Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 25(8): e14451, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952057

ABSTRACT

PURPOSE: This study investigated the potential of a commercially available plastic scintillator, the Exradin W2, as a real-time dosimeter for ultra-high-dose-rate (UHDR) electron beams. This work aimed to characterize this system's performance under UHDR conditions and addressed limitations inherent to other conventional dosimetry systems. METHODS AND MATERIALS: We assessed the W2's performance as a UHDR electron dosimeter using a 16 MeV UHDR electron beam from the FLASH research extension (FLEX) system. Additionally, the vendor provided a beta firmware upgrade to better handle the processing of the high signal generated in the UHDR environment. We evaluated the W2 regarding dose-per-pulse, pulse repetition rate, charge versus distance, and pulse linearity. Absorbed dose measurements were compared against those from a plane-parallel ionization chamber, optically stimulated luminescent dosimeters and radiochromic film. RESULTS: We observed that the 1 × 1 mm W2 scintillator with the MAX SD was more suitable for UHDR dosimetry compared to the 1 × 3 mm W2 scintillator, capable of matching film measurements within 2% accuracy for dose-per-pulse up to 3.6 Gy/pulse. The W2 accurately ascertained the inverse square relationship regarding charge versus virtual source distance with R2 of ∼1.00 for all channels. Pulse linearity was accurately measured with the W2, demonstrating a proportional response to the delivered pulse number. There was no discernible impact on the measured charge of the W2 when switching between the available repetition rates of the FLEX system (18-180 pulses/s), solidifying consistent beam output across pulse frequencies. CONCLUSIONS: This study tested a commercial plastic scintillator detector in a UHDR electron beam, paving the way for its potential use as a real-time, patient-specific dosimetry tool for future FLASH radiotherapy treatments. Further research is warranted to test and improve the signal processing of the W2 dosimetry system to accurately measure in UHDR environments using exceedingly high dose-per-pulse and pulse numbers.


Subject(s)
Electrons , Plastics , Scintillation Counting , Plastics/chemistry , Scintillation Counting/instrumentation , Scintillation Counting/methods , Humans , Radiometry/methods , Radiometry/instrumentation , Radiotherapy Dosage , Phantoms, Imaging , Particle Accelerators/instrumentation
2.
Aging (Albany NY) ; 16(5): 4116-4137, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38441530

ABSTRACT

Cellular senescence is a permanent cell cycle arrest that can be triggered by both internal and external genotoxic stressors, such as telomere dysfunction and DNA damage. The execution of senescence is mainly by two pathways, p16/RB and p53/p21, which lead to CDK4/6 inhibition and RB activation to block cell cycle progression. While the regulation of p53/p21 signaling in response to DNA damage and other insults is well-defined, the regulation of the p16/RB pathway in response to various stressors remains poorly understood. Here, we report a novel function of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, as a potent inhibitor of p16 expression and senescence induction by ionizing radiation (IR), such as γ-rays. The results show that ectopic PR55α expression in normal pancreatic cells inhibits p16 transcription, increases RB phosphorylation, and blocks IR-induced senescence. Conversely, PR55α-knockdown by shRNA in pancreatic cancer cells elevates p16 transcription, reduces RB phosphorylation, and triggers senescence induction after IR. Furthermore, this PR55α function in the regulation of p16 and senescence is p53-independent because it was unaffected by the mutational status of p53. Moreover, PR55α only affects p16 expression but not p14 (ARF) expression, which is also transcribed from the same CDKN2A locus but from an alternative promoter. In normal human tissues, levels of p16 and PR55α proteins were inversely correlated and mutually exclusive. Collectively, these results describe a novel function of PR55α/PP2A in blocking p16/RB signaling and IR-induced cellular senescence.


Subject(s)
Protein Phosphatase 2 , Tumor Suppressor Protein p53 , Humans , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Tumor Suppressor Protein p14ARF/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism
3.
Chemistry ; 30(21): e202304152, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38311589

ABSTRACT

Due to the ultrahigh theoretical specific capacity (3860 mAh g-1) and low redox potential (-3.04 V vs. standard hydrogen electrode), Lithium (Li) metal anode (LMA) received increasing attentions. However, notorious dendrite and volume expansion during the cycling process seriously hinder the development of high energy density Li metal batteries. Constructing three-dimensional (3D) current collectors for Li can fundamentally solve the intrinsic drawback of hostless for Li. Therefore, this review systematically introduces the design and synthesis engineering and the current development status of different 3D collectors in recent years (the current collectors are divided into two major parts: metal-based current collectors and carbon-based current collectors). In the end, some perspectives of the future promotion for LMA application are also presented.

4.
J Appl Clin Med Phys ; 25(5): e14289, 2024 May.
Article in English | MEDLINE | ID: mdl-38319666

ABSTRACT

PURPOSE: To investigate the feasibility of commissioning the 16 MeV electron FLASH Extension (FLEX) in the commercial treatment planning system (TPS) for biomedical research with cell and mouse models, and in silico treatment planning studies. METHODS: To commission the FLEX system with the electron Monte Carlo (eMC) algorithm in the commercial TPS, radiochromic film was used to measure the vendor-recommended beam data. Once the beam model was generated for the eMC algorithm, supplemental measurements were collected for validation purposes and compared against the TPS-calculated results. Additionally, the newly commissioned 16 MeV FLASH beam was compared to the corresponding 16 MeV conventional electron beam. RESULTS: The eMC algorithm effectively modeled the FLEX system. The eMC-calculated PDDs and profiles for the 16 MeV electron FLASH beam agreed with measured values within 1%, on average, for 6 × 6 cm2 and 10 × 10 cm2 applicators. Flatness and symmetry deviated by less than 1%, while FWHM and penumbra agreed within 1 mm for both eMC-calculated and measured profiles. Additionally, the small field (i.e., 2-cm diameter cutout) that was measured for validation purposes agreed with TPS-calculated results within 1%, on average, for both the PDD and profiles. The FLASH and conventional dose rate 16 MeV electron beam were in agreement in regard to energy, but the profiles for larger field sizes began to deviate (>10 × 10 cm2) due to the forward-peaked nature of the FLASH beam. For cell irradiation experiments, the measured and eMC-calculated in-plane and cross-plane absolute dose profiles agreed within 1%, on average. CONCLUSIONS: The FLEX system was successfully commissioned in the commercial TPS using the eMC algorithm, which accurately modeled the forward-peaked nature of the FLASH beam. A commissioned TPS for FLASH will be useful for pre-clinical cell and animal studies, as well as in silico FLASH treatment planning studies for future clinical implementation.


Subject(s)
Algorithms , Electrons , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy Planning, Computer-Assisted/methods , Mice , Humans , Animals , Phantoms, Imaging , Radiotherapy, Intensity-Modulated/methods , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL