policies and actions can have on the system behavior, thus facilitating risk-informed decision making through comprehensive "what-if" analysis. Two case studies are used to demonstrate the substantial benefits enabled by CINN in risk analytics and decision support.

13.
ACS Omega ; 9(17): 18872-18881, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708222

ABSTRACT

Fishery utilization of idle saline-alkaline water resources offers various benefits including reducing surrounding soil salinity, improving the ecological environment, increasing arable land area, and providing economic advantages to the fishery industry. However, for decades, the characteristics and regulatory mechanisms of microbial communities that affect fishery utilization have not been clear, which restricts their application. In this study, high-throughput 16S rRNA amplicon sequencing was employed to analyze the bacterial community in these water resources. The sequencing yielded high-quality sequences (2,765,063), resulting in the identification of 18,761 bacterial operational taxonomic units (OTUs). Analysis revealed that the type of saline-alkaline water had a more significant influence on the bacterial community compared to seasonal variations within the aquaculture period. The Chao index for saline-alkaline ponds (ASW) was significantly lower (P < 0.05) than for still saline-alkaline water (SSW) and flowing saline-alkaline water (FSW), while the Shannon index for ASW was also significantly lower (P < 0.05) compared to FSW. When comparing ASW to nonaquaculture saline-alkaline water, a decrease in Proteobacteria to 26.87% was noted, particularly α-proteobacteria and γ-proteobacteria, accompanied by a rapid increase in Actinobacteria and Cyanobacteria to 28.60%. Networkx analysis further revealed that ASW significantly increased competition and amensalism from secondary saline-alkaline water microorganisms, resulting in a more solitary bacterial community composition as an adaptive strategy to cope with intense environmental pressures. Key bacterial species such as Pseudomonas, Hydrogenophaga, and Flavobacterium were found to be involved in hydrogen-cycling, nitrogen-cycling, and carbon-cycling, respectively, with all three exhibiting high abundance in FSW. Consequently, FSW demonstrates significant advantages in biogeochemical cycling, pollutant degradation, and the utilization of indigenous probiotic bacteria. Although the surface of abandoned secondary saline-alkaline land was covered with white salt particles, the fishery utilization of saline-alkaline water with low salinity levels (4.0-5.5), and the presence of nitrate and phosphate were identified as primary determinants of bacterial community composition. Nevertheless, a comparison of coastal high-salinity ponds indicated that salinity still selectively affects bacterial communities to some extent. Overall, our study provides valuable insights into the microbial regulation of nitrite during saline-alkaline water aquaculture, thereby aiding in the efficient utilization of secondary saline-alkaline water resources for fisheries.

14.
PLoS One ; 19(5): e0301686, 2024.
Article in English | MEDLINE | ID: mdl-38809916

ABSTRACT

BACKGROUND: Functional dyspepsia (FD) refers to a group of clinical symptoms caused by gastric and duodenal dysfunction. Which is a chronic functional disorder of the gastrointestinal tract with no cure. Zhishixiaopi decoction (ZSXP) is a type of Chinese herbal prescription that for treating FD. Although some randomized controlled trials (RCTs) report that ZSXP can significantly improve FD clinical symptoms and/or laboratory results, the trial design varies greatly among studies, making it challenging to draw a conclusion of the efficacy of ZSXP in treating FD. DESIGN: A systematic review and a meta-analysis. SETTING: Mianyang Central Hospital. OBJECTIVE: We conducted a systematic review and a meta-analysis to evaluate the efficacy and safety of ZSXP for treating FD. METHODS: We developed inclusion and exclusion criteria based on FD diagnosed criteria, interventions to treat FD, and outcomes of these interventions. Search strategies combined disease terms, symptom terms, anatomy terms and intervention terms. Literature search was conducted on eight online databases in English or Chinese, including Medline (via PubMed), Embase (via Ovid), The Cochrane Library, Web of Science, China Biology Medicine (CBM), China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP), and Wanfang Database. INTERVENTION: The experimental group received oral administration of ZSXP and had a complete treatment process. ZSXP needs to fully contain the key herbal ingredients, regardless of whether the dosage of each herb is consistent with the original prescription. The Control group received monotherapy or combination therapy of other Western medicine and had a complete treatment process. OUTCOMES: The primary outcomes appraised were Total effective rate (TER), serum levels of Motilin(MOT), Gastrin(GAS) and Somatostatin (SS), Gastric emptying rate (GER) using a Barium meal method (GER(B)) and Gastric half emptying time using an Ultrasonic method (GHET(T1/2)). The Cochrane Bias Risk Tool was used for quality critical appraisal, Review Manager (RevMan) version 5.3 was used for statistical analysis. RESULTS: A total of 21 medium-quality RCTs were included in the meta-analysis. All 21 included studies were conducted and completed in Mainland China from 1998 to 2020. The treatment duration was between two weeks to two months. The meta-analysis suggests that, compared with the Western medicine treatment group, ZSXP treatment was more effective to improving the TER in FD [Odds ratio, OR = 3.54, 95%CI:(2.49, 5.05), Z = 6.99, P<0.00001] without significant increase in adverse events. However, no statistical significance was found between the groups in serum MOT levels [Standard mean difference, SMD = 1.05, 95%CI:(-0.42, 2.53), Z = 1.04, P = 0.16], serum GAS levels [SMD = -0.16, 95%CI:(-1.20, 0.88), Z = 0.31, P = 0.76], serum SS levels [SMD = -0.04, 95%CI:(-1.97, 1.89), Z = 0.04, P = 0.97], GER(B) [SMD = 1.09, 95%CI:(-0.81, 3.00), Z = 1.12, P = 0.26]or GHET(T1/2) [Mean difference, MD = -2.18, 95%CI:(-5.55, 1.19), Z = 1.27, P = 0.20]. CONCLUSIONS: The meta-analysis suggests that Zhishixiaopi treatment is a relatively effective and safe traditional Chinese medicine prescription and could be used for functional dyspepsia treatment. Considering the limitations of this study, the conclusion needs to be further confirmed by high-quality, multi-center, and large-sample randomized controlled trials.


Subject(s)
Drugs, Chinese Herbal , Dyspepsia , Randomized Controlled Trials as Topic , Humans , Dyspepsia/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/adverse effects , Treatment Outcome
15.
World J Gastroenterol ; 30(17): 2354-2368, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38813048

ABSTRACT

BACKGROUND: Difficulty in obtaining tetracycline, increased adverse reactions, and relatively complicated medication methods have limited the clinical application of the classic bismuth quadruple therapy. Therefore, the search for new alternative drugs has become one of the research hotspots. In recent years, minocycline, as a semisynthetic tetracycline, has demonstrated good potential for eradicating Helicobacter pylori (H. pylori) infection, but the systematic evaluation of its role remains lacking. AIM: To explore the efficacy, safety, and compliance of minocycline in eradicating H. pylori infection. METHODS: We comprehensively retrieved the electronic databases of PubMed, Embase, Web of Science, China National Knowledge Infrastructure, SinoMed, and Wanfang database as of October 30, 2023, and finally included 22 research reports on H. pylori eradication with minocycline-containing regimens as per the inclusion and exclusion criteria. The eradication rates of H. pylori were calculated using a fixed or a random effect model, and the heterogeneity and publication bias of the studies were measured. RESULTS: The single-arm meta-analysis revealed that the minocycline-containing regimens achieved good overall H. pylori eradication rates, reaching 82.3% [95% confidence interval (CI): 79.7%-85.1%] in the intention-to-treat analysis and 90.0% (95%CI: 87.7%-92.4%) in the per-protocol analysis. The overall safety and compliance of the minocycline-containing regimens were good, demonstrating an overall incidence of adverse reactions of 36.5% (95%CI: 31.5%-42.2%). Further by traditional meta-analysis, the results showed that the minocycline-containing regimens were not statistically different from other commonly used eradication regimens in eradication rate and incidence of adverse effects. Most of the adverse reactions were mild to moderate and well-tolerated, and dizziness was relatively prominent in the minocycline-containing regimens (16%). CONCLUSION: The minocycline-containing regimens demonstrated good efficacy, safety, and compliance in H. pylori eradication. Minocycline has good potential to replace tetracycline for eradicating H. pylori infection.


Subject(s)
Anti-Bacterial Agents , Drug Therapy, Combination , Helicobacter Infections , Helicobacter pylori , Minocycline , Humans , Minocycline/adverse effects , Minocycline/administration & dosage , Minocycline/therapeutic use , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Helicobacter pylori/drug effects , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Drug Therapy, Combination/methods , Treatment Outcome , Proton Pump Inhibitors/adverse effects , Proton Pump Inhibitors/therapeutic use , Proton Pump Inhibitors/administration & dosage , Medication Adherence
16.
Mar Pollut Bull ; 203: 116505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772172

ABSTRACT

Marine litter pollution poses a significant threat to offshore ecosystems, eliciting widespread concern. We investigated seafloor litter patterns in the Pearl River Estuary and adjacent coastal waters of China in 2023 via bottom trawl survey. Average number and weight densities were found to be 154.34 ± 30.95 n/km2 and 2384.63 ± 923.98 g/km2, respectively. Plastic was the most abundant material by number density (79.07 %), and rubber the highest by weight density (22.93 %). Overall number density varied from 40.50 ± 22.50 to 221.13 ± 52.44 n/km2, with the highest in Daya Bay and the lowest in Guanghai Bay. Weight density varied from 189.93 ± 71.94 to 5386.70 ± 3050.30 g/km2, with the highest in Qiao Island and the lowest in Honghai Bay. The main source was plastic bags and wrappers. The Pearl River Delta and Daya Bay were identified as seafloor litter distribution hotspots. Controlling plastic waste input is crucial for reducing seafloor litter in the Pearl River Estuary.


Subject(s)
Environmental Monitoring , Estuaries , Plastics , Rivers , China , Plastics/analysis , Ecosystem
17.
Sci Total Environ ; 934: 173298, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38761945

ABSTRACT

Rapid urbanization has precipitated significant anthropogenic pollution (nutrients and pathogens) in urban rivers and their receiving systems, which consequentially disrupted the compositions and assembly of bacterial community within these ecosystems. However, there remains scarce information regarding the composition and assembly of both planktonic and benthic bacterial communities as well as pathogen distribution in such environments. In this study, full-length 16S rRNA gene sequencing was conducted to investigate the bacterial community composition, interactions, and assembly processes as well as the distribution of potential pathogens along a riverine-coastal continuum in Shenzhen megacity, China. The results indicated that both riverine and coastal bacterial communities were predominantly composed of Gammaproteobacteria (24.8 ± 12.6 %), Alphaproteobacteria (16.1 ± 9.8 %), and Bacteroidota (14.3 ± 8.6 %), while sedimentary bacterial communities exhibited significantly higher diversity compared to their planktonic counterparts. Bacterial community patterns exhibited significant divergences across different habitats, and a significant distance-decay relationship of bacterial community similarity was particularly observed within the urban river ecosystem. Moreover, the urban river ecosystem displayed a more complex bacterial co-occurrence network than the coastal ecosystem, and a low ratio of negative:positive cohesion suggested the inherent instability of these networks. Homogeneous selection and dispersal limitation emerged as the predominant influences on planktonic and sedimentary bacterial communities, respectively. Pathogenic genera such as Vibrio, Bacteroides, and Acinetobacter, known for their roles in foodborne diseases or wound infection, were also identified. Collectively, these findings provided critical insights into bacterial community dynamics and their implications for ecosystem management and pathogen risk control in riverine and coastal environments impacted by rapid urbanization.


Subject(s)
Bacteria , Ecosystem , Rivers , Urbanization , China , Rivers/microbiology , Bacteria/classification , Bacteria/genetics , RNA, Ribosomal, 16S , Environmental Monitoring , Microbiota , Cities , Water Microbiology
18.
Am J Ophthalmol ; 265: 200-212, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719132

ABSTRACT

PURPOSE: To investigate the repeatability and agreement of corneal astigmatism measurements in eyes with irregular corneal astigmatism component (ICAC) using four devices: IOLMaster 700 biometer, Lenstar 900 biometer, iTrace, and Pentacam. DESIGN: Prospective cross-sectional reliability analysis. METHODS: Sixty-four eyes (52 patients) with ICAC were examined three times using the four devices. The eye with ICAC in this study is defined as the cornea has a certain degree of irregular astigmatism (asymmetric and/or skewed bowtie pattern of corneal topography according to corneal topography classification), accompanied with total corneal higher-order aberrations in the 4 mm zone of 0.3 µm or greater. Corneal astigmatism was evaluated using three categories: anterior corneal astigmatism (ACA), posterior corneal astigmatism, and total corneal astigmatism (TCA). The repeatability was determined using the ∆Ast (arithmetic mean of vector differences among three repeated corneal astigmatism measurements). Bland-Altman plots and astigmatism vector analyses were employed to assess agreement. RESULTS: The IOLMaster 700 (∆Ast = 0.27 ± 0.20 D) showcased higher repeatability in ACA measurements compared to iTrace (∆Ast = 0.37 ± 0.38 D, P = .040) and Pentacam (∆Ast = 0.50 ± 0.22 D, P < .001), and paralleled the performance of Lenstar 900 (∆Ast = 0.31 ± 0.26 D, P = .338). The Pentacam (∆Ast = 0.09 ± 0.07 D, P < .001) demonstrated superior repeatability in posterior corneal astigmatism, whereas the IOLMaster 700 (∆Ast = 0.33 ± 0.23 D, P < .001) excelled in TCA. The IOLMaster 700 exhibited good agreement with either Lenstar 900 or iTrace, characterized by narrow 95% limits of agreement and clinically acceptable vector differences. Conversely, vector differences between Pentacam and the other three devices in ACA and TCA measurements were clinically significant, exceeding 0.50 D (all P < .05). CONCLUSIONS: In terms of repeatability of corneal astigmatism measurements in eyes with ICAC, the IOLMaster 700 and Lenstar 900 outperformed iTrace and Pentacam. While the IOLMaster 700 can be used interchangeably with either Lenstar 900 or iTrace, the Pentacam is not interchangeable with the other three devices.

19.
Phys Chem Chem Phys ; 26(20): 14898-14907, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738560

ABSTRACT

The ferric trichloride (FeCl3)-intercalated graphite intercalation compound (GIC) has high reversible capacity and bulk density, making it a promising anode material for lithium ion batteries. However, its practical application has been limited by the poor cycle performance due to chloride dissolution and shuttling issues. Herein, FeCl3-GIC is used as the precursor material to synthesize a nano-Fe3O4-modified intercalation material by a solvothermal method. The Fe3O4 moiety at the edge of FeCl3-GIC provides a robust chemical anchoring effect on the chlorides. Together with the two-dimensional graphite layer, it forms a confinement space, which effectively immobilizes soluble chlorides. Attributed to the distinctive structural design, the Fe3O4-FeCl3/GIC 25% C electrode offers a high reversible capacity of 691.4 mA h g-1 at 1000 mA g-1 after 400 cycles. At 2000 and 5000 mA g-1, the reversible specific capacity of the Fe3O4-FeCl3/GIC 25% C electrode is 345.6 and 218.3 mA h g-1, respectively. This work presents an innovative method to improve the lifespan of GIC.

20.
Article in English | MEDLINE | ID: mdl-38771690

ABSTRACT

The success of graph neural networks stimulates the prosperity of graph mining and the corresponding downstream tasks including graph anomaly detection (GAD). However, it has been explored that those graph mining methods are vulnerable to structural manipulations on relational data. That is, the attacker can maliciously perturb the graph structures to assist the target nodes in evading anomaly detection. In this article, we explore the structural vulnerability of two typical GAD systems: unsupervised FeXtra-based GAD and supervised graph convolutional network (GCN)-based GAD. Specifically, structural poisoning attacks against GAD are formulated as complex bi-level optimization problems. Our first major contribution is then to transform the bi-level problem into one-level leveraging different regression methods. Furthermore, we propose a new way of utilizing gradient information to optimize the one-level optimization problem in the discrete domain. Comprehensive experiments demonstrate the effectiveness of our proposed attack algorithm BinarizedAttack .

SELECTION OF CITATIONS
SEARCH DETAIL